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Lung microbiota: implications
and interactions in chronic
pulmonary diseases
Jing Zhou, Wang Hou, Huilin Zhong and Dan Liu*

Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University,
Chengdu, Sichuan, China
The lungs, as vital organs in the human body, continuously engage in gas

exchange with the external environment. The lung microbiota, a critical

component in maintaining internal homeostasis, significantly influences the

onset and progression of diseases. Beneficial interactions between the host

and its microbial community are essential for preserving the host’s health,

whereas disease development is often linked to dysbiosis or alterations in the

microbial community. Evidence has demonstrated that changes in lung

microbiota contribute to the development of major chronic lung diseases,

including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary

fibrosis (IPF), asthma, and lung cancer. However, in-depth mechanistic studies

are constrained by the small scale of the lung microbiota and its susceptibility to

environmental pollutants and other factors, leaving many questions unanswered.

This review examines recent research on the lung microbiota and lung diseases,

as well as methodological advancements in studying lung microbiota,

summarizing the ways in which lung microbiota impacts lung diseases and

introducing research methods for investigating lung microbiota.
KEYWORDS

lung microbiota, chronic pulmonary diseases, microbial metabolomics, chronic
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1 Introduction

The lung microbiota is an important component of the human microbiota (Kovaleva

et al., 2019). It consists of the entire microbial community in the lungs, including bacteria,

viruses, and fungi, forming a biological system that interacts with the host’s lung

microenvironment in cellular signaling pathways and metabolic products, influencing

each other. Studies have shown that the lung microbiota is established at birth, and the

respiratory microbial community continues to develop during the first two years of life

(Chu et al., 2017). The establishment of the microbiota is a crucial factor in the formation of

a mature lung immune system and in protecting the lungs from harmful inflammatory

responses (El Tekle and Garrett, 2023). It is involved in the normal development of the

respiratory tract, regulating respiratory immunity, and maintaining respiratory health by
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preventing the spread of pathogens (Hou et al., 2022). Any dynamic

system can be dysregulated by internal or external factors, and the

same is true for lung microbiota. The imbalance in the lung

microbiota may trigger or exacerbate respiratory diseases such as

chronic obstructive pulmonary disease, asthma, and lung cancer

(Figure 1) (Maddi et al., 2019). Investigating the mechanisms of

lung microbiota and its microenvironment changes in the

occurrence and development of lung diseases is of significant

importance in exploring new potential therapeutic targets.

Although research on the lung microbiota is still in its early

stages compared to the well-studied gut microbiota, studies have

found that the microbial community in lung tissue also plays a

functional role in the progression of lung diseases (Meng et al.,

2023; Natalini et al., 2023a). Furthermore, on account of the unique

characteristics of the lung microbiota (significantly smaller scale

than the gut microbiota but highly diverse and more sensitive to

environmental influences and greatly affected by oral and upper

respiratory tract microbiota), the development of research

techniques targeting the lung microbiota is essential for

advancing research. To comprehensively understand the role of

local microbiota in diseases, this review reports on the microbial

characteristics of several chronic lung diseases, the mechanisms by

which the microbiota promotes the occurrence and development of

diseases, and recent cutting-edge research methodologies related to

lung microbiota.
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2 Microbiome characteristics of
different chronic pulmonary diseases

2.1 Lung microbiome characteristics

The lung microbiota are mainly obtained from the exchange of

nasopharynx, oropharynx and ambient air (Tsay et al., 2021). The

lung microbiota of healthy individuals is mainly composed of

Streptococcus (Firmicutes), Fusobacterium (Fusobacteria),

Haemophilus (Proteobacteria), Bacteroides (Bacteroidetes),

Pseudomonas (Proteobacteria), Prevotella (Bacteroidetes), and

Neisseria (Proteobacteria) (Charlson et al., 2011; Yang et al., 2018;

Zhu and Chang, 2023). In addition to bacteria, fungi and viruses

also contribute to the lung’s microbial environment. A study on

post-antibiotic mouse colonies suggests that the presence of fungi

can influence the composition of lung bacteria and the host’s

response (Erb Downward et al., 2013). There is relatively less

reporting on viruses in the microbiota, but viruses are also

present in the blood of healthy individuals. Viruses exhibit high

specificity to their hosts and are relatively stable (Minot et al., 2011;

Abeles et al., 2014). Under normal circumstances, the lung

microbiota is in a balanced state of migration and elimination,

with various symbiotic microorganisms in relatively balanced and

stable quantities (Spijkerman et al., 2012; Mika et al., 2015). When

the lung microbiota is imbalanced, it can affect the immune
FIGURE 1

The crosstalk between microbiome and host (Yang et al., 2019; Liu et al., 2023; Yi et al., 2022).
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microenvironment by releasing metabolic products, inducing

inflammatory processes, producing bacterial toxins that alter the

stability of the host’s genome, and increasing levels of carcinogenic

microbial metabolites, thereby leading to the occurrence and

development of diseases (Table 1) (Mao et al., 2018; Tsay et al.,

2021; Campbell et al., 2022). For example, environmental exposures

such as cigarette smoke, PM2.5 and air pollutants can lead to

increased respiratory symptoms and lung damage. Elevated levels of

Atopobium, Actinomyces and Prevotella have been reported in

smokers compared to non-smokers). In addition, fungal taxa and

especially Cladosporium are associated with PM2.5 concentrations

(Lin et al., 2023). Exposure to PM2.5 can lead to lung inflammation

and oxidative stress (Wang S. M. et al., 2022).
2.2 Chronic obstructive pulmonary disease

Chronic obstructive pulmonary disease (COPD) is defined by

persistent inflammation in the airways, parenchymal part of lung

tissue, and pulmonary vessels, and it is progressive and irreversible,

making it one of the major contributor of death from chronic lung

diseases (Devadoss et al., 2019). COPD has several risk factors,

including smoking, genetic factors, environmental pollution, and

infection (Labaki and Rosenberg, 2020). Colonization and infection

of airway bacteria are the main triggering factors for acute

exacerbations of COPD (Meldrum et al., 2024). On one hand,

bacteria release bacterial products such as oligosaccharide lipids or

other soluble bacterial toxins, causing damage to airway epithelial

cells. On the other hand, it can cause local inflammatory reactions,

with inflammatory cells releasing cytokines and increasing elastase

activity, disrupting the balance of elastase/anti-elastase systems,

thereby promoting the progression of COPD and leading to

irreversible lung damage (Leung et al., 2017; Pathak et al., 2020;

Isaacs et al., 2023). Compared to healthy individuals, the relative
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abundance of Actinobacteria decreases in COPD patients, while the

relative abundance of Haemophilus increases, which shows a

positive correlation with interleukin-8 (IL-8) levels in sputum

(Wang Z. et al., 2021). Another study indicates that the presence

of a microbial community in sputum dominated by Proteobacteria

in COPD patients is associated with poorer lung function and

disease progression (Dicker et al., 2021). Furthermore, clinical

phenotypes of COPD can be distinguished by respiratory

microbiota and can better predict patient response to antibiotic

therapy (Wang Z. et al., 2021). For example, patients with a

neutrophilic inflammatory phenotype are often accompanied by

bacterial infections and require antibiotic treatment, while patients

with an eosinophilic inflammatory phenotype often show no signs

of infection. The alpha diversity of the lower respiratory tract

microbiota decreases in COPD patients after glucocorticoid

treatment, with an increase in Moraxella and Haemophilus

abundance and a decrease in Streptococcus abundance, while the

use of antibiotics shows opposite results (Wang et al., 2016). The

respiratory microbiota undergoes significant changes during acute

exacerbations of COPD compared to stable periods, with decreased

microbial diversity and increased abundance of Proteobacteria,

particularly Haemophilus and Moraxella, and a significant

decrease in Staphylococcus (Sun et al., 2020; Zheng et al., 2022).

Viral infections are among the factors contributing to acute

exacerbations, and nasal virus infection in COPD patients can

enhance neutrophil elastase-mediated antimicrobial peptide

degradation. This virus-induced increase in secondary bacterial

infections leads to an increase in Haemophilus abundance and

microbial dysbiosis in the lungs (Zheng et al., 2022).

Respiratory viruses and fungi are associated with exacerbation of

COPD. Rhinovirus is the most common type of viral infection that

exacerbates COPD (Stolz et al., 2019). In addition, Influenza Virus

and Respiratory Syncytial Virus (RSV) are frequently detected in the

respiratory tract of COPD patients (Simon et al., 2023). COPD
TABLE 1 Summary of key findings on the lung microbiota in chronic pulmonary diseases.

Disease Sample size Key finding Reference

COPD sputum The abundance of Streptococcus, Staphylococcus, Prevotella and Gemella increases (Opron et al., 2021;
Yi et al., 2022)

COPD sputum Airway microbiome-derived IAA mitigates neutrophilic inflammation, apoptosis, emphysema
and lung function decline, via macrophage-epithelial cell cross-talk mediated by
interleukin-22.

(Yan et al., 2022)

Bronchial asthma – Rhinoviruses are the most common pathogen that triggers asthma (Jackson and
Gern, 2022)

Bronchial asthma nasal secretion Staphylococcus is associated with alleviation of asthma symptoms, while Moraxella is
associated with exacerbation of asthma

(McCauley
et al., 2019)

IPF Lung/bulf Epstein-Barr virus (EBV), Cytomegalovirus (CMV), Human Herpesvirus 7 (HHV-7) and
Human herpesvirus 8 (HHV-8) were associated with a significant elevation in the risk of IPF

(Sheng et al., 2020)

IPF Lung (mouse) Actinomyces and Prevotella promote pulmonary fibrosis in mice through IL-17B signaling (Yang et al., 2019).

Lung cancer Airway brushings Streptococcus and Veillonella promote lung cancer through the upregulation of the ERK and
PI3K signaling pathways

(Natalini et al.,
2023a; Tsay
et al., 2018)

Lung cancer Lung (mouse/ human) Aspergillus sydowii promotes tumor progression by inhibiting cytotoxic T lymphocyte activity
and PD-1+ CD81+ Tcell aggregation

(Liu et al., 2023)
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1401448
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Zhou et al. 10.3389/fcimb.2024.1401448
patients have high expression of ACE2 (the receptor for SARS-CoV-

2), making them more susceptible to COVID-19 (Higham et al.,

2020). Multiple studies have shown that virus-induced COPD

exacerbations may be related to interferon IFN (Garcia-Valero

et al., 2019; Collinson et al., 2021). In addition to viruses, the role

of fungi in COPD patients is gradually being recognized, and fungal

sensitization is prevalent in COPD patients and associated with poor

outcomes (Tiew et al., 2020). For example, a prospective multicenter

study from Singapore found that Aspergillus sensitization is

associated with COPD exacerbations (Tiew et al., 2023).

It has been reported that most COPD exacerbations are caused by

bacterial or viral infections (Kim et al., 2024). Due to the

downregulation of pattern recognition receptors (PRRs) such as

Toll-like receptors (TLRs) and Nod-like receptors (NLRs) on the

airway epithelial cells of COPD patients, the recognition ability of

bacterial pathogens is impaired, leading to delayed and insufficient

immune responses (Sidletskaya et al., 2020). Bacterial infections in

COPD patients can induce oxidative stress, produce reactive oxygen

species (ROS), and impaired phagocytic function (Yamasaki and van

Eeden, 2018; Singh et al., 2021). Most respiratory viruses target

airway epithelial cells, causing epithelial barrier disruption,

microvascular dilatation, edema, and immune cell infiltration,

which can lead to increased levels of CD8+ T cells, neutrophils,

eosinophils, TNF-n and IFN-n in COPD patients (Paats et al., 2012).

Additionally, COPD is characterized by specific fungal genera such as

Aspergillus, Curvularia and Penicillium (Tiew et al., 2021).

Environmental exposure is the main source of fungal allergens and

Aspergillus can form biofilms on the airway epithelial cells of COPD

patients to resist host immunity and antifungal therapy. It can also

lead to impairment of neutrophil function and increased apoptosis,

resulting in disease progression (Tiew et al., 2020).
2.3 Bronchial asthma

Bronchial asthma (asthma) is a common respiratory system

disease characterized by recurrent wheezing, shortness of breath,

chest tightness, or coughing. Colonization or infection of

microorganisms in the upper respiratory tract and lower

respiratory tract can lead to the onset of asthma (Gon and

Hashimoto, 2018). The mechanism involved mainly includes

promoting IgE synthesis and histamine release, leading to a

hypersensitive state of the body, promoting the release of various

cytokines. This process triggers numerous allergic responses, such as

eosinophilic inflammation, transformation of immunoglobulin (IgG)

into IgE, promotion of B cell proliferation, goblet cell transformation,

and the consequent mucus secretion, exacerbating airway

inflammation and damage, leading to airway spasm, edema, and

exudation. Changes in the local microbial community lead to local

immune dysfunction, resulting in the occurrence of asthma

(Whetstone et al., 2022). Studies have shown that changes in the

microbiota in asthma have a significant impact on the

pathophysiology of the disease (Barcik et al., 2020; Santos et al.,

2021). For example, the abundance of neutrophils in the sputum of

asthma patients is related to the levels of specific taxa, including
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Moraxella (Ma et al., 2021). Researchers have detected a variety of

microorganisms in the lower respiratory tract microbiota of

asthmatic children, including Bacteroides, Faecalibacterium,

Roseburia, Moraxella, Staphylococcus, and Streptococcus (Goldman

et al., 2018; Al Bataineh et al., 2020). Among these microorganisms,

Staphylococcus is associated with alleviation of asthma symptoms,

whileMoraxella is associated with exacerbation of asthma (McCauley

et al., 2019). In addition, an increase in Proteobacteria and an

elevation of non-Proteobacteria such as Pseudomonas, Clostridium,

and members of the family Enterobacteriaceae have been observed in

the airways of asthma patients (Azim et al., 2021), and are

significantly associated with the expression of Th17-related genes,

which may lead to recruitment of neutrophils (Wilburn et al., 2023).

Rhinovirus is the most common pathogen triggering asthma,

followed by Human Bocavirus and Human Metapneumovirus (10-

25% positivity) (Coverstone et al., 2019). CDHR3 has been found to

be highly expressed in differentiated bronchial epithelial cells and acts

as a receptor for Rhinovirus C to increase the risk of respiratory

disease (Bonnelykke et al., 2018). These studies indicate that changes

in the microbial community are not only related to asthma but may

also play a role in the changes of asthma symptoms.
2.4 Idiopathic pulmonary fibrosis

Idiopathic Pulmonary Fibrosis (IPF) is the most common and

prevalent type of pulmonary fibrosis. Activation of cells in the alveolar

region leads to the release of a large number of cytokines and growth

factors, promoting the recruitment, proliferation and differentiation of

lung fibroblasts into myofibroblasts, resulting in progressive lung

parenchymal damage. This process leads to irreversible decline

in lung function and even respiratory failure (Moss et al., 2022). One

multicenter study showed that Human Herpesvirus 7 (HHV-7),

Human Herpesvirus 8 (HHV-8), Epstein-Barr virus (EBV),

and Cytomegalovirus (CMV) were associated with a significantly

increased risk of IPF (Sheng et al., 2020). Testing of the lower

airways of IPF patients has revealed an increased abundance of

Haemophilus, Veillonella, Streptococcus, and Neisseria (Zhang T.

et al., 2023). It has been reported a positive correlation between the

concentration of IL-6 in the alveoli of IPF patients and the relative

abundance of Firmicutes, while the concentration of IL-12p70 in the

alveoli was negatively correlated with the relative abundance of

Proteobacteria (O'Dwyer et al., 2019). Researchers have found that

peptides secreted by Staphylococcus induce apoptosis of lung epithelial

cells and collagen deposition, leading to acute exacerbation of IPF and

further inhibition of these apoptotic peptides can improve acute

exacerbation of pulmonary fibrosis (D'Alessandro-Gabazza et al.,

2020). Another study demonstrated that Actinomyces and Prevotella

promote pulmonary fibrosis in mice through IL-17B signaling (Yang

et al., 2019). In a mouse model of bleomycin-induced pulmonary

fibrosis, germ-free mice have a higher mortality rate compared to

conventional mice, demonstrating the complex relationship between

lung microbiota changes and IPF-related inflammatory activity. In

conclusion, we can find that microorganisms may promote or inhibit

IPF through certain key signaling pathways.
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2.5 Lung cancer

The incidence and mortality of lung cancer are among the

highest globally (Leiter et al., 2023). Approximately 90% of lung

cancer cases are attributed to risk factors such as smoking, tobacco

smoke, air pollution and other carcinogens (Qi et al., 2023; Xue

et al., 2023). Lung cancer patients show decreased alpha diversity

and altered bacterial composition. Researchers have found a

transition in dominant bacterial taxa from Firmicutes to

Bacteroidetes in saliva and bronchoalveolar lavage samples of lung

cancer patients (Xie et al., 2022) and a correlation between

intratumoral bacteria and tumor type and subtype, patient

smoking status and immune therapy response (Nejman et al.,

2020). Chronic airway inflammation can increase susceptibility to

lung cancer, suggesting that airway dysbiosis may be one of its

pathogenic mechanisms (Goto, 2022). Studies have found

enrichment of the airway commensal bacteria Megasphaera and

Veillonella in the bronchoalveolar lavage fluid (BALF) of lung

adenocarcinoma patients (Guo et al., 2022). Other researchers

have found an abundance of Streptococcus and Veillonella in

the lower respiratory tract of lung cancer patients, leading

to upregulation of the ERK and PI3K signaling pathways,

promoting lung cancer cell proliferation (Tsay et al., 2018).

Bacterial metabolites such as reactive oxygen and nitrogen

species can directly cause DNA damage and disrupt multiple

signaling pathways, creating a pro-carcinogenic environment

(Dong et al., 2021; Ho et al., 2021). In addition to bacteria,

fungi such as Blastomyces (Li and Saxena, 2022) and Aspergillus

sydowii (A. Sydowii) (Liu et al., 2023) have also been found in

lung tumor tissues. A recent study revealed that the intratumoral

fungus Aspergillus sydowii promoted lung cancer progression

through IL-1ughsionlTE expansion and activation of myeloid-

derived suppressor cells (MDSCs), and the enrichment of

Aspergillus was closely associated with poorer prognosis in lung

cancer patients (Liu et al., 2023). The relationship between

microorganisms and their microenvironment with tumors is very

close and a more comprehensive understanding of the character of

the microbiota in lung cancer is essential. Given that the lung

microbiome is associated with the prognosis of lung cancer patients

and can promote lung cancer progression through key signaling

pathways, it can serve as a critical diagnostic and preventive

biomarker for lung cancer staging, genotyping and risk

stratification (Poore et al., 2020).
3 Mechanism of microorganisms and
host interactions

Some studies have shown that microorganisms interact with the

host through metabolites to regulate signaling pathways. For

example, the indole IAA produced by Lactobacillus alleviates

neutrophil inflammation, cell apoptosis, emphysema and lung

function decline through IL-22-mediated macrophage-epithelial cell

interaction (Yan et al., 2022). Additionally, Lactobacillus can

metabolize dietary tryptophan into indole, thereby inhibiting tumor
Frontiers in Cellular and Infection Microbiology 05
immunity and promoting the growth of pancreatic ductal

adenocarcinoma (Hezaveh et al., 2022). Given that host-microbiota

interactions are bidirectional, microbial-derived metabolites may

interact with host macromolecules and affect their responses.

Short-chain fatty acids (SCFAs), such as acetate, propionate and

butyrate, reduce tumor necrosis factor TNF-o production by

inhibiting histone deacetylase (HDAC) and suppressing the

transcription factor NF-to (Chambers et al., 2018). Metabolomic

changes can predict asthma outcomes, as researchers have found a

positive correlation between 5’-AMP, uracil and niacinamide with

asthma exacerbations using non-targeted sputum metabolomics

(Liu et al., 2022). A study revealed that metabolites related to lipid

peroxidation in urine samples are linked to the severity of asthma,

lung function and eosinophilic inflammation in non-obese asthmatic

individuals (Wang C. et al., 2021). Additionally, in a mouse model,

fecal microbiota from patients with COPD was demonstrated to play

a role in the onset of COPD (Li et al., 2021) and COPD patients and

healthy individuals exhibit distinct microbial and metabolic features

in fecal samples (Bowerman et al., 2020). NMR analysis of urine from

pneumonia patients indicates that specific metabolic profiles can be

used to differentiate pneumococcal pneumonia from pneumonia

caused by other bacterial strains (Green et al., 2023). NMR analysis

of urine from pneumonia animals infected with either Streptococcus

pneumoniae or methicillin-resistant Staphylococcus aureus (MRSA)

revealed different metabolic profiles (Green et al., 2023). These results

suggest that metabolomics has potential in the diagnosis and

monitoring of pneumonia.
4 The connection between lung
microbiota and gut microbiota

All parts of the human body are colonized by microorganisms,

with the gut harboring the highest density. The gut microbiota,

comprising tens of trillions of symbiotic bacteria, fungi, archaea

and viruses (Zhou et al., 2021), has garnered significant attention.

The emerging concept of the gut-lung axis underscores the

intricate interplay between lung and gut microbiota (Anand and

Mande, 2018). Clinical studies indicate that lung diseases may be

associated with gut microbiota (Li et al., 2021) and alterations in lung

microbiota can lead to changes in the composition and metabolism of

gut microbiota (Bowerman et al., 2020). Conversely, translocated gut

microbiota and their products can influence pulmonary immunity

(Özçam and Lynch, 2024). For instance, fecal microbiota from COPD

patients has been shown to contribute to COPD development, with

gut microbial-derived lipopolysaccharides (LPS) exacerbating COPD

progression in mice (Li et al., 2021). Bowerman et al. identified a

disease-related network linking Streptococcus parasanguinis_B with

COPD-associated metabolites, such as N-acetylglutamate and its

analogue, providing valuable insights for COPD biomarker

discovery (Bowerman et al., 2020). Additionally, fecal microbiota

transplantation in healthy mice has been demonstrated to attenuate

emphysema development by inhibiting inflammation both locally

and systemically, and by altering gut microbiota composition

(Jang et al., 2020).
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5 Pulmonary microbiome testing tools

5.1 Amplicon sequencing

Currently, amplicon sequencing and metagenomics Next-

Generation sequencing (mNGS), as well as targeted sequencing

(tNGS), are the predominant sequencing technology used in

microbiome research (Han et al., 2022). Amplicon sequencing

targeting 16S rRNA region of bacteria gene or ITS region of fungi

(Gao et al, 2023). Primarily involves PCR amplification of a partial

region followed by high-throughput sequencing to detect sequence

variations and abundance information.When studying lungmicrobes,

the V4 or V3V4 region sequence is most often selected. For fungi,

often a portion of ITS1 or ITS2 sequence was characterized. This

method reveals the types, relative abundance, and evolutionary

relationships of microorganisms in environmental samples (Liu

et al., 2021). Due to its high specificity, sensitivity, throughput and

simple data analysis process, amplicon sequencing is favored by many

researchers and remains irreplaceable in microbiota studies (Zhang

W. et al., 2023). However, this method has limitations as it is not

applicable for sequencing viral genomes due to the lack of a conserved

gene similar to the 16S rRNA gene in these organisms. Additionally,

limited universal primers, methodological constraints, and high host

contamination restrict the accurate reflection of actual microbial

community structures in samples (Table 2) (Weinroth et al., 2022).
5.2 Metagenomics next-
generation sequencing

In the clinical setting, mNGS is applied to infectious disease

diagnosis, respiratory microbiome analysis, human host response

analysis to infections, drug resistance prediction, colonization and

infection differentiation, as well as the identification of tumor-

related viruses and their genomic integration sites in various

syndromes and sample types (Diao et al., 2022; Ibañez-Lligoña

et al., 2023). The main advantage of mNGS is its unbiased sampling,

as it maps the obtained sequence information to microbial resource

databases, overcoming the limitations of targeted detection

methods by characterizing all microorganisms in the human body

system, including viruses, fungi, bacteria and parasites, in a single

test (Qin et al., 2022). mNGS can provide a comprehensive view of

the microbial community structure and function. However, mNGS
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also has limitations, as most bacteria can only be identified at the

genus level, and contamination may occur during sampling or DNA

extraction processes (Wensel et al., 2022).
5.3 Targeted next-generation sequencing

Targeted sequencing (tNGS), also known as pathogen-

targeted sequencing, detects known pathogenic microbial

information in samples through multiplex PCR. tNGS

specifically amplifies target genes of interest, thereby avoiding

the influence of the host and sampling process, making it a highly

sensitive and cost-effective optimization method (Sibandze et al.,

2022). tNGS technology is used for the detection of known

pathogens and drug-resistant genes (Wang S. et al., 2022; Yi

et al., 2024)]. However, this technology faces challenges in its

development and application, including low detection rates due

to non-specific amplification, primer dimer interference, and

amplification bias, as well as the need for improvement in the

recognition and detection of new pathogens and rare specimen

capabilities (Li et al., 2021).
5.4 Metatranscriptomics

Metatranscriptomics can assess the gene expression of

microorganisms to explain their composition and function in the

environment, such as the lungs, oral cavity and gut. It allows us to

understand the interactions between the microbe and the host (Ren

et al., 2019). It overcomes the limitations of polymerase chain

reaction (PCR) amplification and is not limited to the analysis of

specific bacteria, making it particularly advantageous in

characterizing host-microbe gene expression. However, it also has

its limitations, such as the possibility of host RNA contamination

and RNA degradation during processing (Gao et al., 2023).

Therefore, it requires extra caution. In the analysis process, even

using the same database, different macro-genomic analysis methods

can sometimes produce different results.
5.5 Microbial metabolomics

Microbial metabolomics can provide accurate information

about the actual physiological status of microorganisms,
TABLE 2 Comparison of microbial sequencing method.

Advantages Disadvantages Applications

16s
rRNA

High abundance;
Low cost;
No host contamination

Unable to detect fungi
and viruses;
Low resolution

Bacterial Identification (Liu et al., 2023)

ITS Low cost;
High sensitivity

The selection of
primers affects the sequencing results

Fungi identification (Yi et al., 2022)

mNGS High resolution;
No probe synthesis;
Detect unknown species

High DNA quality
requirement ;
Host contamination ; Expensive

Detection of bacteria, fungi and viruses
(Han et al., 2023; Li et al., 2024)
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identifying immunomodulatory metabolites to reflect the health

status of the environment or evidence of ecological imbalance

(Liu et al., 2022). NMR, GC-MS, and LC-MS are several

commonly used tools in microbial metabolomics (Ye et al., 2022).

Sample pretreatment techniques based on NMR metabolomics are

relatively simple, allowing for objective and non-destructive sample

evaluation and identification, with stable and strong repeatability

ofdetection results (Traverso et al., 2018; Valentino et al., 2020).

NMR is better suited for analyzing compounds that are difficult to

ionize and require derivatization. However, due to limited

sensitivity, MS is a better choice for achieving higher sensitivity

and separation efficiency. LC-MS and GC-MS can detect thousands

of different metabolites in various metabolic areas at the

micromolar to millimolar leve l (Misra, 2020). Currently, mass

spectrometry ismainly used in clinical microbiological identification

(Bauermeister et al., 2022). LC-MS is primarily used for the analysis

and detection of stable compounds and large molecular compounds

(including proteins, peptides, and polymers). Compared to LC-MS,

GC-MS can relatively easily identify a larger proportion of

metabolites, as well as separate, identify, and quantify molecules

in mixed samples, making it the preferred tool for the analysis of

volatile small molecule metabolites (Weisskopf et al., 2021).

To thoroughly understand the role of microorganisms in the

human body and their impact on human health, it is necessary to

use a combination of omics tools. Multi-omics integration is an

inevitable trend in future research, and it is hoped that through

multi-omics, we can gain a deeper understanding of the role of lung

microorganisms in respiratory diseases and develop more effective

disease treatment strategies.
6 Conclusion

Existing research indicates that the human microbiome plays a

crucial role in the development and progression of human diseases,

with the changes in the microbiome and its metabolites having a

significant impact on the pathophysiology of diseases. Therefore, in

order to conduct a more comprehensive study of the microbiome, we

have listed several of the most mainstream microbiome sequencing

methods. These sequencing tools can help us identify the presence of

microorganisms, understand the dynamic changes of microbiota in

diseases, assess their functions and their direct impact on the host.

Furthermore, combined with metabolomics and other multi-omics

methods for joint analysis, they can deepen our understanding of the

molecular mechanisms underlying microbiome-related diseases.
7 Discussion

Despite some achievements in certain aspects, the lung

microbiome still faces challenges. Sampling is a key aspect in lung

microbiome research. Compared to the skin and gut, the biomass in

the lungs is low, making sampling and detection difficult (Sulaiman

et al., 2021). Additionally, the upper respiratory tract serves as the

entry point connecting with the external environment and is
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typically the first point of contact for inhaled pollutants and

pathogens, thus sample data from the upper respiratory tract may

influence disease prognosis (Kumpitsch et al., 2019; Tiotiu et al.,

2020). Another significant limitation is that existing metabolomic

analysis techniques cannot distinguish whether certain metabolites,

such as histamine, originate from the host or from microorganisms

if both produce the same metabolite (Yamauchi and Ogasawara,

2019; Krell et al., 2021). Furthermore, to better understand the

relationship between the role of the respiratory microbiome and

disease progression, more longitudinal studies are crucial.

In the clinical medical field, microbiota transplantation has

been applied clinically, but only in the gastrointestinal tract (Waller

et al., 2022). The impact of altering the respiratory microbiota on

clinical treatment is unknown, but it will be a direction for future

research. With the continuous advancement of technology, high-

throughput sequencing techniques will continue to have a key role

in microbiome research. Recently, two innovative technologies,

2bRAD-M simplified metagenome sequencing and MobiMicrobe

high-throughput single-cell genome sequencing, have emerged

(Sun et al., 2022; Zheng et al., 2022). These technologies can

effectively handle low biomass, severe degradation, and high host-

contaminated samples, overcoming the limitations of mainstream

technologies and offering unique core advantages. In future

research, these technologies will demonstrate their strengths and

value in development and application, enabling tailored microbial

intervention strategies for different individuals and applying them

to the prevention and treatment of clinical diseases. This will give us

a comprehensive understanding of the microbial communities in

the human body.
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