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Background: Lung is the largest mucosal area of the human body and directly

connected to the external environment, facing microbial exposure and

environmental stimuli. Therefore, studying the internal microorganisms of the

lung is crucial for a deeper understanding of the relationship between

microorganisms and the occurrence and progression of lung cancer.

Methods: Tumor and adjacent nontumor tissues were collected from 38 lung

adenocarcinoma patients and used nanopore sequencing technology to

sequence the 16s full-length sequence of bacteria, and combining

bioinformatics methods to identify and quantitatively analyze microorganisms

in tissues, as well as to enrich the metabolic pathways of microorganisms.

Results: the microbial composition in lung adenocarcinoma tissues is highly

similar to that in adjacent tissues, but the alpha diversity is significantly lower than

that in adjacent tissues. The difference analysis results show that the bacterial

communities of Streptococcaceae, Lactobacillaceae, and Neisseriales were

significantly enriched in cancer tissues. The results of metabolic pathway

analysis indicate that pathways related to cellular communication,

transcription, and protein synthesis were significantly enriched in cancer tissue.

In addition, clinical staging analysis of nicotine exposure and lung cancer found

that Haemophilus, paralinfluenzae, Streptococcus gordonii were significantly

enriched in the nicotine exposure group, while the microbiota of

Cardiobactereae and Cardiobacterales were significantly enriched in stage II

tumors. The microbiota significantly enriched in IA-II stages were Neisseriaeae,

Enterobacteriales, and Cardiobacterales, respectively.
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Conclusion: Nanopore sequencing technology was performed on the full length

16s sequence, which preliminarily depicted the microbial changes and

enrichment of microbial metabolic pathways in tumor and adjacent nontumor

tissues. The relationship between nicotine exposure, tumor progression, and

microorganisms was explored, providing a theoretical basis for the treatment of

lung cancer through microbial targets.
KEYWORDS

lung cancer, intratumor microbiota, metabolic pathways, nanopore sequencing, clinical
stages, nicotine exposure
1 Introduction

Lung cancer, one of the most prevalent cancers globally, presents

profound health challenges and societal burdens, surpassing the

combined mortality rates of other major tumor types. Despite

advancements in diagnostic techniques, coupled with resistance to

conventional chemotherapy, the prognosis for lung cancer remains

notably grim (Herbst et al., 2018). Its pathogenesis is intricately

multifaceted, encompassing genetic mutations, epigenetic alterations,

environmental influences, and disruptions in immune function. While

comprehensive cancer genome maps have been unveiled for lung

adenocarcinoma and lung squamous cell carcinoma, the extrinsic

factors influencing lung cancer development remain elusive

(Network, 2014; Campbell et al., 2016).

The human microbiota, regarded as an indispensable component

of the body, has evolved into a distinct organ system within the human

physiology. These diverse microbial populations inhabit various

regions including the mouth, intestines, digestive tract, and skin

(Matson et al., 2018; Tanoue et al., 2019), playing pivotal roles in

maintaining human health (Clemente et al., 2012). Numerous studies

have demonstrated discernible differences in the microbiome

composition between individuals with good health and those afflicted

by diseases, underscoring the profound impact of microorganisms on

immune responses. While cancer is traditionally attributed to genetic

and environmental factors, approximately 20% of humanmalignancies

are linked to microorganisms, influencing tumor development (de

Martel et al., 2012). Notably, the integration of pathogens such as EB

virus, hepatitis B virus, hepatitis C virus, and human papillomavirus

into the human genome heightens susceptibility to specific cancers,

such as cervical cancer. Additionally, Helicobacter pylori bacteria

colonization of the gastric mucosa is implicated in the onset of

gastric cancer (Warren and Marshall, 1983; Marshall et al., 1985).

Garrett et al. delineate three primary mechanisms through which

microbiota contribute to tumor initiation and progression:

(1) modulation of cell proliferation and apoptosis pathways,

(2) modulation of the immune system and immune responses, and

(3) modulation of host secretion factors, as well as metabolism of food

and drugs (Garrett, 2015).
02
As with an organ for gas exchange, the lungs are directly

exposed to the external environment, allowing for the exchange

of microorganisms between the lungs and the oral cavity.

Researchers once believed that healthy lungs were sterile, as

traditional microbial culture methods failed to isolate and

cultivate bacteria from the lower respiratory tract. However,

advancements in high-throughput sequencing technology have

revealed that the lungs harbor a diverse bacterial community,

regardless of health status (Dickson et al., 2016). This lung

microbiota is characterized by its complexity, comprising a

variety of bacterial species. The main phyla found in the lung

microbiome include Firmicutes, Proteobacteria, Bacteroidetes, and

Actinobacteria (Moffatt and Cookson, 2017). At the genus level,

Prevotella, Vibrio, Streptococcus, Neisseria, Haemophilus,

Clostridium, Sphingomonas, Pseudomonas, Acinetobacter, and

Megacoccus are among the predominant genera, while

Staphylococcus and Corynebacterium dominate the airway

microbiota (Hilty et al., 2010; Erb-Downward et al., 2011; Gomes

et al., 2019).

The use of 16S sequencing technology has led to a growing body

of evidence linking local ecological imbalances to cancer. For

instance, studies comparing lung tumor tissue samples with non-

malignant lung tissue have shown significantly lower alpha diversity

in the microbial community of lung tumors, indicating a correlation

with cancer staging (Yu et al., 2016). Furthermore, it has been

observed that Thermus is more abundant in tumor tissue from

advanced patients, whereas Legionella is more prevalent in patients

with metastasis, suggesting these bacteria may play a role in lung

cancer progression (Yan et al., 2015). Some studies propose that

microbial communities in saliva, bronchoalveolar lavage fluid, and

sputum samples could potentially serve as biomarkers for

predicting cancer occurrence (Yan et al., 2015; Lee et al., 2016;

Cameron et al., 2017).

In studies on lung adenocarcinoma, researchers have discovered

that indigenous microorganisms can penetrate the resident lung cells,

triggering inflammation associated with the disease via gd T cells.

This inflammatory response is potentially initiated by symbiotic

bacteria, prompting bone marrow cells to produce Myd88-
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1397989
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Yang et al. 10.3389/fcimb.2024.1397989
dependent IL-1b and IL-23. Consequently, this cascade induces the

proliferation and activation of Vg6+Vd1+ gd T cells, leading to the

secretion of IL-17 and other effector molecules, thus promoting

inflammation and the proliferation of tumor cells (Jin et al., 2019).

This study involved the collection of paired tumors and adjacent

nontumor tissues samples from 33 patients undergoing lung

adenocarcinoma surgery. Employing high throughput 16S sequencing

technology, we analyzed the Intratumoral microbiota. Our findings

revealed that the genera Haemophilus, Rhodopseudomonas, Salmonella,

and Pseudomonas constituted the predominant microbial communities

in the lungs, comprising over 99% of the total microbial population.

Furthermore, the cancer tissues exhibited higher overall microbial

diversity compared to adjacent tissues, with notable enrichment of

Streptococcaceae, Lactobacillaceae, and Neisseriales in cancerous tissues.

Additionally, we examined the correlation between nicotine exposure,

tumor clinical staging and intratumoral microbiota. The

microorganisms identified in tumor tissues in our study offer a novel

avenue for the clinical treatment of lung adenocarcinoma through

microbial interventions.
2 Materials and methods

2.1 Sample collection

In this study, we collected data from 38 patients with primary

lung cancer diagnosed for the first time at the First Affiliated

Hospital of Zhengzhou University between October 2022 and

June 2023. After excluding five unpaired samples, we analyzed a

final set of 33 paired samples. All subjects signed informed consent

forms before surgery, and this project was approved by the Ethics

Committee of the First Affiliated Hospital of Zhengzhou University

(2022-KY-0677-003). The inclusion criteria were as follows: newly

diagnosed stage II lung adenocarcinoma patients who had not

undergone radiotherapy or chemotherapy, agreed to participate in

the research, and had no history of other organ tumors or intestinal-

related surgery. Exclusion criteria included the presence of

bronchiectasis or interstitial lung disease revealed by chest CT

examination, COPD indicated by pulmonary function testing, a

history of asthma, use of antibiotics or steroids for treatment within

the past 3 months, and concurrent pneumonia diagnosed through

serological and imaging examinations. For detailed clinical

information, please refer to Supplementary Table 1.
2.2 DNA extraction, library construction,
and high-throughput sequencing

The Zymo Research BIOMICS DNAMicroprep Kit (Cat # D4301)

was used for microbial gDNA purification. The integrity of gDNA was

detected by 0.8% agarose gel electrophoresis, followed by nucleic acid

concentration detection using Tecan F200 (PicoGreen dye method).

Use specific primers with a Barcode full-length of 16S to amplify the

designated region of the sample, The primer information is as follows:

(8F: 5’AGAGTTTGATCATGGCTCAG3’; 1492R: 5’CGGTTAC

CTTGTTACGACTT3’). Each sample undergoes 3 replicates, and
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each PCR reaction terminates at the linear amplification stage. After

PCR, the PCR products of the same sample were mixed and subjected

to electrophoresis detection. The PCR products were cut and recovered

using a gel recovery kit, and the target DNA fragments were washed

and recovered using TE buffer. The PCR recovered products were

detected and quantified using Qubit 2.0 (Thermo Fisher, Inc., USA),

and after passing the quality control, the Nanopore R9.4.1 library kit

was used for machine library construction. The library was sequenced

using MinION sequencer and real-time high-precision base calling

was performed.
2.3 Data quality control and sequence
annotation analysis

The raw data obtained from sequencer were filtered by qcat and

NanoFILT tools to obtain high-quality target sequences for

subsequent analysis (De Coster et al., 2018). To obtain the

classification information corresponding to each sequence,

the classification based on k-mer matching was used to annotate

the classification of all sequences. Usually includes three steps: first,

cut the sequence into several k-mers; second, compare the k-mer to

the species classification database to obtain its LCA (Least Common

Ancestor) and the number of comparisons made; third, construct a

component class tree based on the above data, and then calculate the

sum of weights for each root to leaf route on the classification tree,

with the maximum being the classification level of the sequence.

Finally, merge the same species (OTUs) for statistical analysis.

Functional prediction is a linear prediction based on the microbial

functional gene profile in the KEGG database(https://www.kegg.jp).
2.4 Alpha diversity and beta diversity
analysis methods

Alpha diversity is analyzed using R language for statistical analysis,

the PD index is calculated using the Picante package, and other indices

are calculated using the Vegan package. Use GuniFrac package to

calculate Unifrac distance, and use Vegan package’s vegdits function to

calculate Bray Curtis and Jaccard distance. PCoA analysis uses the Ape

package. PCA and NMDS analysis were conducted using the vegan

package. Cluster analysis uses the hclust function of the STAS package.

The calculations of Anosim and PerMANOVA use the anosim and

adonis functions of the vegan package.
2.5 Differential analysis and
biomarker analysis

LEfSe, an abbreviation for Linear discriminant analysis Effect

Size, is a robust data analysis method employed to assess the impact

of species abundance on differential effects. This algorithm places

significant emphasis on both statistical significance and biological

relevance. Implementation of LEfSe is facilitated through the

Microbiomarker R package, and the web-based platform (http://

huttenhower.sph.harvard.edu) is also widely utilized for LEfSe
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analysis. In this study, a threshold of LDA>2 was considered

indicative of both statistical and biological significance. For

statistical and visualization analyses of community functional

differences, STAMP software was utilized. Additionally, the

Wilcoxon rank-sum test was employed to analyze inter-group

differences in this study.
2.6 Data visualization and
statistical analysis

The images and statistical analysis results presented in the

article were generated using R software (version 4.2.2). The

Kruskal-Wallis rank sum test for two groups was conducted using

the Kruskal. Test function. Furthermore, the one-way Welch t-test

method was applied to compare differences between the two groups.

Multiple group disparities were examined through one-way analysis

of variance (ANOVA) and LSD. Permanent multivariate analysis of

variance (PERMANOVA) and redundancy analysis (RDA) were

employed to evaluate the impact of patient phenotype on

microbiota composition. Distinct lowercase letters were utilized to

denote significant differences. Spearman rank correlation test was

used to explore relationships between microbiota composition and

clinical factors, with a heatmap generated using the pheatmap

package. Asterisks (*) denote statistical significance, with *

representing p < 0.05 and ** representing p < 0.01. Additional

visualizations were created using ggplot2, the EasyMicroPlot

software package, or the MicrobiotaProcess software package.
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3 Results

3.1 Clinical information statistical analysis
of lung cancer patients

We examined the baseline clinical characteristics of lung

adenocarcinoma patients and observed a notable disparity: there

were significantly fewer individuals with upper lung tumors

compared to those with lower lung tumors within the smoking

population. While the incidence of cancer was higher among males

in the smoking cohort than females, this discrepancy can be

attributed to the relatively low prevalence of smoking among

Chinese women, rather than indicating any inherent biological

significance (see Table 1). Moreover, we found no statistically

significant differences in other clinical indicators across the groups.
3.2 Characteristics of microbial
composition in tumor and adjacent
nontumor tissues

The libraries were sequenced utilizing the nanopore MINION

sequencer, and subsequent data from the machine were analyzed

through the Silva database (https://www.arb-silva.de), a total of

1190 Operational Taxonomic Units (OUT) were identified,

spanning 19 phyla, 40 classes, 99 orders, 212 families, 477 genera,

and 933 species levels. For a more detailed classification, please refer

to Supplementary Table 2.
TABLE 1 Demographic and clinical characteristics of the cohort.

Characteristic Smoke Stage

no, N = 301 yes, N = 81 P2 IA, N = 221 IB, N = 111 II, N = 51 P3

age 0.616 0.751

Mean (SD) M S 59.43 (8.50) 60.25 (5.09) 58.73 (7.46) 60.82 (9.14) 60.80 (7.69)

Median (IQR)
MI 57.50
(53.25, 65.75)

60.00
(56.50, 62.75)

59.00 (54.00, 63.50)
57.00
(55.00, 68.50)

58.00
(57.00, 63.00)

Range R 45.00, 74.00 54.00, 69.00 45.00, 74.00 45.00, 73.00 53.00, 73.00

gender
F 25 (83%) M
5 (17%)

F 0 (0%) M
8 (100%)

<0.001
F 12 (55%) M
10 (45%)

F 9 (82%) M
2 (18%)

F 4 (80%) M
1 (20%)

0.341

stage
IA 17 (57%)
IB 9 (30%)
II 4 (13%)

5 (63%)
2 (25%)
1 (13%)

>0.999

smoke 5 (23%) 2 (18%) 1 (20%) >0.999

location
lower 14 (47%)
upper 16 (53%)

0 (0%)
8 (100%)

0.017
7 (32%)
15 (68%)

4 (36%)
7 (64%)

3 (60%)
2 (40%)

0.563

antibiotic 0.441 0.221

Aminoglycosides 3 (10%) 2 (25%) 3 (14%) 1 (9.1%) 1 (20%)

Cephalosporins 26 (87%) 6 (75%) 19 (86%) 10 (91%) 3 (60%)

Penicillin 1 (3.3%) 0 (0%) 0 (0%) 0 (0%) 1 (20%)
1n (%).
2Wilcoxon rank sum test; Fisher’s exact test; Wilcoxon rank sum exact test.
3Kruskal-Wallis rank sum test; Fisher’s exact test.
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Initially, 1000 sequences were randomly selected from each

sample for dilution curve analysis and Rank Abundance curve

analysis. The results indicated that each sample underwent

sequencing of more than 10,000 sequences, which is deemed

adequate for microorganism identification within the sample.

Notably, the Rank Abundance curve exhibited a steep decline,

signifying a skewed distribution of microbial abundance and

species evenness within lung tissue (Figure 1D).

Venn analysis revealed that 721 OUT were common to both

tumor and adjacent nontumor tissues, constituting 61.4% of the

total. Furthermore, there were 168 and 286 unique OUT identified

in tumor and adjacent nontumor tissues, respectively (Figure 1A).

Subsequent paired analysis of tumor and paracancerous species

composition unveiled that the top four microorganisms with the

highest proportion at the phylum level were Cyanobacteria,

Actinobacteria , Bacteroidetes , and Firmicutes, alongside

Proteobacteria. Similarly, at the genus level, the top four

microorganisms with the highest proportion were Haemophilus,

Rhodopseudomonas, Salmonella, and Pseudomonas (Figures 1B, C).
3.3 Differences in alpha and beta diversity
between tumor and adjacent
nontumor tissues

By calculating the Alpha diversity index, we can gain insights into

the richness, evenness, and overall diversity of the microbial

community in the samples. We initiated data analysis by applying

specific filtering parameters: min-relative=0.001, min-ratio=0.7.

Subsequently, we utilized Vega software to compute the Alpha
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diversity indices. The results revealed that the four indices of Alpha

diversity (Pielou, Shannon, Simpson, Inv Simpson) were higher in

adjacent nontumor tissues to those found in tumor tissues

(Figure 2A). To ensure the robustness of our findings, we

recalculated the Alpha diversity using adjusted filtering parameters:

min-relative=0.001, min-ratio=0.5. Remarkably, the trends of the

four indices remained consistent (Supplementary Figure 1).

Moreover, we employed PCoA (Principal Coordinates

Analysis) with the Bray-Curtis dissimilarity metric to assess the

beta diversity between tumor and adjacent nontumor groups. Our

analysis demonstrated significant differences between the two

groups, particularly evident on the PCoA1 coordinate axis (P =

1.9e-11). Furthermore, we conducted inter-group species

differences analysis using PermANOVA (permanent multivariate

analysis of variance), yielding a p-value=0.001, indicating significant

dissimilarities between the tumor and adjacent cancer

groups (Figure 2B).
3.4 Differences in microbial diversity
between tumor and adjacent
nontumor tissues

The microbial composition similarity between tumor and

adjacent nontumor tissues was notably high, as depicted in the

heatmap revealing substantial differences at the phylum level:

Cyanobacteria, Bacteroidetes, Armanimonades, Fusobacteria,

Planctomycotes, Candidatus, Saccharibacteria (Figure 3A).

Additionally, at the genus classification level, there were marked

distinctions among Streptococcus, Haemophilus, Phenobacterum,
FIGURE 1

Microbial composition in tumor and adjacent nontumor tissues. (A) The Venn diagram shows the detection of common and unique OUT in cancer
and adjacent nontumor tissues. (D) Rank Abundance curves of species in the sample. (B, C) Represents the proportion of microorganisms at the
phylum and genus levels.
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Caulobacter, Lactobacillus, and Bradyrhizobium (Figure 3B).

Notably, the tumor group exhibits higher abundance of

Haemophilus and Streptococcus compared to the adjacent group.

To discern significantly enriched bacteria in cancer and

adjacent groups, we employed the LEfSe method, setting

thresholds at LDA scores ≥ 2.5 and P-value < 0.05. The analysis

revea led s ignificant enr ichment of Lactobac i l laceae ,

Streptococcaceae, Neisseriaceae, and Pasteurella in tumor tissue

(Figures 3C, E). Particularly, Streptococcus, Haemophilus
Frontiers in Cellular and Infection Microbiology 06
parainfluenzae, Lactobacillaceae , and Neisseria displayed

significantly increased abundance in the tumor group,

demonstrating an association with tumors. Furthermore, non-

parametric tests (rank sum tests) were applied to assess relative

differences in bacteria between tumors and adjacent tissues. The

abundance of Lactobacillus, Streptococcus, and Haemophilus in

tumor tissues was found to be significantly higher than that in

adjacent tissues, aligning with the findings from the LEFse analysis

(Figure 3D; Supplementary Table 3).
FIGURE 3

Microbial differences between cancer and adjacent tissues. (A, B) Heatmap of relative abundance of the top 20 microorganisms at the phylum and
genus levels. (C) Caldogram of differential bacterial taxa from the phylum to the genus level. (D) Differences in microbes between groups at the
genus level based on the wilcoxon rank sum test. (E) LDA histogram of differential microbiota at the genus level.
FIGURE 2

Alpha and beta diversity in tumor and adjacent tissues. (A) Box plots of differences in alpha diversity index between tumors and adjacent nontumor
tissues. (B) PCoa analysis of microorganisms in tumors and adjacent nontumor tissues.
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3.5 Differences of function between
Intratumoral microbes and adjacent
tissue microbiome

The intricate interplay between microorganisms and hosts

hinges on the release of metabolites, which interface with host

cells and the immune microenvironment, precipitating shifts in

host cell metabolism and immune modulation. These alterations

can disrupt regular cellular processes such as proliferation,

apoptosis, and potentially culminate in carcinogenesis.

In our study, we utilized PICRUSt2 software to forecast the

microbial KEGG pathways from the detected microbiome,

complemented by statistical analyses of microbial metabolic

pathways discrepancies between tumor and adjacent nontumor

tissues groups conducted through STAMP software. Our findings

revealed significant enrichments at the L2 level, with Folding, Sorting

and Degradation, Transcription, Immune Diseases, and Cell

Communication notably heightened in the tumor group (Figure 4).

Conversely, Cell Growth and Death, Amino Acid Metabolism, and

Energy Metabolism exhibited higher abundance in adjacent

nontumor tissues. While Carbohydrate Metabolism displayed

greater prevalence in cancer tissues compared to adjacent group,

the disparity lacked significance. This discrepancy may stem from the

limited sample size and pronounced inter-group variations among

clinical samples. For a more comprehensive elucidation of metabolic

pathways, please refer to Supplementary Table 4.
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3.6 Microbial differences in nicotine
exposure and tumor progression

Smoking stands out as a primary risk factor for lung cancer.

Within tobacco smoke lie numerous carcinogens capable of

inducing mutations and damage cellular DNA. These alterations

trigger profound shifts within normal cells and the tumor

microenvironment (TME), thereby fostering cellular carcinogenesis.

Our study delved into the microbial diversity variances between

smoking and non-smoking cohorts. Although the P-value didn’t

reach significance, we observed a notable trend towards elevated

tumor microbiota abundance in the smoking cohort when compared

to non-smokers (Figure 5A). Differential analysis revealed that

compared to non-smoking groups, the significantly enriched

microorganisms in the smoking and non-smoking groups were:

Pasteuralaceae, Pasteuralales, Haemophilus paraainfluenzae, and

Streptococcus gordonii (Figures 5B, C). The clustering heatmap

(Figure 5D) illustrated a high similarity in microbial abundance

between the smoking and non-smoking groups, potentially attributed

to malignant transformations in lung tissue and marginal differences in

the tumor immune microenvironment.

Further insights from KEGG enrichment analysis and differential

microbial community analysis reveal significant enrichment of processes

such as Translation, Replication, and Repair in the smoking group

(Figure 5E). This suggests a potential molecular basis contributing to the

observed disparities in microbial composition between smoking.
FIGURE 4

Differences in microbial metabolic pathways between cancer and adjacent groups. (A) Significantly enriched metabolic pathways by p-value ≤ 0.05.
(B) Boxplot of Amino Acid Metabolism pathway in two groups. (C) Boxplot of Cell Growth and Death in two groups. (D) Boxplot of Folding, Sorting
and Degradation pathway in two groups.
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We conducted an in-depth analysis of microbial diversity across

stages of tumors. Interestingly, 341OUT were found to be shared

among tumor tissues of different stages, as depicted in Figure 6C.

Furthermore, the microbial species composition demonstrated

striking similarities across the three distinct groups, as illustrated

in Figure 6B. Notably, no significant disparity surfaced in the alpha

diversity index of microorganisms within lung cancer tissues of

differing stages, as depicted in Figure 6A.

The results from LEfSe analysis unveiled the distinctive

enrichment patterns of microorganisms within tumor tissues of

different stages. Specifically, there was a significant enrichment of

the microbiota belonging to Cardiobactereae and Cardiobacterales

in stage II, while Nosseriaceae and Nosseriales exhibited significant

enrichment in stage IA (Figures 6D, E). This nuanced insight into

the microbial landscape within varying tumor stages enriches our

understanding of the intricate relationship between the microbiome

and the progression of lung cancer.
4 Discussion

The human lung, known for its expansive surface area, plays a

vital role in facilitating the exchange of oxygen and carbon dioxide.

With the development and application of high-throughput

sequencing technology, it has been confirmed that there are

microbial communities present in both healthy and diseased
Frontiers in Cellular and Infection Microbiology 08
lungs (Harris et al., 2007; Charlson et al., 2011). However, the

cultivation of these microorganisms remains a challenge, with less

than 20% currently amenable to laboratory cultivation

(Venkataraman et al., 2015). Numerous studies have explored the

correlation between the lung microbiota and lung cancer. However,

these investigations encounter limitations stemming from

variations in sampling conditions, experimental procedures,

environmental pollution, and other confounding factors. Given

the direct connection between the lungs and the external

environment, the presence of environmental bacteria interfering

with lung samples poses a significant hurdle to research in this field.

Presently, conventional methods such as surgical resection and

chemotherapy serve as the primary treatment approaches for lung

cancer. However, the link between the symbiotic microorganisms

within tumor tissue and the immune microenvironment of

the tumor remains elusive. Consequently, extensive research into

the mechanisms through which microorganisms contribute to lung

cancer progression and the microbial communities associated with

tumor development assumes paramount importance. Such research

endeavors lay the foundation for harnessing microorganisms as

potential targets for therapeutic intervention in the treatment

of tumors.

In this study, we obtained tumor samples along with paired

adjacent nontumor tissues from surgical patients initially diagnosed

with lung adenocarcinoma. Employing nanopore sequencing, we

conducted high-throughput sequencing on bacteria, yielding
frontiersin.or
FIGURE 5

Microbial differences between smoke and non smoke groups. (A) Box plots of differences in alpha diversity index between smoke and non smoke
groups. (B) Caldogram of differential bacterial taxa from the phylum to the genus level. (C) LDA histogram of differential microbiota at the genus
level. (D) Heatmap of relative abundance of the top 20 microorganisms at the phylum and genus levels. (E) Significantly enriched metabolic
pathways by p-value<=0.05 in different groups.
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sequences with full length of 16s. Our findings revealed that the top

five bacteria, dominating at the phylum level, were Proteobacteria,

Firmicutes, Bacteroidetes, Actinobacteria, and Cyanobacteria.

Remarkably, these results align with prior research (Erb-

Downward et al., 2011; Gomes et al., 2019). At the genus level,

Pseudomonas, Haemophilus, Salmonella, Rhodopsudomonas, and

Escherichia exhibited higher abundance. Notably, Salmonella and

Rhodopsudomonas, uncommon in pulmonary microecology

studies, were detected in our experiment, suggesting potential

sampling or environmental bacterial contamination.

Alpha diversity analysis indicated a significant reduction in

bacterial alpha diversity within tumors compared to adjacent

tissues. Studies have indicated that the epithelial cell states

and plasticity in early-stage lung adenocarcinoma (LUAD)

are associated with various malignant cell states and are

closely linked to LUADspecific oncogenic drivers (Han et al.,

2024). The reduction in a-diversity may be correlated with

immunosuppressive and metabolic alterations in the tumor

microenvironment, which could facilitate the progression of the

tumor. The microbial composition within tumor tissues has been

observed to differ significantly from that in normal lung tissues,

with notable changes in the abundance of certain microbial groups.

These variations may be related to the early development and

progression of the tumor and could potentially influence patients’

therapeutic responses and prognosis (Yu et al., 2016; Greathouse
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et al., 2018). Beta diversity results demonstrated higher diversity in

adjacent tissues along both PCOA1 and PCOA2 axes. The

PERMANOVA analysis yielded a p-value of 0.001, signifying a

notable difference in microbial composition between cancerous and

adjacent tissues. Furthermore, the differential analysis via LEfSe

unveiled a significant enrichment of Streptococcaceae, Neisseriaceae,

and Pasteurellaceae in the tumor group. This observation was

corroborated by non-parametric tests (rank sum tests),

reaffirming the distinct microbial landscape associated with lung

adenocarcinoma. Streptococcaceae and Neisseriaceae are intricately

linked to respiratory ailments like chronic lung infections. Several

studies suggest that heightened Neisseriaceae levels correlate with

tumor occurrence and progression. Meanwhile, Salvador Bello’s

findings indicated a significant elevation in Streptococcaceae

abundance at center of cancer, presenting a composition notably

distinct from control groups. Streptococcaceae emerges as a

potential biomarker for lung cancer screening (Bello et al., 2021;

Song et al., 2022). However, what intrigued us was the elevated

abundance of Lactobacillaceae in the tumor group compared to

adjacent tissues. This observation mirrors a study by Lauren et al.

on cervical cancer, where they found that L-lactate-producing

substances induce chemotherapy and radiation resistance in

cervical cancer cells, prompting metabolic recombination or

alterations in multiple metabolic pathways within the TME

(Colbert et al., 2023).
FIGURE 6

Microbial and metabolic pathways differences at different clinical stages. (A) Box plots of differences in alpha diversity index between different stages.
(B) the proportion of microorganisms at genus level. (C) Veen diagram shows OTUs of different stages. (D) Caldogram of differential bacterial taxa
from the phylum to the genus level. (E) LDA histogram of differential microbiota at the genus level.
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Simultaneously, we delved into the relationship between tumor

microbiota, nicotine exposure, and various stages of tumor

progression. Overall, the alpha diversity of the microbiota in the

nicotine-exposed group surpassed that of the non-exposed group,

even though the p-value did not reach statistical significance.

Differential analysis revealed that non-smoking group exhibited

microbial enrichment primarily dominated by Pseudomonas,

Sphingobacteriaceae, and Gammaproteobacteria. Research indicated

that increased Pseudomonas abundance benefits the body by

enhancing immune resistance against tumor cell invasion.

Additionally, Gammaproteobacteria have been tentatively

associated with drug resistance in pancreat ic ductal

adenocarcinoma. The prevalence of Sphingobacteriaceae in

pancreatic ductal adenocarcinoma correlates with prolonged patient

survival (Chang et al., 2014; Geller et al., 2017; Riquelme et al., 2019).

Moreover, we examined microbiota variances across various tumor

stages and observed minimal differences in alpha diversity among

them. However, notable distinctions emerged in the enriched

microbiota across tumor stages. Neisseriales showed significant

enrichment in stage IA, Enterobacteriales predominated in stage IB,

and Cardiobacteriales emerged as significantly enriched in stage II.

Limited research exists on the association between this bacterium and

tumors. Its significant enrichment in stage II suggests a potential link

to the weakened immune system of patients at this stage. Moreover,

the low abundance of Cardiobacteriales might proliferate into the

primary differential microbiota.

The functional enrichment analysis of microorganisms revealed

that pathways significantly enriched in the tumor group included

Folding, Sorting and Degradation, Transcription, Immune Diseases,

and Cell Communication. These pathways are intricately linked to

tumor cell proliferation and TME. In contrast to previous studies

highlighting the increased transfer of carbon to fatty acids in cancer

cells for membrane and signal molecule biosynthesis, our study did

not find enrichment in pathways related to lipid metabolism in the

tumor group (DeBerardinis and Thompson, 2012). One plausible

explanation could be the unique aerobic environment of the lungs,

characterized by frequent gas exchange between cells. In this context,

the energy needed for the rapid proliferation of tumor cells may be

directly acquired through the tricarboxylic acid (TCA) cycle,

eliminating the necessity for fatty acid oxidation to generate

compensatory energy. Additionally, KEGG pathways such as

Transcription, Translation, Reproduction and Repair, Endocrine

and Metabolic Diseases, and Immune Diseases were significantly

enriched in the nicotine-exposed group. Notably, Energy

Metabolism and Lipid Metabolism were enriched in the

non-nicotine.

The oxygen-rich environment of lung cells enables these

microorganisms to exert their influence on the clinical

characteristics of patients in distinctive ways. In general, the

interaction between the microbiota linked to lung cancer and

immune cells shapes the onset and advancement of lung cancer

through diverse mechanisms. Owing to constraints within our

experimental setup, further investigations regarding the interaction

mechanisms between microorganisms and immune cells have not

been pursued. Nonetheless, we contend that our findings lay a

groundwork and offer direction for future exploration in this domain.
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5 Conclusion

This study employed sequencing analysis to examine

microorganisms in human lung adenocarcinoma and adjacent

tissues, with the objective of pinpointing microbial communities

linked to tumor onset, advancement, or nicotine exposure. Our

findings revealed noteworthy distinctions in microbial compositions

between lung adenocarcinoma and adjacent tissues, alongside

distinctive variations in microbial communities associated

with nicotine exposure and different tumor stages. The elevated

presence of Bacteroidetes, Neisseria, and Enterobacteriales in lung

adenocarcinoma suggests potential implications for the occurrence

and progression of pulmonary epithelial cell carcinoma via diverse

mechanisms. Due to RNA integrity issues, transcriptomic analysis of

lung tissue was not conducted. Potential tumor-specific microbes were

identified, but further research is needed to explore their relationships

with lung tissue cells and the tumor immune microenvironment.
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