AUTHOR=Niu Siqiang , Liu Dezhi , Yang Yan , Zhao Limin TITLE=Clinical utility of metagenomic next-generation sequencing in the diagnosis of invasive pulmonary aspergillosis in acute exacerbation of chronic obstructive pulmonary disease patients in the intensive care unit JOURNAL=Frontiers in Cellular and Infection Microbiology VOLUME=14 YEAR=2024 URL=https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2024.1397733 DOI=10.3389/fcimb.2024.1397733 ISSN=2235-2988 ABSTRACT=Objective

To explore the clinical utility of metagenomic next-generation sequencing (mNGS) in diagnosing invasive pulmonary aspergillosis (IPA) among patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) in the intensive care unit (ICU).

Methods

A retrospective analysis was conducted on patients with AECOPD admitted to the ICU of Xinxiang Central Hospital in Henan Province, China, between March 2020 and September 2023, suspected of having IPA. Bronchoalveolar lavage fluid (BALF) samples were collected for fungal culture, the galactomannan (GM) test, and mNGS. Based on host factors, clinical features, and microbiological test results, patients were categorized into 62 cases of IPA and 64 cases of non-IPA. Statistical analysis was performed to compare the diagnostic efficacy of fungal culture, the serum and BALF GM test, and mNGS detection for IPA in patients with AECOPD.

Results

1. The sensitivity and specificity of mNGS in diagnosing IPA were 70.9% and 71.8% respectively, with the sensitivity of mNGS surpassing that of fungal culture (29.0%, P<0.01), serum GM test (35.4%, P<0.01), and BALF GM test (41.9%, P<0.05), albeit with slightly lower specificity compared to fungal culture (90.6%, P >0.05), serum GM test (87.5%, P >0.05), and BALF GM test (85.9%, P >0.05).Combining fungal culture with the GM test and mNGS resulted in a sensitivity of 80.6% and a specificity of 92.2%, underscoring a superior diagnostic rate compared to any single detection method. 2.mNGS accurately distinguished strains of the Aspergillus genus. 3.The area under the ROC curves of mNGS was 0.73, indicating good diagnostic performance. 4.The detection duration for mNGS is shorter than that of traditional fungal culture and GM testing.

Conclusion

mNGS presents a pragmatic and highly sensitive approach, serving as a valuable complementary tool to conventional microbiological tests (CMT). Our research demonstrated that, compared to fungal culture and GM testing, mNGS exhibits superior diagnostic capability for IPA among patients with AECOPD. Integration of mNGS with established conventional methods holds promise for improving the diagnosis rate of IPA.