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While the world struggles to recover from the devastation wrought by the

widespread spread of COVID-19, monkeypox virus has emerged as a new global

pandemic threat. In this paper, a high precision and lightweight classification network

MpoxNet based on ConvNext is proposed to meet the need of fast and safe

detection of monkeypox classification. In this method, a two-branch depth-

separable convolution residual Squeeze and Excitation module is designed. This

design aims to extract more feature information with two branches, and greatly

reduces the number of parameters in the model by using depth-separable

convolution. In addition, our method introduces a convolutional attention module

to enhance the extraction of key featureswithin the receptive field. The experimental

results show that MpoxNet has achieved remarkable results in monkeypox disease

classification, the accuracy rate is 95.28%, the precision rate is 96.40%, the recall rate

is 93.00%, and the F1-Score is 95.80%. This is significantly better than the current

mainstreamclassificationmodel. It is worth noting that the FLOPS and the number of

parameters of MpoxNet are only 30.68% and 31.87% of those of ConvNext-Tiny,

indicating that the model has a small computational burden and model complexity

while efficient performance.
KEYWORDS

monkeypox, deep learning, image processing, artificial intelligence, feature selection
1 Introduction

With the 2020 coronavirus pandemic having a profound impact across the globe,

reports of the emergence of monkeypox in 2023 reveal the threat of another global virus

(McCollum and Damon, 2014). Monkeypox (Mpox) is a disease caused by Mpox virus and

is a viral zoonotic disease of orthopoxvirus, so it can be transmitted from animals to
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humans through direct close contact (Islam et al., 2022), as well as

human-to-human transmission. Mpox was first discovered in 1958

in a monkey in a laboratory in Copenhagen, Denmark (Ladnyj et al.,

1972) and is known as Mpox due to its similar outbreak symptoms

to smallpox.

The Mpox virus caused the first infection in the Congo in 1970.

Since then, most cases have occurred in Congo, Central and West

Africa, and the number of cases has gradually increased, affecting

many people living near tropical regions. As of 2022, the World

Health Organization(WHO) reports that several other non-African

countries such as Europe and the United States have also reported

cases of Mpox virus infection (Alakunle et al., 2020).

Since the declaration of the eradication of smallpox in 1980 and

the subsequent cessation of smallpox vaccination, monkeypox has

emerged as the predominant orthopoxvirus. Its symptoms resemble

those of smallpox, thus garnering attention in the field of public

health (Mohbey et al., 2022). In 2003, the United States became the

first country outside Africa to experience a monkeypox outbreak.

According to reports, in September 2018, a Nigerian tourist was

infected with monkeypox in Israel; in September 2018, December

2019, May 2021, and May 2022, cases of infection were also

reported in Singapore; while in May 2019, July 2021, and

November 2021, cases of monkeypox were recorded in the United

States. These countries may be located in Southeast Asia. In May

2022, a significant number of monkeypox cases were reported in

some countries where the disease does not typically occur (Mohbey

et al., 2022). According to the U.S. Centers for Disease Control and

Prevention (CDC), as of December 21, 2022, Mpox cases have been

reported in 94 countries worldwide, totaling approximately 83,424

cases. Due to the dire impact of the COVID-19 pandemic, Mpox

cases have begun to be closely monitored, showing signs of potential

epidemic transmission even though large-scale transmission has not

yet occurred (Rogers et al., 2008; Alakunle et al., 2020; Gürbüz and

Aydin, 2022; Sharif et al., 2022). As a result, deep anxiety and worry

among people are gradually spreading.

Monkeypox virus infection is generally divided into two stages:

the invasive stage and the skin rash stage. Symptoms during the

invasive stage include fever, severe headache, swollen lymph nodes,

back pain, muscle aches, and weakness. During the skin rash stage, a

rash appears 1–3 days after the onset of fever, concentrating on the

face and limbs (Adalja and Inglesby, 2022). The rash progresses

from macules to papules, vesicles, pustules, forms scabs, and

eventually falls off. These skin lesions are typically quite painful.

When the rash appears, the patient becomes contagious.

Monkeypox virus can spread through contact with infected

individuals or animals. Specifically, when individuals come into

contact with the ulcers, scabs, respiratory droplets, or oral fluids of

an infected person, it may lead to the transmission of the disease to

others (Simpson et al., 2020). Therefore, timely diagnosis of this

disease is essential. According to the guidelines proposed by the

WHO, healthcare personnel should wear protective gear when

caring for patients. Additionally, patients need to be isolated, and

they should maintain distance from others. Mpox exhibits subtle

differences from other viruses such as smallpox, chickenpox, and

measles, primarily in the inflammatory and rash symptoms induced

within the human body. Apart from polymerase chain reaction
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(PCR), which is an effective diagnostic method (Ibrahim et al.,

2021), non-specialists may find it challenging to differentiate them

visually. Moreover, PCR testing is costly and typically requires a

considerable amount of time to yield results. Therefore, it has not

been widely adopted, posing challenges to rapid diagnosis (Reed

et al., 2004). In order to involve non-specialists in the prevention

and control of Mpox virus, researchers are actively seeking effective

methods utilizing artificial intelligence to identify cases of Mpox.

They are engaged in data collection and research experiments to

gain a deeper understanding of this disease (Banerjee et al., 2022;

Khafaga et al., 2022a). The development of automated identification

algorithms could not only aid in the rapid identification of Mpox

virus cases but also be utilized for training healthcare professionals

who are not specialized in Mpox.

Despite the relatively low fatality rate of Mpox within the range

of 1–10% (Gong et al., 2022), the absence of an antiviral therapy for

curing monkeypox (Reynolds et al., 2017) underscores the

importance of early detection in preventing its spread. Early

identification plays a crucial role in the prevention, diagnosis, and

treatment of this disease. With the rapid advancement of artificial

intelligence models in the field of medicine, deep learning models

for medical image analysis have been proposed for various medical

science applications. However, there still exist numerous traditional

manual classification methods for identifying Mpox, which suffer

from apparent inefficiencies and high costs. The reliance on manual

diagnostic classification is susceptible to human factors, leading to

diagnostic variability and delayed confirmation of Mpox, depriving

patients of timely access to appropriate treatment plans. Therefore,

there is an urgent need to introduce advanced technologies to

replace simplistic manual classification methods, thereby enhancing

the chances of patient recovery and reducing the risk

of transmission.

Over the years, deep learning (DL) has achieved remarkable

success, exerting a profound impact on the core concepts of

machine learning (ML) and artificial intelligence (AI). DL

methods have demonstrated outstanding results in various

industrial domains, overcoming limitations of traditional

approaches. They have become powerful tools in the fields of

image analysis and pattern recognition, showing extensive

potential applications in disease detection. In particular,

Convolutional Neural Networks (CNNs) have emerged as a

cornerstone in image recognition, owing to their exceptional

capabilities in feature extraction and non-linear representation.

CNN, a DL neural network architecture, is commonly employed

with image data as input. Through a series of operations, it extracts

crucial features and information from input images, facilitating

tasks such as classification or other related objectives. Some scholars

have made significant progress by applying deep learning

techniques to disease classification tasks. Sandeep et al. proposed

a low-complexity CNN for identifying skin diseases such as

psoriasis, melanoma, lupus, and chickenpox (Sandeep et al.,

2022). Their research found that using existing VGGNet and

image analysis techniques could accurately detect 71% of skin

diseases. However, their proposed solution demonstrated optimal

performance with an accuracy of approximately 78%. Glock et al

(Glock et al., 2021). utilized the ResNet-50 model to develop a
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transfer learning approach for measles detection, exhibiting good

performance on multiple rash image datasets with a sensitivity of

81.7%, specificity of 97.1%, and accuracy of 95.2%. Velasco et al

(Velasco et al., 2019) introduced an intelligent smartphone skin

disease recognition method based on MobileNet, reporting an

accurate detection of chickenpox symptoms with an accuracy of

about 94.4%. Sahin et al. (Sahin et al., 2022) developed a mobile

application on the Android platform that rapidly diagnoses Mpox

patients using deep learning technology, achieving an image

classification accuracy of 91.11%.

Some scholars have already applied deep learning to the task of

Mpox classification, achieving significant results (Mehrotra et al.,

2020; Ahsan et al., 2023; Almufareh et al., 2023). A portion of

researchers has also conducted relevant studies in the field of Mpox

disease identification, as elucidated in the “Literature Review.” The

main objective of this study is to determine and validate the optimal

performing model for Mpox classification through transfer learning

methods and classification models, with the aim of determining the

incidence rate of Mpox. This study introduces a Mpox classification

algorithm named MpoxNet, based on ConvNext (Liu et al., 2022),

designed for the task of Mpox disease classification. Improvements

to the ConvNext model are as follows: firstly, the introduction of a

new dual-branch deep residual Squeeze and Excitation (D2RSE)

module replaces the original ConvNext. This module has a dual-

channel structure, significantly enhancing the model’s classification

accuracy while achieving better performance with a reduced

number of model parameters. By integrating the Convolutional

Block Attention Module (CBAM) with ConvNext, we capture the

spatial relationships of Mpox features during training, adaptively

weighting features based on their importance in different spatial and

channel dimensions, and suppressing irrelevant regions, allowing

the model to selectively focus on features of different disease

categories. For example, Sitaula et al. (Sitaula and Hossain, 2021)

proposed a deep learning model based on attention, which

employed the attention mechanism of VGG-16, aiming to more

accurately capture the spatial relationships of key regions in chest

X-ray images. In this experiment, MpoxNet is compared with other

mainstream algorithm models, demonstrating higher classification

accuracy in Mpox classification scenarios. The main contributions

of this paper are as follows:
Fron
1. The introduction of a dual-branch D2RSE module,

along with the integration of CBAM to enhance the

ConvNext model, facilitates the effective extraction of

critical local and global information regions within Mpox

images. As a result, the proposed MpoxNet model

demonstrates a notable improvement in the accuracy of

monkeypox detection.

2. Conducted comprehensive ablation experiments to

independently verify the impactful roles of the D2RSE

module and CBAM attention mechanism in the model’s

performance. This contributes to a more profound

understanding of Mpox disease, offering valuable insights

for future research.

3. Our proposed method requires fewer parameters compared

to other mainstream networks and is trained end-to-end,
tiers in Cellular and Infection Microbiology 03
which adequately validates the superiority of the network in

terms of performance.
This paper is organized into the following sections: The second

section outlines existing methodologies in Mpox image

classification. The third section provides insights into the Mpox

dataset and introduces the proposed enhancements. The fourth

section details the performance evaluation and experimental results.

Finally, the fifth section offers a comprehensive summary of

the paper.
2 Literature review

Skin lesions are prevalent in clinical practice, making precise

detection and diagnosis crucial for accurate patient treatment. In

recent years, the emergence of machine learning technologies has

provided significant potential to assist in the identification and

clinical decision-making for skin lesions (Fraiwan and Faouri,

2022). In this section, we will present various artificial intelligence

techniques, including machine learning, CNNs, and transfer

learning algorithms, applied for the detection and diagnosis of

Mpox virus.

Iftikhar et al. (Iftikhar et al., 2023) proposed a novel filtering and

ensemble technique for the rapid and accurate prediction of Mpox

cases. This approach generates two subsequences, long-term trend

sequences, and residual sequences, through filtering, and employs

five machine learning models for prediction. Mandal et al. (Mandal

et al., 2022) introduced a clustering method for Mpox cases that

combines machine learning and Particle Swarm Optimization

(PSO). Bhosale et al. (Bhosale et al., 2022) conducted similar

work, utilizing linear regression, decision trees, random forests,

elasticNet, and ARIMA for the prediction of Mpox cases. They

further introduced a dataset named Mpox Skin Image Dataset

(MSID), widely employed in various studies. For instance,

Khafaga et al. (Khafaga et al., 2022b) introduced a novel

framework for the classification of Mpox disease images. They

employed the Random Fractal Search (BERSFS) using the Al-

Biruni Earth Radius (BER) optimization method for fine-tuning

on deep CNN layers. Saleh and Rabie et al. (Saleh and Rabie, 2023)

proposed a Human Mpox Diagnosis (HMD) strategy based on

artificial intelligence technology. This strategy comprises two key

components: utilizing Improved Binary Chimpanzee Optimization

(IBCO) and selecting features with significant value for transfer to

the diagnostic model of ensemble learning. Ultimately, HMD

achieved an accuracy of 0.98. Ahsan et al. (Ahsan et al., 2023)

developed a Mpox diagnostic model using the Generalization and

Regularization-based Transfer Learning Approach (GRA-TLA) for

binary and multiclass classification. They tested ten different

Convolutional Neural Network (CNN) models, including both

binary and multiclass tasks, in three independent studies. In

studies one and two, their model combined with Extreme

Inception (Xception) achieved accuracies ranging from 77% to

88% in distinguishing individuals with and without Mpox. In

study three, the accuracy using the ResNet-101 network ranged

from 84% to 99%. Kumar et al. (Kumar, 2022) employed skin
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images for Mpox disease diagnosis, using various CNN models and

machine learning algorithms. They extracted image features using

Vgg16Net and AlexNet and applied classifiers such as Naive Bayes,

Decision Trees (DT), K-Nearest Neighbors (KNN), Support Vector

Machine (SVM), and Random Forest. The Naive Bayes algorithm

combined with Vgg16Net achieved the highest accuracy at 91.11%.

Research on skin lesion image classification through the

combination of CNN and transfer learning methods has yielded

significant benefits. Ahsan et al. (Ahsan et al., 2022) conducted an

initial investigation into Mpox diagnosis. The authors collected

images of patients infected with Mpox from various accessible

portals and proposed a VGG16-based model for Mpox diagnosis.

They constructed their dataset by gathering images from Google

and utilized transfer learning to create a model based on the VGG16

architecture in two separate studies. The first study successfully

distinguished Mpox from chickenpox, achieving an accuracy of up

to 0.97, while the second study differentiated Mpox from other

diseases (chickenpox, measles, and normal skin) with an accuracy of

0.89. Meena et al. (Meena et al., 2023) proposed a hybrid technique

based on Convolutional Neural Networks (CNNs) and Long Short-

Term Memory networks (LSTMs) to embed knowledge graphs into

various healthcare applications, providing enhanced data

representation and knowledge inference. Experimental results

demonstrate that the proposed model achieves an accuracy of

94% on the Mpox dataset. Bala et al. (Bala et al., 2023) presented

a Convolutional Neural Network (MonkeyNet) based on an

improved DenseNet-201 for Mpox image recognition. They

evaluated its performance using the original images from the

MSID dataset for training. Their model accurately identified

Mpox on both the original and augmented datasets, achieving

accuracies of 93.19% and 98.91%, respectively. Jaradat et al.

(Jaradat et al., 2023) evaluated five pre-trained models, including

VGG19, VGG16, ResNet50, MobileNetV2, and EfficientB3.

Experimental results demonstrated that MobileNetV2 performed

the best, achieving an accuracy of 0.98. Model validation across

different datasets confirmed MobileNetV2’s highest accuracy of

0.94. Altun et al. (Altun et al., 2023) employed a similar approach

and developed a hybrid function learning model incorporating

hyperparameter optimization. They utilized custom models,

including MobileNetV3-s, EfficientNetV2, ResNet50, Vgg19,

DenseNet121, and Xcept ion. Notably , the opt imized

MobileNetV3-s model exhibited the best performance, achieving

an accuracy of 0.96. Uzun Ozsahin et al. (Uzun Ozsahin et al., 2023)

applied deep learning models such as AlexNet, VGG16, and VGG19

for the detection task on Mpox and chickenpox datasets. Through

their research methodology, they achieved a highest precision of

0.99. Sitaula et al. (Sitaula and Shahi, 2022) utilized deep learning

techniques for Mpox diagnosis. They compared 13 pre-trained deep

learning models, ultimately selecting the most outstanding model to

build their system. The results indicated an accuracy of 0.87 for

their Mpox diagnostic model. Ali et al. (Ali et al., 2022) created a

dataset named “Monkeypox Skin Lesion Dataset (MSLD)” designed

for automatic detection of Mpox disease from skin lesions. The

images were primarily sourced from websites, news portals, and

publicly available case reports. They employed pre-trained models

such as VGG-16, ResNet50, and InceptionV3 for Mpox
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classification. To enhance the accuracy of Mpox detection, Sahin

et al. employed six deep learning models, including ResNet-18,

MobileNet, NasNetMobile, GoogLeNet, EfficientB0, and ShuffleNet,

to distinguish Mpox images from images depicting other diseases.

Among these models, MobileNet exhibited the best performance,

achieving a 91.11% accuracy in image classification. Additionally,

Almufareh et al. (Almufareh et al., 2023) utilized various

independent CNN architectures to differentiate Mpox from non-

Mpox cases. They validated their models using MSID and MSLD

datasets. Javelle et al. (Javelle et al., 2023) redefined the emerging

Mpox disease and designed a self-management questionnaire for

case management, contact monitoring, and support for clinical

research. Haque et al. (Haque et al., 2022) employed five deep

learning models, VGG19, Xception, DenseNet121, EfficientNetB3,

and MobileNetV2, and integrated spatial attention mechanisms for

accurate classification of human Mpox. Yasmin et al. (Yasmin et al.,

2022) obtained Mpox images from the Kaggle global dataset and

used nine models for predictions. Among them, the optimal

predictive model achieved an MSE value of 41922.55, R2 of 0.49,

MAPE of 16.82, MAE of 146.29, and RMSE of 204.75. Meena et al.

(Meena et al., 2024) established a deep learning model based on

transfer learning to assist in diagnosing whether patients have

Mpox. In the experiment, the InceptionV3 model they used

achieved an accuracy of 98%.

Table 1 summarizes the relevant studies on Mpox diagnosis.

However, research on Mpox diagnosis using deep learning remains

relatively limited. Some investigations have assessed the potential of

deep learning algorithms in identifying this disease. While the

results suggest that deep learning could be a valuable tool for the

diagnosis and control of Mpox, further research is needed to

validate these findings and establish practical applications in real

clinical settings.
3 Materials and proposed methods

This section encompasses four key stages: data collection, image

preprocessing, model selection, and model optimization. In the first

stage, we utilized the Monkeypox Skin Image Dataset (MSID),

which is freely accessible on the Kaggle platform (Monkeypox Skin

Images Dataset (MSID), n.d.). And due to limited data, we

employed data augmentation techniques to generate additional

images. During the data preprocessing phase, the collected images

underwent operations such as resizing, normalization, and data

augmentation, which are crucial for enhancing model performance.

We selected eight commonly used models (SqueezeNet, ResNet18,

ResNet34, ResNet50, Vgg16, DenseNet121, Swin-Tiny, and

ConvNext-Tiny) for comparison to improve the accuracy of the

Mpox virus detection model. In the model training phase, the

selected models were trained using the preprocessed images,

optimizing model performance by providing images and adjusting

parameters. Finally, in the evaluation stage, metrics such as

accuracy, precision, recall, and F1 score were employed to assess

the models, with the best-performing model selected as the final

model. Therefore, this approach utilizes deep learning techniques to

analyze Mpox images, accurately classifying and diagnosing the
frontiersin.org
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disease based on visual features. The algorithm demonstrates high

accuracy in disease classification, providing a valuable tool for the

rapid and precise diagnosis of Mpox in clinical settings. The

proposed method comprises multiple stages and processes,

illustrated in Figure 1, which encompass various steps

and operations.
3.1 Data collection

This study utilized the Mpox Skin Image Dataset (MSID), a

freely available resource on the Kaggle platform (Monkeypox Skin

Images Dataset (MSID), n.d.), and categorized the images into two

classes: Mpox and non-Mpox. This dataset serves as a crucial

resource for in-depth research on the Mpox virus and its impact

on human health. The dataset includes high-resolution images

that intricately depict the manifestations of Mpox at different

stages, as well as the infection symptoms it induces on human

skin. The dataset provides detailed visual information on skin

lesions, rashes caused by Mpox, and images related to other skin

conditions, offering comprehensive visual insights. By

encompassing a large number of images covering various

aspects of Mpox, researchers are able to delve into the

development of Mpox disease and identify crucial features that

contribute to accurate diagnosis. Leveraging the outstanding

performance of deep learning models in image enhancement,

this study fully capitalized on their advantages.
3.2 Image preprocessing

The preprocessing stage plays a crucial role in image analysis as

it contributes to enhancing data quality and consistency. The

preprocessing steps in this study include image scaling and data

augmentation. In this research, considering the trade-off between

training speed and accuracy, images were resized to 224×224 pixels,

facilitating easier handling by the model due to the uniformity of

image sizes. Figure 2 illustrates how data augmentation techniques

were applied to enhance the quality of Mpox samples, thereby

expanding the dataset and preventing overfitting. Through this

augmented dataset, the model’s performance was successfully

improved, and overfitting was mitigated. The following methods

were employed for data augmentation on Mpox images:
TABLE 1 Summary of literature review.

Methodology Approaches Dataset
Best
Results

Sahin et al. (Sahin
et al., 2022)

ResNet18, GoogleNet,
EfficientNetB0,
NasnetMobile, ShufeNet,
and MobileNetV2

MSLD

Accuracy:
0.91

Ali et al. (Ali
et al., 2022)

VGG16, ResNet50,
and InceptionV3

Custom
Dataset

Accuracy:
0.82

Ahsan et al.
(Ahsan
et al., 2022)

VGG16
Custom
Dataset

AUC:
0.97

Kumar et al.
(Kumar, 2022)

CNN models AlexNet,
GoogleNet and VGG16Net
with Naïve Bayes, SVM,
KNN,
Random Forest, and
Decision Tree

Ali et al.
(Ali
et al., 2022)

Accuracy:
0.91

Jaradat et al.
(Jaradat
et al., 2023)

Xception, DenseNet
Custom
Dataset

Accuracy:
0.98
Precision:
0.99
Recall:
0.96
F-
score:
0.98

Altun et al. (Altun
et al., 2023)

CNN model based on
MobileNetV3-s,
EfficientNetV2, ResNet50,
VGG19, DenseNet121, and
Xception models

Custom
Dataset

Accuracy:
0.96

Sitaula et al.
(Sitaula and
Shahi, 2022)

VGG-16, VGG-19,
ResNet50, ResNet101,
IncepResNetv2,
MobileNetV2, InceptionV3,
Xception, EfficientNetB0,
EfficientNetB1,
EfficientNetB2,
DenseNet121
and DenseNet169

Ahsan
et al.
(Ahsan
et al., 2022)

Accuracy:
0.85

Yasmin et al.
(Yasmin
et al., 2022)

Polynomial Regression,
SVR, Holt’s Linear Model
AR Model, SARIMA Model
ARIMA Model, MA Model,
Holt-Winter’s Model, and
Prophet Model

Custom
Dataset

MSE:
41,922.55
R2: 0.49
MAPE:
16.82
MAE:
146.29
RMSE:
204.75

Alwakid et al.
(Alwakid
et al., 2022)

ResNet50

HAM10000 Accuracy:
0.86
Precision:
0.84
Recall:
0.86
F-
score:
0.86

Abdelhamid et al.
(Abdelhamid
et al., 2022)

Binary PSOBER algorithm
Bala et al.
(Bala
et al., 2023)

Accuracy:
0.98

(Continued)
TABLE 1 Continued

Methodology Approaches Dataset
Best
Results

Proposed Method ConvNext
Custom
Dataset

Accuracy:
0.97
Precision:
0.96
Recall:
0.93
F-
score:
0.95
fro
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Gaussian Noise: Adding Gaussian-distributed noise to the

images simulates random signal interference during capture or

transmission processes, providing a way to assess the algorithm’s

performance in real-noise environments.

Random Cropping: Randomly cropping images is a common

data augmentation method that increases the variation range of

images, enhancing the model’s generalization capability

and robustness.

Random Rotation (0–360 degrees): Randomly rotating images

without altering the original image information helps reduce

overfitting and improve model efficiency.

Horizontal or Vertical Flipping: Flipping images horizontally or

vertically based on probability.

Finally, the Mpox dataset comprises 2000 images after

augmentation, with 1400 images used for model training, 400 for

testing, and 200 for validation.
3.3 Basic architecture selection

In order to enhance the classification performance on the

augmented Mpox dataset, this study drew inspiration from

algorithms used in other research [23, 29, 48]. However, the

relevant literature did not disclose the code in their papers, and

there were differences in the datasets used, making it challenging to

directly compare the proposed algorithm with theirs. Therefore, this

paper evaluated the classification performance of the base models
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[SqueezeNet (Iandola et al., 2016), ResNet18 (He et al., 2015),

ResNet34, ResNet50, Vgg16 (Simonyan and Zisserman, 2015),

DenseNet121 (Huang et al., 2018), Swin-Tiny (Liu et al., 2021),

and ConvNext-Tiny (Liu et al., 2022)] employed on the Mpox

dataset. The reason for selecting these models is that most of them

have been widely applied in the literature. Additionally, each model

has a unique architecture and strengths, and combining their

strengths may contribute to improving overall performance. The

experimental results on the test set are presented in Table 2. On the

test set, ConvNext-Tiny demonstrated the best generalization

performance with an accuracy of 94.33%. Therefore, building

upon this foundation, the paper further improved and proposed

MpoxNet, which exhibits superior performance. After our

enhancements, MpoxNet is much lighter than ConvNext-Tiny,

with parameters reduced by less than 68.13%, while achieving a

higher accuracy of 0.95%. This makes MpoxNet more suitable for

the classification diagnosis of Mpox.
3.4 ConvNext

ConvNext is a pure CNNmodel proposed by Liu et al (Liu et al.,

2022), designed to eliminate cumbersome operations such as

window movement and relative position deviation, providing

superior performance and lower computational burden compared

to popular transformer networks. The overall structure of

ConvNext is based on the ResNet design, incorporating residual
FIGURE 2

Mpox images enhanced using data augmentation.
FIGURE 1

Processes diagram of the proposed method.
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blocks and combining various advanced network design techniques

to further enhance the overall performance of the network. The

detailed structures of ConvNext-Tiny and ConvNext blocks are

illustrated in Figure 3.
3.5 D2RSE block

In terms of improving accuracy, increasing the cardinality of the

network is more effective than increasing depth or width. This

viewpoint was initially proposed in ResNeXt (Xie et al., 2017; Jiang

et al., 2023). Inspired by this, this paper introduces a Dual-Branch

Depthwise Separable Convolution Residual Squeeze and Excitation

(D2RSE) module in ConvNext. One branch follows a traditional

modular design, while the other branch adopts the unique design of

two consecutive convolutions in the Wide Residual Network. The

dimensions of both branches are set to half of the main branch.

Meanwhile, to reduce the number of model parameters, depthwise

separable convolutions are used instead of traditional convolutions.
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Subsequently, by concatenating the output dimensions of the two

branches and applying operations such as Batch Normalization and

GELU, overfitting of the model is effectively prevented, thereby

improving overall performance. Finally, an SE (Squeeze and

Excitation) block is added after GELU. It explicitly models

interdependencies among convolutional feature channels,

allowing adaptive allocation of weights for different channels.

This enables the network to perform dynamic channel-wise

feature recalibration, enhancing the representation capacity of the

network. Through this mechanism, the network learns to selectively

emphasize informative features using global information and

suppress less useful features. Furthermore, a residual connection

is established between the original output and the final layer output,

effectively increasing the depth of the model and enhancing its

representational capacity and performance. In addition to

increasing depth, the residual connection facilitates more effective

learning of critical features by providing a mechanism for direct

connections across layers, further improving overall performance.

The D2RSE and SE modules are illustrated in Figure 4.
A B

FIGURE 3

(A) ConvNext-Tiny network structure; (B) ConvNext Block structure.
TABLE 2 Results of different network on MSID dataset.

Accuracy
(%)

Precision
(%)

Recall(%)
F1-
score(%)

Flops(G) Params(M)

SqueezeNet 74.52 71.60 71.10 77.10 23.44 0.73

ResNet34 81.76 76.60 85.20 82.70 117.70 21.28

ResNet50 85.53 88.10 78.20 87.50 132.21 23.51

ResNet18 88.67 87.90 86.60 89.80 58.35 11.17

VGG16 90.88 89.00 90.80 91.70 495.04 138.35

DenseNet121 91.50 90.20 90.80 92.30 92.67 6.95

Swin-Tiny 92.76 93.40 90.10 93.60 139.88 27.50

ConvNext-Tiny 94.33 92.50 91.70 94.80 142.55 27.80

MpoxNet(Our) 95.28 96.40 93.00 95.80 43.74 8.86
The best results are highlighted in bold text.
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Specifically, the input feature map of the D2RSE block is processed

through depthwise separable convolution and LayerNorm. The feature

map captured by depthwise separable convolution and LayerNorm can

be represented as shown in Equation 1:

F7 = L(W7�7 � Finput) (1)

where Finput ∈ Rc�h�w represents the input feature map, W7�7

denotes the 7� 7 convolution matrix, and L( · ) represents Layer-

normalization. Subsequently, the feature map is integrated into each

branch. To extract valuable target features from the feature map, we

first design two convolutional modules to extract features, guiding

the network to learn more robust feature representations. The

obtained features can be shown as in Equation 2:

FL = Wfc(s r(Wfc � F7)) (2)

First, we input the processed combined feature map F7 ∈ R c
2�h�w

into the left branch to compress it into a new featuremapFL ∈ R c
2�h�w.

Here,Wfc and sr( · ) represent the fully connected layer matrix and the
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GELU activation operation, respectively. Meanwhile, we use depthwise

separable convolution instead of regular convolution to reduce the

number of model parameters. Additionally, GELU activation and

Batch Normalization are applied and shown in Equation 3.

FR = W3�3(s r(B(W3�3 � sr(F
7)))) (3)

It is noteworthy that these two-branch maps help us extract

more representative feature maps from different scales of receptive

fields. The feature maps FL ∈ R c
2�h�w and FR ∈ R c

2�h�w are

concatenated, followed by BatchNorm and GELU operations. The

obtained features can be shown as in Equation 4:

FG = s r(B(F
L ∥ FR)) (4)

where ∥ denotes concatenation along the channel dimension. The

processed feature map FG ∈ Rc�h�w is then input into the SE block.

FS = FG � s(W2 � SiLU(W1 � Pool(FG))) (5)
FIGURE 4

Configuration of D2RSE and SE Block.
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where s( · ) represents the sigmoid activation function, Pool

denotes global average pooling operation. Equation 5 can be

automatically backpropagated for training, adjusting the values of

W1 and W2 through gradient descent to optimize the model’s

performance. Finally, the output feature map FS ∈ Rc�h�w is added

to our input feature map, resulting in the final representation. The

obtained features can be shown as in Equation 6:

FS = FG � s(W2 � SiLU(W1 � Pool(FG))) (6)

where⊕ represents element-wise addition. Subsequently, FD ∈
Rc�h�w serves as the input for the next stage and is also the output

of the entire D2RSE module.
3.6 CBAM

CBAM introduces spatial and channel attention mechanisms,

enhancing the performance of convolutional neural networks. The

spatial attention dynamically adjusts the importance of different

image positions, while the channel attention adaptively adjusts the

importance of different channels. This attention mechanism

facilitates more effective capture of critical features in Mpox

images, thereby improving performance across various visual

tasks. CBAM, proposed by Woo et al. (Woo et al., 2018), is a

simple yet effective feedforward convolutional neural network

attention module. It infers attention maps in a sequential manner

for channel and spatial dimensions independently and then

multiplies this map by the input feature map to achieve adaptive

feature refinement. Moreover, as CBAM is a lightweight and

general-purpose module, it can be seamlessly integrated into any

CNN architecture, allowing for end-to-end training alongside the

base CNN. Figure 5 illustrates the structure of CBAM, which

includes both channel attention and spatial attention modules.

As illustrated in Figure 5, the feature map initially undergoes the

channel attention module. This module aggregates spatial

information of the feature map using average pooling and max

pooling operations, generating two distinct spatial context features,

namely Fc
avg and Fc

max . Subsequently, these two features are passed

through a shared network consisting of a multilayer perceptron

(MLP) and a hidden layer to generate the channel attention map

MC ∈ RC�1�1. Finally, the channel attention map is fused with the
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original feature map through element-wise summation, forming the

ultimate feature output. The feature output is then forwarded to the

spatial attention module, which employs two pooling operations to

aggregate the channel information of the feature map, generating

two 2D maps, FS
avg and F

S
max . These maps are then concatenated and

convolved through a standard convolutional layer to produce the

final 2D spatial attention map. The mathematical expressions for

the aforementioned operations are given by Equations 7, 8.

MC = s(W1(W0(F
c
avg )) +W1(W0(F

c
max))) (7)

MS = s(W7�7(F
S
avg ; F

S
max)) (8)

In the study, we further explored the embedding positions of

CBAM in the model and designed three variations, as shown in

Figure 6: (a) indicates the usage of CBAM after each ConvNext

block operation; (b) represents the model using CBAM after each

downsampling; (c) denotes the model incorporating CBAM before

each downsampling. Experimental results revealed that (c)

exhibited superior performance, and consequently, our model

adopted the design of embedding CBAM after each downsampling.
3.7 MpoxNet

Firstly, we devised a dual-branch structure based on the

ConvNext Block, named the D2RSE module. Subsequently, we

integrated the CBAM module into ConvNext, ultimately

constructing a high-precision and lightweight network specifically

designed for Mpox classification—MpoxNet. Experimental results

demonstrated that MpoxNet excelled in the Mpox classification

task. The overall network architecture is illustrated in Figure 7.
4 Performance evaluation and
experimental results

4.1 Parameters and evaluation metrics

All experiments were conducted on a high-performance deep

learning server with the following hardware configuration: Intel Xeon

Silver 4210 CPU with a clock speed of 2.20GHz, NVIDIA GeForce
FIGURE 5

Convolution Block Attention Module.
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RTX 2080 Ti graphics processing unit with 11GB of video memory,

and 128GB of RAM. The deep learning framework employed was

Python 3.8.10, Cuda 10.2, torch 1.8.1, and torchvision 0.9.1. The

operating system used was Windows 10. During the experiments,

consistent training parameters and configurations were applied to train

various models. The size of training images was fixed at 224×224, and

the batch size was set to 16. Model training utilized the cross-entropy

loss function and the AdamW optimizer. In the initial training stage, a

warm-up of 1 epoch was performed. The warm-up phase involved

gradually updating the learning rate for each iteration using one-

dimensional linear interpolation. Following the warm-up, a cosine

annealing function was employed to decay the learning rate, starting

with an initial learning rate of 0.0005. To ensure fair performance

comparisons across different models, no transfer learning was utilized,

and each model underwent training for 300 epochs.

Confusion matrix is utilized to calculate performance metrics

such as accuracy, precision, recall, and F1 score by comparing
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predicted labels with actual labels. We employed five widely used

performance metrics, including accuracy, precision, recall, and

F1-score.

Accuracy is the most commonly used metric, representing the

proportion of correctly classified samples out of the total number of

samples. The expression is as in Equation 9.

Accuracy =
TP + TN

TP + FN + FP + TN
(9)

Precision represents the proportion of true positive samples

among those classified as positive. In this context, it is defined as

the ratio of samples correctly predicted as Mpox by the model to

all samples predicted as Mpox by the model. The expression is as

in Equation 10:

Precision =
TP

TP + FP
(10)
A B C

FIGURE 6

CBAM embedding position design. (A) denotes the use of CBAM after each ConvNext block operation; (B) denotes the use of CBAM after each
downsampling in the model; (C) denotes the use of CBAM before each downsampling in the model.
FIGURE 7

Explanation of MpoxNet network architecture.
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Recall, also known as sensitivity or true positive rate, measures the

proportion of correctly predicted positive samples among all actual

positive samples. The recall formula is as shown in Equation 11.

Recall =
TP

TP + FN
(11)

The F1-score, also known as the F-measure, is a metric for

classification problems that considers both precision and recall. It is

the harmonic mean of precision and recall, providing a balance between

the two metrics. The F1-score formula is as shown in Equation 12.

F1 − score =
2� Precision� Recall
Precision + Recall

(12)

TP (True Positive): Instances where the actual class is Mpox,

and the model correctly predicts it as Mpox.

TN (True Negative): Instances where both the actual class and

the predicted class are not Mpox.

FP (False Positive): Instances where the actual class is not

Mpox, but the model incorrectly predicts it as Mpox.

FN (False Negative): Instances where the actual class is Mpox,

but the model incorrectly predicts it as not Mpox.
4.2 Basic network results

Table 2 presents the performance evaluation of our proposed model

compared to other trained models. The evaluation results demonstrate

that MpoxNet outperforms other networks significantly in terms of

prediction accuracy and parameter efficiency on the MSID dataset,

achieving an accuracy of 95.28%, precision of 96.40%, recall of 93.00%,

and F1-score of 95.80%. Compared to the ConvNext-Tiny model, this

paper not only improves the model’s accuracy but also significantly

reduces FLOPS and parameter count, being only 30.68% and 31.87% of

ConvNext-Tiny, respectively. ConvNext exhibits good fitting

performance with an accuracy of 94.33%, and MpoxNet also

demonstrates excellent fitting capabilities. The SqueezeNet model has

the lowest accuracy at 75.94%, and due to its concise network

architecture, the FLOPS and parameter count of this model are only

23.44G and 0.73M,making it unsuitable for practical applications directly.
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Additionally, com-pared to ResNet18 and ResNet50, ResNet34 performs

relatively poorly, with a classification accuracy of only 81.76%. ResNet50

and ResNet18 exhibit similar performance, but ResNet18 has only

44.13% and 47.51% of the FLOPS and model parameters of ResNet50,

respectively. Although VGG16 performs well on the test set, its FLOPS

and model parameter count are the highest. Figure 8 illustrates the

learning curves of each model during training, including validation

accuracy and training loss. In Figure 8A, the horizontal axis represents

the number of training epochs, and the vertical axis shows the

corresponding validation accuracy. In Figure 8B, the horizontal axis

similarly represents the number of training epochs, and the vertical axis

displays the change in training loss. Figure 8A indicates that all models

begin to converge around 30 epochs and gradually stabilize, reaching

complete convergence by 300 epochs. Among these models, MpoxNet

achieves the highest validation accuracy at 95.28%. Figure 8B reveals

relatively consistent trends in the training loss curves for CNN

architecture models, with MpoxNet demonstrating out-standing fitting

capabilities. In contrast, VGG16 exhibits lower convergence, possibly due

to its larger FLOPS and model parameter count.

Figure 9 displays the confusion matrices for all models tested on the

MSID dataset. The confusion matrix is a crucial tool for evaluating

the performance of classification problems, and its size depends on the

output dimensions. In this binary classification problem, the matrix size

is 2×2. The confusion matrix compares the target output and the actual

predicted output of the classification model, providing a more intuitive

way to identify the strengths and weaknesses of the model and offering

detailed performance in-sights. The analysis of the confusion matrix

leads to the conclusion that most predictions of the model are accurate.

The horizontal axis represents the true labels, while the vertical axis

represents the model’s predicted results. The elements on the diagonal

indicate the model’s correct predictions, while other elements represent

instances of model mispredictions. Nevertheless, due to the high

similarity of many images, potential inaccuracies still exist.
4.3 CBAM embedding position experiment

In Section 3.5, we proposed three different CBAM embedding

position schemes, and the corresponding experimental results are
A B

FIGURE 8

Training and validation of each model on the MSID dataset. (A) Trend of the validation accuracy curve of the model with the number of epochs.
(B) Trend of the training loss curve of the model with the number of epochs.
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detailed in Table 3. Observation reveals that ConvNext, as an

advanced classification network, demonstrates robust

performance, and the choice of CBAM embedding position in

scheme (c) further enhances the model’s performance. Therefore,

after each downsampling operation in the network, we opt for the

adoption of CBAM.
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4.4 Ablation experiments

We validated the effectiveness of the D2RSE and CBAMmodule

in MpoxNet through ablation experiments on the test set, and the

specific results are presented in Table 4. Observing the experimental

data, the CBAM module improved the classification accuracy by
FIGURE 9

Confusion matrix for different networks.
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0.32% with almost no increase in the number of model parameters.

Combined with the use of the D2RSE module, MpoxNet achieved a

classification accuracy of 95.28%, while significantly reducing the

FLOPS and parameter count by approximately 69.31% and 68.13%,

respectively. This demonstrates the effectiveness of these two

modules in enhancing the recognition performance of MpoxNet

for Mpox and achieving lightweight model design.
4.5 Visual interpretation of the model

To provide a more intuitive analysis of the Mpox classification

process, this study introduced the Gradient-weighted Class

Activation Mapping (Grad-CAM) method (Woo et al., 2018).

This method generates heatmaps by weighting the model’s output

with the gradients of a specified class, highlighting image regions

that significantly influence classification decisions. In the heatmap,

regions with higher weights are displayed in deeper red,

emphasizing their greater impact on the model’s category

discrimination. In contrast, regions with lower weights appear in

lighter blue, suggesting a milder influence of the image information

in these areas on the classification recognition model. Figure 10

displays the heatmaps generated by Grad-CAM for each model in

Mpox classification.

Through the heatmaps, we can clearly observe the core regions

that the models focus on. The heatmaps of the SqueezeNet and

ResNet18 models exhibit similar features, concentrating on broader

areas, with an issue of inaccurate focus on the infected regions. This

suggests that they seem to show a considerable interest in widely

distributed areas, which may explain their relatively poorer

performance in classification. VGG16 and DenseNet121
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demonstrate relatively good precision in locating Mpox infection

regions. However, their focus areas seem slightly insufficient,

indicating potential for further improvement. Swin-Tiny employs

a strategy of layer-wise splitting to obtain multi-scale features.

Efficient feature communication is achieved through cross-

attention networks for these multi-scale features. However, due to

its focus extending to the most extensive areas, there is an issue of

imprecise attention to Mpox infection regions. Compared to other

networks, ConvNeXt-Tiny exhibits a more precise ability to focus

on Mpox infection regions, resulting in superior classification

outcomes. In MpoxNet, the introduction of the D2RSE module

and CBAM module further optimizes the model’s attention to the

Mpox region. Therefore, these improvements significantly enhance

the classification performance.
5 Discussions

In Table 1, despite slight variations in experimental

parameters and training datasets compared to other methods,

MpoxNet attains the highest recognition accuracy. Meanwhile,

Table 2 illustrates that MpoxNet outperforms other networks with

the lowest Flops and model parameter count, registering at 23.44G

and 0.73M respectively. This allows the MpoxNet to not only serve

as a real-time assessment tool but also be easily applied on

smartphones for real-time identification and prediction of

monkeypox cases. While MpoxNet demonstrates excellent

performance in identifying monkeypox lesions, its precision in

localizing widely scattered cases of monkeypox is somewhat

lacking. In Figure 10, although the heatmap can encompass the

entire infected area, it fails to accurately mark the positions of

individual infection points, highlighting the need for further

improvement in this aspect.
6 Conclusions

This paper proposes a high-precision lightweight classification

network, MpoxNet, based on ConvNext, for the diagnostic

classification of Mpox. Firstly, a dual-branch depth separable

convolution residual Squeeze and Excitation (D2RSE) module is

designed. Then, CBAM is introduced to improve diagnostic

accuracy and significantly reduce the model’s parameter count.

Our proposed model is compared with SqueezeNet, ResNet18,

ResNet34, ResNet50, VGG16, DenseNet121, Swin-Tiny, and
TABLE 4 Comparison of ablation experiments.

D2RSE CBAM
Accuracy
(%)

Precision
(%)

Recall(%)
F1-
score(%)

Flops(G) Params(M)

– – 94.33 92.50 95.10 94.80 142.55 27.80

√ – 95.33 94.70 94.80 95.80 43.71 8.83

– √ 94.65 94.30 93.70 95.20 142.65 27.90

√ √ 95.28 96.40 93.00 95.80 43.74 8.86
The best results are highlighted in bold text.
TABLE 3 Comparison of different CBAM embedding position.

Method
Accu-
racy(%)

Preci-
sion(%)

Recall
(%)

F1-
score(%)

ConvNext-
Tiny

94.33 92.50 91.70 94.80

ConvNext
with(a)

94.52 92.63 94.40 94.60

ConvNext
with(b)

94.45 92.64 93.00 94.10

ConvNext
with(c)

94.65 94.30 93.70 95.20
The best results are highlighted in bold text.
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ConvNext-Tiny. The proposed model achieves the highest

accuracy, precision, recall, and F1-score among all tested models.

In ablation experiments, the effectiveness of the D2RSE and CBAM

modules is individually verified. By comparing MpoxNet with

baseline networks from related papers using the BUSI dataset, the

results clearly demonstrate the significant advantages of MpoxNet

in terms of performance. This series of comparative experiments

validates the crucial roles of the D2RSE and CBAM modules,

providing solid evidence for the performance superiority

of MpoxNet.

If the results of this study can be implemented, healthcare

professionals may be able to improve patient prognosis and reduce

medical costs. The research on deep learning and transfer learning

techniques for automated Mpox detection not only provides

innovative approaches for disease diagnosis but also opens new

avenues for ad-dressing diagnostic challenges of other infectious

diseases. Breakthroughs in this field will profoundly impact the

medical domain, paving the way for the development of future

diagnostic tools and methods.
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