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Background: The relationship between dysbiosis of the gastrointestinal

microbiota and gastric cancer (GC) has been extensively studied. However,

microbiota alterations in GC patients vary widely across studies, and

reproducible diagnostic biomarkers for early GC are still lacking in multiple

populations. Thus, this study aimed to characterize the gastrointestinal

microbial communities involved in gastric carcinogenesis through a meta-

analysis of multiple published and open datasets.

Methods: We analyzed 16S rRNA sequencing data from 1,642 gastric biopsy

samples and 394 stool samples across 11 independent studies. VSEARCH, QIIME

and R packages such as vegan, phyloseq, cooccur, and random forest were used

for data processing and analysis. PICRUSt software was employed to

predict functions.

Results: The a-diversity results indicated significant differences in the

intratumoral microbiota of cancer patients compared to non-cancer patients,

while no significant differences were observed in the fecal microbiota. Network

analysis showed that the positive correlation with GC-enriched bacteria

increased, and the positive correlation with GC-depleted bacteria decreased

compared to healthy individuals. Functional analyses indicated that pathways

related to carbohydrate metabolism were significantly enriched in GC, while

biosynthesis of unsaturated fatty acids was diminished. Additionally, we

investigated non-Helicobacter pylori (HP) commensals, which are crucial in

both HP-negative and HP-positive GC. Random forest models, constructed

using specific taxa associated with GC identified from the LEfSe analysis,

revealed that the combination of Lactobacillus and Streptococcus included

alone could effectively discriminate between GC patients and healthy

individuals in fecal samples (area under the curve (AUC) = 0.7949). This finding

was also validated in an independent cohort (AUC = 0.7712).
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Conclusions: This study examined the intratumoral and fecal microbiota of GC

patients from a dual microecological perspective and identified Lactobacillus,

Streptococcus, Roseburia, Faecalibacterium and Phascolarctobacterium as

intratumoral and intestinal-specific co-differential bacteria. Furthermore, it

confirmed the validity of the combination of Lactobacillus and Streptococcus

as GC-specific microbial markers across multiple populations, which may aid in

the early non-invasive diagnosis of GC.
KEYWORDS

gastric cancer, intratumoral microbiota, fecal microbiota, microbial marker, non-
invasive prediction
1 Introduction

Gastric cancer (GC) ranks as the fifth most common cancer and

the fourth leading cause of cancer deaths globally (Yang et al.,

2023). While GC’s incidence and mortality rates have declined over

recent decades, in China, GC remains the third most prevalent and

deadly among all malignant tumors (Huang et al., 2023; Yang et al.,

2023). Conversely, in Japan and South Korea, where GC also

presents high incidence rates, significant reductions in mortality

have been achieved through widespread endoscopic screening,

which facilitates the early detection of GC (Namasivayam, 2023).

This fact highlights the significance of early screening. Currently,

the gold standard for early diagnosis of GC involves endoscopy and

biopsy, both costly and invasive techniques that have resulted in low

screening acceptance (Mejıá-Guarnizo et al., 2023). Consequently,

there is a pressing need for more precise, accessible, low-cost, and

non-invasive biomarkers to assist in the early diagnosis of GC and

monitoring for relapse.

Helicobacter pylori (HP) is classified as a class I carcinogen for

GC (Weng et al., 2019; Yang et al., 2021). Effective eradication ofHP

can significantly reduce the risk of developing GC (Li et al., 2023;

Yarahmadi and Afkhami, 2024). However, eradicating HP does not

entirely prevent the development of GC (Cheung and Leung, 2018).

Many studies have observed that as HP-positive GC progresses, the

relative abundance of HP tends to decrease, concomitant with an
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increase in the relative abundance of some other bacteria (Ferreira

et al., 2018; Hsieh et al., 2018; Liu et al., 2022a). Additionally, HP-

negative GC constitutes approximately 0.42% to 5.4% of all GC

cases (Yamamoto et al., 2015). Thus, other gastric microorganisms

apart from HP may also play roles in gastric carcinogenesis.

Lertpiriyapong et al. observed that HP mice colonized with

complex or restricted microbiota were more susceptible to

developing GC than germ-free and HP-monoassociated mice

(Lertpiriyapong et al., 2014). Furthermore, even in the absence of

HP infection, three commensal bacteria have been shown to induce

gastritis and dysplasia in mice (Lertpiriyapong et al., 2014). These

findings suggest that non-HP microorganisms may contribute to

the development of GC, either alongside or independent of HP,

necessitating further investigation.

With the continuous advancement of microbial analysis

techniques and methods, many independent studies employing

16S ribosomal RNA (rRNA) sequencing have revealed changes in

the gastric microbiota of non-GC populations and GC patients

(Castaño-Rodrıǵuez et al., 2017; Yu et al., 2017; Coker et al., 2018;

Chen et al., 2019; Peng et al., 2023). Notably, the intestinal

microbiota from GC patients, a critical source of gastric

microbiota, also exhibits changes (Qi et al., 2019; Wu et al., 2020;

Liu et al., 2021b; He et al., 2022b). Microbial markers based on fecal

samples offer more accessible and non-invasive alternatives than

those based on gastric tissue samples. Nevertheless, the reports of

changes in intratumoral and fecal microbiota in GC are inconsistent

across studies, likely due to variations in subjects’ age and gender,

geographic locations, and sequencing techniques. Additionally, few

studies have focused on predicting GC by microbial markers based

on fecal samples, and the reproducibility and accuracy of these

markers remain uncertain. Hence, a comprehensive multi-cohort

analysis is necessary to minimize the interference of various

confounding factors and establish consistency across multiple

studies (Wu et al., 2021). In this study, we integrated and

reanalyzed 16S rRNA sequencing data from 1,642 gastric biopsy

samples and 394 stool samples across 11 independent studies. We

detailed changes in the composition and taxonomic classification of

the gastrointestinal microbiota during GC progression. Differences
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in associated networks and functions between healthy individuals

and GC patients in gastric tissue samples were investigated.

Moreover, we characterized the microbiota changes associated

with developing of HP-negative and HP-positive GC. Finally,

microbial markers capable of distinguishing GC patients from

healthy individuals were identified and validated. Our goal is to

combine the intratumoral microbiota and fecal microbiota of GC

patients in a meta-analysis so as to explore the key differential flora

during gastric carcinogenesis from a dual microecological

perspective and to provide a new method for early screening of

GC by constructing random forest models.
2 Methods

2.1 Literature search and study selection

An exhaustive literature search was conducted on August 9, 2023,

utilizing PubMed, Web of Science, and Embase databases. Detailed

search formulas are documented in (Supplementary Table S1). The

language was restricted to English, and types such as reviews, meta-

analyses, and case reports were excluded. Two authors independently

reviewed the title and abstract of each study, and the full text was

retrieved if the abstract content warranted further examination.

Additional manual searches of the reference lists were conducted to

ensure a thorough literature search. The selected studies had to meet

the following criteria: (1) raw gene sequencing data could be

downloaded and grouped; (2) used fecal or gastric tissues as samples;

(3) included GC and normal or benign controls. However, patients

who had undergone radiotherapy or chemotherapy or had been treated

with antibiotics or probiotics within the past month were excluded.
2.2 Data acquisition and processing

The accession number (BioProject ID) was entered into the

Sequence Read Archive (SRA) database to download the sequencing

and biosample data. After the FASTQ files were extracted, they were

de-multiplied. Raw data were integrated using VSEARCH software

(v2.18.0) to cut out primers and barcodes and filter low-quality data

(Rognes et al., 2016). After removing duplicates and denoising, the

obtained clean data were integrated again to generate feature tables

and representative sequences. Operational taxonomic units (OTUs)

with relative abundance means of less than 0.01% were discarded,

and the remaining sequences constituted the final representative

sequences. Microbiome analysis and clustering of the final

representative sequences were conducted using Quantitative

Insights Into Microbial Ecology (QIIME1), and comparisons were

made with the Greengenes database (version 13.8). We annotated

the OTUs with species classification information using the

Ribosomal Database Project (RDP) Classifier, counted the relative

abundance of species separately, from phylum to genus, and plotted

the species relative abundance distribution. The OTUs table

generated was utilized for subsequent analyses.
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2.3 Data analysis

2.3.1 Confounder analysis
Analysis of variance (ANOVA)-type analyses quantified the

influence of potential confounders and disease status associated

with GC on individual genera (Wirbel et al., 2019). The total

variance in a given genus abundance was compared to that

explained by disease status and confounders (age, body mass

index (BMI), HP, biopsy site, sex, and study), similar to a linear

model. Given the non-Gaussian distribution of microbiota

abundance, variance calculations were performed on rankings.

Continuous values of potential confounders were converted to

discrete variables, either to quartiles or by categorizing individuals

according to BMI as (thin < 25, 25 < obese < 30, and overweight >

30) (Wang et al., 2022).
2.3.2 Microbial diversity analysis
Microbial diversity analysis was conducted using the vegan

package in R. The Shannon and Chao 1 indices estimated the

microbial alpha diversity based on the OTUs table, and the

Wilcoxon Rank-Sum test was employed to compare differences

between the two groups. The Beta diversity of the microbiota

between the samples was measured using the phyloseq package in

R, according to the Bray-Curtis difference matrix, and visualized

with principal coordinate analysis (PCoA). Additionally, analysis of

similarities (Anosim) was applied to assess the significance of

differences between different groups.

2.3.3 Species difference analysis
Based on the feature table and species annotation results, linear

discriminant analysis (LDA) effect size (LEfSe) (LDA > 2.0, p <

0.05) was utilized to identify biomarkers between groups, which are

species or genes with significant differences between groups (Chang

et al., 2022). The Kruskal-Wallis Rank-Sum test was employed for

LEfSe analysis.

2.3.4 Microbial correlation network analysis
Spearman correlation coefficients were used to assess the

correlations between differential genera identified from the LEfSe

analysis using the R package cooccur (Zou et al., 2017).

Visualization was performed using Cytoscape V.3.7.2, which

displayed significant co-occurrence and co-exclusion interactions

(correlation coefficients ≥ 0.3, p < 0.01).

2.3.5 Function prediction
Functional prediction was conducted using Phylogenetic

Investigation of Communities by Reconstruction of Unobserved

States (PICRUSt) (v2.4.2) software (Langille et al., 2013). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) database was used

for functional annotation, and functional abundance profiles were

obtained (Kanehisa et al., 2021). The pathways that were

significantly altered between the two groups were identified using

LEfSe (Logarithm value > 3.0, p < 0.01) at the KEGG level 3.
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2.3.6 Construction and validation of the machine
learning models

The random forest (RF) package in R was utilized for modeling,

employing default parameters to differentiate between GC and

healthy individuals. Based on species annotation results, the

relative abundance dataset was randomized into training and test

sets, which were separately trained and validated for performance in

a 7:3 ratio at the genus level (Liu et al., 2022b). “Mean decrease

accuracy” was employed as a screening metric to identify core

biomarkers for modeling. Subsequently, a ten-fold cross-validation

of the RF model was conducted to determine the model error

values. The diagnostic capability of the model was evaluated by

plotting the receiver operating characteristic (ROC) curve using the

R package pROC and calculating the area under the curve (AUC)

(Han et al., 2023). External validation was also performed,

incorporating additional independent data to confirm the model’s

reproducibility. Furthermore, study-to-study transfer and leave-

one-dataset-out (LODO) validations were conducted to

demonstrate the model’s generalizability. In study-to-study

transfer validation, one study was used to construct the RF

model, and the remaining studies served as external test data to

evaluate the model. In LODO validation, data from one study was

used as the test set, while the remaining data served as the training

set. AUC crossover calculations were then performed on the

identified important features, and heat maps were plotted (Wirbel

et al., 2019).
3 Results

3.1 Characteristics of the data sets in
meta-analysis

According to the inclusion criteria, 998 articles retrieved from

PubMed, Web of Science, and Embase databases were critically

reviewed, and one additional record was identified by reviewing

references in the included literature. Figure 1A illustrates the

screening process for this study. A total of 14 studies met our

inclusion criteria. One study was excluded because species

information could not be annotated during data processing

(Ferreira et al., 2018). Ultimately, 16S rRNA sequencing datasets

from 11 studies were included to estimate the signatures of

gastrointestinal microbial communities associated with gastric

carcinogenesis. Two additional studies were used to validate

classification models. Ethical approval and written informed

consent from patients were obtained for all included studies.

Details of all cohorts used in this meta-analysis are provided in

Table 1, which included 394 stool samples and 1,642 gastric tissue

samples. Sample collection methods (Figure 1B) and processing

methods for each study are detailed in Supplementary Table S2 and

Supplementary Table S3. These studies involved populations from

China, South Korea, and Colombia, with a majority focused on

Asia, particularly China (Figure 1C).
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3.2 Confounder analysis of microbiota
associated with GC

Considering the biological and technical variations among

studies, we quantified the impact of all possible confounders

associated with GC (age, BMI, HP, biopsy site, sex, and study) on

gastrointestinal microbiota composition and compared these with

disease status. The results indicated that the study, biopsy site, and

HP status exerted the most significant impacts on microbiota

composition (Supplementary Figures S1–S3).
3.3 Alterations in the composition of the
gastric microbiota and its functions and
networks in GC

3.3.1 Alterations in the composition of the gastric
microbiota in GC

The Shannon index revealed the highest microbial diversity was

in the normal group compared to other stages. No significant

difference was found between the benign and GC groups

(Figure 2A). The Chao1 index (Supplementary Figure S4A)

indicated the highest abundance in the benign group, followed by

the normal group, with the lowest in the GC group, likely influenced

by the larger sample size of the benign group. PCoA demonstrated

that the diversity captured by the first two principal coordinates

accounted for about 23% (Figure 2B). Due to the large size of the

gastric tissue samples, some samples appeared to overlap. Still, the

ANOSIM (R = 0.3749, P = 0.001) confirmed significant differences

between the three stages, indicating that the samples could still

be separated.

At the phylum level, the gastric microbiota was dominated by

Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and

Cyanobacteria (Supplementary Figure S5A). Firmicutes and

Actinobacteria increased sequentially over the course of the

disease, whereas Bacteroidetes decreased. At the genus level, the

abundance of Streptococcus, Lactobacillus, and Ochrobactrum was

significantly higher in the GC stage compared to the non-cancerous

stages, while Helicobacter and Pseudomonas were significantly less

abundant (Figure 2C).

LEfSe analysis was employed to identify differences in bacterial

taxa between the GC, benign, and normal groups. The GC group

was characterized by a higher presence of Ochrobactrum and

Streptococcus, the benign group by Lactococcus and Geobacillus,

and the normal group by Faecalibacterium and Pseudomonas

(Figure 2D, Supplementary Figure S6A and Supplementary

Table S4).

3.3.2 Association network analysis of the
gastric microbiota

To examine the interactions between GC-enriched and GC-

depleted bacteria from the LEfSe analysis, we constructed

association networks of the gastric microbiota by calculating

correlations in the normal and GC groups using the Spearman
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1397466
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2024.1397466
correlation coefficient. As illustrated in Figure 3A, interactions

within the gastric microbiota primarily occurred between

Firmicutes and Proteobacteria, the two dominant phyla. The

networks in the GC group were more tightly clustered and

exhibited more complex co-occurring interactions compared to

the normal group, indicating that the development of GC may

enhance pre-existing interactions within the gastric microbiota.

Positive correlations between GC-enriched bacteria, such as those
Frontiers in Cellular and Infection Microbiology 05
between Polymorphum and Arthrobacter, gradually increased with

GC progression. Conversely, positive correlations between GC-

depleted bacteria decreased over the course of GC development,

notably between Bifidobacterium and Phascolarctobacterium.

Meanwhile, negative correlations between GC-enriched and GC-

depleted bacteria gradually increased with the development of GC,

such as the interactions between Arthrobacter and Bifidobacterium,

Thermus and Faecalibacterium.
FIGURE 1

Meta-analysis flowchart. (A) Flowchart of the screening article process. (B) Schematic diagram of sample collection and bioinformatics workflow
(Created with BioRender.com). (C) Geographic location of the dataset used in this study, with larger points representing larger sample sizes.
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3.3.3 Microbial functional changes in the GC
The functional potential of the gastric microbiota in the GC and

normal groups was predicted using PICRUSt. Lefse analysis

identified a total of 75 differential pathways between the two

groups, with 35 KEGG pathways significantly up-regulated and

40 significantly down-regulated in GC (Figure 3B, Supplementary

Table S5). Specifically, pathways related to carbohydrate

metabolism, nucleotide metabolism, and DNA damage repair

were enriched in the GC group compared to the normal group.

Conversely, pathways related to biosynthesis of unsaturated fatty

acids, epithelial cell signaling in HP infection, and bacterial

synthesis and motility were reduced in GC.
3.4 Changes in the microbiota associated
with the development of HP-negative and
HP-positive GC

All gastric tissue studies in this meta-analysis declared in their

methods section that HP testing was performed (Supplementary
Frontiers in Cellular and Infection Microbiology 06
Table S2). However, many of them did not have explicit

supplementary tables or information about HP status, which

made it difficult for us to conduct discussions between HP-

positive and HP-negative groups. Therefore, we attempted to take

the approach of Kim et al. who determined that 1% could be used as

a cutoff value for HP colonization by 16S rRNA gene

pyrosequencing (Kim et al., 2015). Finally, we categorized

samples with HP relative abundance greater than 1% as the HP-

positive group and those with less than 1% as the HP-negative

group (Supplementary Table S6).

In HP-negative samples, the abundance and diversity of the gastric

microbiota were significantly higher in the normal group than in the GC

group, as determined by the Chao 1 index and the Shannon index

(Supplementary Figure S4C, Figure 4A). In addition, based on the PCoA

analysis of the Bray-Curtis distance, we found a significant difference in

the distribution of the gastric microbiota between these two stages, with

a distribution change of 12.7% for PCoA1 and 9.4% for PCoA2

(Figure 4B). Anosim further supported this conclusion (R = 0.1302, P

= 0.001). The above results indicated significant differences in species

diversity and composition of gastric microbiota between the HP-
TABLE 1 Study characteristics of gastric tissue and intestinal datasets included in the meta-analysis.

No. Authors/year Bioproject Sample
Type

Country/
Region

Sequencing
region

Sequencing
platform

Study
Group

1 He, 2022 (He et al., 2022a) PRJNA481413 Gastric tissue China, Nanchang V4 Illumina MiSeq Normal (28)
Benign (204)
GC (57)

2 Liu D, 2021 (Liu et al., 2021a) PRJNA678413 Gastric tissue China, Anhui V3-V4 Illumina
NovaSeq PE250

Benign (63)

3 Wang Z, 2020
(Wang et al., 2020b)

PRJEB26931 Gastric tissue China, Beijing V4 Illumina
MiSeq PE300

Normal (56)
Benign (170)
GC (84)

4 Wang L, 2020
(Wang et al., 2020a)

PRJNA313391 Gastric tissue China, Qingdao V3-V4 Illumina
HiSeq 2500

Benign (60)
GC (60)

5 Liu X, 2019 (Liu et al., 2019) PRJNA428883 Gastric tissue China, Zhejiang V3-V4 Illumina MiSeq Normal (250)
GC (229)

6 Coker, 2018 (Coker et al., 2018) PRJNA375772 Gastric tissue China, Xi’an V4 Illumina MiSeq Benign (165)
GC (19)

China,
Inner Mongolia

V4 Illumina MiSeq Benign (107)
GC (19)

7 Yang, 2016 (Yang et al., 2016) PRJEB11763 Gastric tissue Colombia V1-V3 454 GS FLX Benign (40)

8 Eun, 2014 (Eun et al., 2014) PRJNA239281 Gastric tissue South
Korea, Hanyang

V5 454 GS FLX Benign (20)
GC (11)

9 Chen C, 2022 (Chen et al., 2022) PRJNA817689 Fecal China, Hangzhou V4 Illumina
Novaseq 6000

Normal (30)
GC (41)

10 Zhang C, 2022
(Zhang et al., 2022a)

PRJNA778008 Fecal China, Hefei V4 Illumina Novaseq Normal (70)
GC (49)

11 Qi, 2019 (Qi et al., 2019) PRJNA478252 Fecal China, Shanxi V3-V4 Illumina MiSeq Normal (88)
GC (116)

Independent
validation 1

Ling, 2019 (Ling et al., 2019) PRJNA508819 Gastric tissue China, Zhejiang V3-V4 Illumina MiSeq Normal (60)
GC (59)

Independent
validation 2

Zhang Y, 2021
(Zhang et al., 2021)

PRJNA639644 Fecal China, Zhejiang V4 Illumina
HiSeq 4000

Normal (39)
GC (33)
GC, gastric cancer.
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negative GC group and the HP-negative normal group. Proteobacteria,

Firmicutes and Bacteroidetes were the dominant phyla in both groups

(Supplementary Figure S5C). At the genus level, there was a significant

increase in the abundance of Lactobacillus, Streptococcus, and

Ochrobactrum and a decrease in the abundance of Pseudomonas and

Faecalibacterium (Figure 4C). Twenty-one genera were identified by

LEfSe analysis (Figure 4D, Supplementary Table S7), with nine genera

enriched in the HP-negative GC group, including Arthrobacter,

Geobacillus, Lactobacillus, Lactococcus, Streptococcus, and

Peptostreptococcus. Conversely, twelve genera were depleted in this

group, including Bifidobacterium, Bacteroides, Enterococcus, Roseburia,

Faecalibacterium, and Phascolarctobacterium.

In HP-positive samples, the abundance and diversity of the

gastric microbiota were also higher in the normal group than in the

GC group (Supplementary Figure S4D, Figure 4E). The PCoA result

showed a significant separation between the HP-positive normal

group and the HP-positive GC group (Figure 4F, Anosim, R =
Frontiers in Cellular and Infection Microbiology 07
0.0378, P = 0.001). Proteobacteria was predominant at the phylum

level, especially in the HP-positive normal group (Supplementary

Figure S5D). At the genus level, changes in Lactobacillus and

Streptococcus in the HP-positive normal and GC groups paralleled

those in the HP-negative group (Figure 4G). LEfSe analysis

indicated that Lactobacillus, Streptococcus, Peptostreptococcus, and

Ochrobactrum were enriched, whereas Bacteroides, Enterococcus,

Faecalibacterium, Sphingomonas, Cupriavidus, and Pseudomonas

were depleted in the HP-positive GC group compared to the HP-

positive normal group (Figure 4H, Supplementary Table S8).

Finally, the Venn diagram revealed that Lactobacillus,

Streptococcus, Peptostreptococcus, and Ochrobactrum were

enriched, whereas Bacteroides, Enterococcus, Faecalibacterium,

Cupriavidus, and Pseudomonas were depleted in both HP-

negative and HP-positive GCs. (Figures 4I, J). However, genera

such as Arthrobacter, Geobacillus, Lactococcus, Fusobacterium, and

Neisseria only promote the development of HP-negative GC.
FIGURE 2

Gastric microbial composition and differential analysis of gastric cancer, benign, and normal groups. (A) Comparison of a-diversity among the three
groups using the Shannon index. (B) PCoA plots based on the Bray-Curtis distance show differences in b-diversity between samples. (C) Taxonomic
composition of gastric tissue samples at the genus level. (D) Bar chart of the distribution of LDA values (LDA > 2). PCoA, principal coordinate analysis;
LDA, linear discriminant analysis.
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3.5 Alterations in the composition of the
gut microbiota in GC

The abundance of gut microbiota was higher in healthy

individuals compared to those in GC patients (Supplementary

Figure S4B) However, the two groups did not differ significantly in
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a-diversity (Figure 5A), aligning with previous findings (Liu et al.,

2021b; He et al., 2022b; Li et al., 2022; Chen et al., 2022). However, a

notable difference in b-diversity between the two groups was observed

(Figure 5B, ANOSIM, R = 0.0287, P = 0.001). Next, the microbial

composition of the fecal samples was synthesized at the phylum and

genus levels. Bacteroidetes, Firmicutes and Proteobacteria dominated
FIGURE 3

Correlation network analysis and differential functional prediction of gastric microbiota. (A) Correlation network of gastric cancer-associated
differential bacteria in normal and gastric cancer groups. The Spearman algorithm estimated correlation strengths (|r| ≥ 0.3, p < 0.01). The left circle
shows gastric cancer-associated depleted bacteria and the right circle shows gastric cancer-associated enriched bacteria. The depleted bacteria are
marked in green font, while the enriched bacteria are marked in red font. Different colored dots indicate different phylum levels. Red lines indicate
co-occurrence, gray lines indicate co-exclusion and the thickness of the line indicates the strength of the interaction. (B) The differential functions
between normal and gastric cancer groups were predicted. The LDA bar plot displays the top 20 pathways that are significantly altered (Logarithm
value > 3.0, P < 0.01). LDA, linear discriminant analysis.
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the intestinal microbiota as phylum, which accounted for more than

95% of the sequence (Supplementary Figure S5B). Prevotella and

Escherichia were enriched in GC at the genus level compared to the

normal group, while the abundance of Faecalibacterium and

Roseburia was significantly reduced in GC (Figure 5C). LEfSe

difference comparisons identified Lactobacillus, Streptococcus,

Succinivibrio, Enterobacter, Escherichia and Klebsiella as enriched in

the GC group compared to the normal group. Meanwhile, there were

ten genera reduced in GC, including Clostridium, SMB53,

Lachnoclostridium, Lachnospira, Roseburia and Faecalibacterium

(Figure 5D, Supplementary Figure S6B and Supplementary Table S9).
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Venn diagrams highlighted co-differentiating bacteria in the

stomach and intestines, including the GC-enriched bacteria,

Lactobacillus and Streptococcus, and the GC-depleted bacteria,

Roseburia, Faecalibacterium and Phascolarctobacterium (Figures 5E, F).
3.6 Microbial markers for distinguishing GC
patients from healthy individuals

Using the results from the LEfSe analysis, we developed RF

models to investigate the ability of gastrointestinal microbiota to
FIGURE 4

Composition and differential analysis of the gastric microbiota in the HP-/HP+ gastric cancer and normal groups. (A) Comparison of a-diversity
between HP-negative normal and HP-negative gastric cancer groups using the Shannon index. (B) b-diversity was evaluated by PCoA based on Bray
Curtis distance, indicating differences in composition between HP-negative normal and HP-negative gastric cancer groups. (C) Taxonomic
composition of genus level of HP-negative samples. (D) LEfSe discriminating taxa (LDA > 3) of HP-negative samples. (E) Comparison of a-diversity
between HP-positive normal and HP-positive gastric cancer groups using the Shannon index. (F) b-diversity was evaluated by PCoA based on Bray
Curtis distance, indicating differences in composition between HP-positive normal and HP-positive gastric cancer groups. (G) Taxonomic
composition of HP-positive samples at the genus level. (H) LEfSe discriminating taxa of HP-positive samples (LDA > 3). Venn diagram shows the
intersection of (I) gastric cancer-associated enriched and (J) gastric cancer-associated depleted bacteria in HP-negative and HP-positive groups.
HP-, Helicobacter pylori-negative; HP+, Helicobacter pylori-positive; PCoA, principal coordinate analysis; LDA, linear discriminant analysis; LEfSe,
linear discriminant analysis effect size.
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differentiate between GC patients and healthy individuals. In the

gastric tissue, the taxa that significantly changed between normal

and GC groups included 16 GC-enriched genera and 17 GC-

depleted genera (Figure 2D, Supplementary Table S4), which 33

genera were able to maximize the differentiation between healthy

individuals and patients with GC (AUC = 0.8539, Figures 6A, B).

In addition, in the intestine, 16 genera (six enriched in GC and ten

depleted in GC) demonstrated significant changes between the

normal and GC groups (Figure 5D, Supplementary Table S9).

The results showed that a minimal set of 8 genera effectively

distinguished healthy individuals from GC patients (AUC =
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0.8533, Figures 6C, D). Lactobacillus and Streptococcus accounted

for a significant share in this RF model. For better clinical

dissemination, we reconstructed an RF model based on

Lactobacillus and Streptococcus in fecal samples (AUC =

0.7949, Figure 6C).
3.7 Validation of microbial classifiers

Two additional independent cohorts from Zhejiang

(Independent Validation 1 and Independent Validation 2) were
FIGURE 5

Composition and differential analysis of the gut microbiota in gastric cancer patients and healthy individuals. (A) a-diversity was compared between
gastric cancer and normal groups using the Shannon index. (B) b-diversity was evaluated by PCoA based on Bray Curtis distance, indicating
differences in composition between groups. (C) Genus-level classification profiles of gastric cancer patients and healthy individuals. (D) Bar chart of
the distribution of LDA values (LDA > 2). Venn diagram shows the intersection of (E) gastric cancer-associated enriched and (F) gastric cancer-
associated depleted bacteria in gastric tissues and gut. PCoA, principal coordinate analysis; LDA, linear discriminant analysis.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1397466
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2024.1397466
included in this study to validate the RF models’ reproducibility.

Independent Validation 1 comprised 60 normal and 59 GC tissue

samples. Independent Validation 2 consisted of raw data from the

gut microbiome of 39 healthy individuals and 33 GC patients

(Table 1). The RF model based on gut microbiota demonstrated

higher reproducibility than that of gastric microbiota (Figures 6E,

F). Furthermore, the AUC value of the model validated with the

combination of Lactobacillus and Streptococcus (AUC = 0.7712) was

higher than that of eight microbial markers (AUC = 0.7071)
Frontiers in Cellular and Infection Microbiology 11
(Figure 6F). These results suggest that the combination of

Lactobacillus and Streptococcus offers strong discriminatory

capability and high reproducibility as biomarkers.

Additionally, to mitigate the impacts of geographic and

technological differences, study-to-study transfer and LODO

validations were conducted for all cohorts involved in the gut

study to assess the generalizability of the Lactobacillus and

Streptococcus combination across multiple studies. The AUC

values for the study-to-study transfer validation ranged from 0.68
FIGURE 6

Construction and validation of gastric cancer diagnostic models based on gastric and gut-specific microbiota. (A) The RF model of GC versus
normal groups was constructed in gastric tissue samples. (B) The weight shares of mean decrease accuracy for the 33 most discriminatory bacterial
taxa identified in the RF model in (A). (C) RF models for the GC versus normal groups were constructed in fecal samples. (D) The weight shares of
mean decrease accuracy for the 8 most discriminatory bacterial taxa identified in the RF model in (C). (E) In independent validation 1, the RF model
in (A) was validated. (F) In independent validation 2, two RF models in (C) were validated. RF, random forest; GC, gastric cancer.
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to 0.89 (mean AUC = 0.79), and AUC values for LODO validation

ranged from 0.76 to 0.86 (mean AUC = 0.81) (Supplementary

Figure S7).
4 Discussion

In this study, we conducted a meta-analysis of multiple

published 16S rRNA datasets and, for the first time, incorporated

fecal samples to characterize the gastric and gut microbial

communities associated with gastric carcinogenesis, as well as to

evaluate the potential of microbial markers in distinguishing

between GC patients and healthy individuals.

Our results showed that the abundance and diversity of the

gastric microbiota are significantly reduced in GC compared to the

precancerous stage, aligning with prior research (Wang et al.,

2020b; Liu et al., 2022a; Sun et al., 2022). However, the changes

in the a-diversity of the gastric microbiota across the GC cascade

lack consistency (Eun et al., 2014; Castaño-Rodrıǵuez et al., 2017),

which could be addressed by enlarging the sample size and

standardizing the metrics used for assessing diversity. Moreover,

the phyla and genera dominating the gastric and gut microbiota

derived from our meta-analysis also align with previous studies

(Zhang et al., 2021; Liu et al., 2022a), although with minor

variations in the proportions of specific phyla and genera. These

differences may stem from unavoidable factors such as analytical

methods, geographic location, and racial heterogeneity. LEfSe

analysis identified Lactobacillus and Streptococcus as GC-enriched

bacteria in both the stomach and intestines. Conversely, Roseburia,

Faecalibacterium and Phascolarctobacterium were found to be GC-

depleted bacteria in both sites. The enrichment of Lactobacillus and

Streptococcus in GC has been observed in many current studies

(Ferreira et al., 2018; Wang et al., 2020b), and they have also been

shown to promote the development of GC through various

pathways. First, Lactobacillus produces lactic acid, which can

serve as the energy source for tumor cells and promote their

proliferation (Vinasco et al., 2019). Moreover, Lactobacillus can

upregulate inflammatory factors such as Ptger4 and Tgf-b, which
promote inflammatory responses (Lertpiriyapong et al., 2014). In

addition, both Lactobacillus and Streptococcus can contribute to

producing N-nitroso compounds, which are highly carcinogenic (Jo

et al., 2016; Li and Perez Perez, 2018). In contrast, Roseburia,

Faecalibacterium and Phascolarctobacterium, which are beneficial

bacteria, produce butyrate, acetate and propionate. These short-

chain fatty acids are crucial in inhibiting the development of GC,

particularly butyrate (Chattopadhyay et al., 2022). Butyrate can

inhibit the Warburg effect in GC, thereby depriving tumor cells of

the necessary energy for growth (Li et al., 2018). Additionally,

butyrate promotes the production of Caspase 9, leading to the

apoptosis of tumor cells (Zhang et al., 2022b).

Changes in the correlations between bacteria can reflect

differences between the intratumor-specific microenvironment

and healthy individuals, thereby improving our understanding of

gastric carcinogenesis. The positive correlation between GC-

enriched bacteria, which contribute to gastric carcinogenesis,

increased during the GC stage, while the positive correlation
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between GC-depleted bacteria, crucial for maintaining the balance

of the gastric microbiota, decreased compared to that in healthy

individuals. Moreover, the gradual increase in negative correlations

between GC-enriched and GC-depleted bacteria suggested a

mutually antagonistic relationship. These findings indicate that

alterations in the gastric microbial community may be associated

with the development of GC.

Functional analysis sheds light on potential pathogenic

mechanisms in GC, which could inform new approaches for its

prevention and treatment. Carbohydrate metabolism and

nucleotide metabolism pathways were significantly enriched in

GC compared with the normal group, potentially providing more

energy for tumor growth and promoting the division and

proliferation of tumor cells (Martıńez-Reyes and Chandel, 2021).

Notably, the pathway of unsaturated fatty acid biosynthesis was

significantly reduced in the GC group compared to the normal

group. The biosynthesis of unsaturated fatty acids may be closely

linked to the central mechanism of ferroptosis, namely lipid

peroxidation aggregation. Lee et al. reported that an increase in

the biosynthesis of unsaturated fatty acids such as arachidonic acid

or adrenic acid could significantly enhance the sensitivity of GC to

ferroptosis (Lee et al., 2020). Ferroptosis, a novel form of cell death

tightly regulated by Fe2+, the System Xc-/glutathione/glutathione

peroxidase 4 (System Xc-/GSH/GPX4) pathway and lipid metabolic

pathways, differs from apoptosis and necrosis (Lei et al., 2022).

There has been substantial evidence suggesting that abnormalities

in the regulatory mechanisms of ferroptosis are closely linked to

cancer development (Zhang et al., 2018; Jian et al., 2023). Induction

of ferroptosis inhibits tumor cell growth and improves GC

prognosis. Conversely, inhibition of ferroptosis promotes the

development of GC. Thus, targeting ferroptosis may be a

promising strategy for treating GC.

We examined the microbiota playing essential roles in developing

HP-negative and HP-positive GCs separately and identified bacterial

genera that changed in both conditions through Venn analysis. Some

bacterial genera changed exclusively in either HP-negative or HP-

positive GC. Characterizing the flora changes associated with

developing HP-negative and HP-positive GCs is crucial for early

intervention in HP-negative GC and late treatment of HP-positive

GC. Current methods for early diagnosis of GC are predominantly

HP-specific, including rapid urease tests, urea breath tests, and

immunohistochemical analyses, leaving a gap in the detection of

non-HP infections. This gap hinders timely detection in HP-negative

GC. For HP-positive GC, many studies have found that HP

colonization gradually decreases with GC progression (Ferreira

et al., 2018; Hsieh et al., 2018; Liu et al., 2019). At the same time,

some non-HP commensals, such as Lactobacillus and Streptococcus,

gradually increase (Coker et al., 2018; Ferreira et al., 2018;Wang et al.,

2020b), so studying these non-HP commensals can help us better

treat advanced HP-positive GC.

The gastric and gut microbiota were comprehensively evaluated

for their capability to detect early GC, demonstrating good

predictive abilities with AUCs of 0.8539 and 0.8533, respectively.

Given the ease of use, cost-effectiveness, and non-invasiveness, the

gut microbiota-based model was deemed more suitable for early GC

screening. By ranking the important features of the gut microbiota
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model, it was found that the combination of Lactobacillus and

Streptococcus alone effectively differentiated between GC patients

and healthy individuals (AUC = 0.7949). These two important

features were validated in an independent cohort (AUC = 0.7712).

Finally, through study-to-study transfer (mean AUC of 0.79) and

LODO (mean AUC of 0.81) validations, it was demonstrated that

the combination of Lactobacillus and Streptococcus could overcome

technical and geographical differences to be generalizable across

multiple populations. It has been found that fecal microbiota can be

used as biomarkers for the non-invasive diagnosis of GC. A

diagnostic model constructed by Qi et al. based on the

combination of Lachnospira, Lactobacillus, Streptococcus,

Veillonella, and Tyzzerella_3 was able to discriminate well

between GC patients and healthy individuals (AUC=0.95) (Qi

et al., 2019). However, this model was confined to a single region

and lacked independent validation, rendering its accuracy and

reproducibility indeterminate (Qi et al., 2019). It is important to

note that the structure and composition of the gut microbiota may

be altered due to various factors. Previous studies have

demonstrated a significant decrease in the richness and diversity

of the gut microbiota following antibiotic use (Becattini et al., 2016).

Conversely, oral probiotics may optimize the structure of the gut

microbiota, potentially restoring its homeostasis (Wang et al.,

2023). Additionally, it has been reported that intestinal diseases

such as constipation, colorectal cancer, and ulcerative colitis are

usually accompanied by varying degrees of intestinal microbiota

dysbiosis or abnormalities, which are mainly characterized by a

relative decrease in beneficial bacteria (e.g., Lactobacillus and

Bifidobacterium), a relative increase in pathogenic bacteria (e.g.,

Fusobacterium nucleatum and Escherichia coli), and a decrease in

species richness and diversity (Quaglio et al., 2022; Yang et al.,

2022). However, the studies we included already excluded these

potential factors when screening the study population, so there was

no way to explore their impact on the model predictions further.

Most current studies on GC are monoecological, but joint

diagnosis of GC through multiecology has also shown good

performance. The RF model constructed by Zhang et al.

combining oral and fecal microbiota had high accuracy (AUC=

0.922) in distinguishing between GC patients and healthy

individuals (Zhang et al., 2022a). Our study also started from a

multi-ecological perspective to identify shared microbiota, which

may play a pivotal role in GC pathogenesis. Subsequently, based on

these key microbiota, RF models were constructed in the stomach

and the intestine, respectively. Compared to multi-ecological co-

modeling, our models are more cost-effective and offer greater

clinical translational potential, which can be achieved by only

performing single-sample sampling.

Despite diligent efforts, this study faces several limitations and

challenges. Its predominant focus on the Asian population may

restrict the generalizability of our model to other regions, notably

Europe and America. Additionally, the absence of accessible clinical

information regarding tumor stage, histologic typing, and dietary

behaviors limits a comprehensive evaluation of their potential

influences. Furthermore, the utilization of our model for
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individual screening may be impacted by medication usage,

specifically antibiotics and probiotics, as well as by an individual’s

underlying health conditions, such as constipation, colorectal

cancer, and ulcerative colitis. Therefore, future research should

focus on increasing the sample size and geographic diversity

while also considering a broader range of influencing factors to

improve the applicability of our model to a more diverse

population. We should also further explore the potential impact

of the type and interval of antibiotic and probiotic use and intestinal

comorbidities on the accuracy of our model. Moreover, our

investigation of GC microbiota was limited by using 16S rRNA

data, which is not as good as metagenomic data for resolution at the

species level and functional prediction. Additionally, fungi and

viruses are significant contributors to the pathogenesis of GC

(Yarahmadi and Afkhami, 2024), yet their presence cannot be

adequately assessed through 16S rRNA sequencing alone. Future

studies should employ metagenomics sequencing technology,

which allows for precise identification of bacterial species and

concurrently captures data on fungi and viruses. Metagenomics

also facilitates a thorough analysis of interactions among bacteria,

fungi, and viruses, providing a more comprehensive understanding

of the role of microecology in GC pathogenesis.

In summary, intratumoral and intestinal-specific co-differential

Lactobacillus and Streptococcus were identified and could be used as

markers for non-invasive early detection of GC with good accuracy

across different populations. In cases of HP-positive GC,

Lactobacillus, Streptococcus, Peptostreptococcus and Ochrobactrum,

along with HP, may contribute to the development of GC. In HP-

negative GC, Arthrobacter, Geobacillus, Lactococcus, and

Fusobacterium independently contribute to the development of

GC. The GC-depleted pathway involves promoting ferroptosis,

and further research is needed on the interactions and potential

mechanisms between intratumoral and fecal microbiota and their

specific metabolites in gastric carcinogenesis.
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Mejıá-Guarnizo, L. V., Monroy-Camacho, P. S., Rincón-Rodrıǵuez, D. E., Rincón-
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