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Introduction: The immune response regulates the severity of COVID-19

(sCOVID-19). This study examined the cause-and-effect relationship between

immune cell traits (ICTs) and the risk of severe COVID-19. Additionally, we

discovered the potential role of plasma metabolome in modulating this risk.

Methods: Employing data from a genome-wide association study (GWAS), we

conducted a two-sample Mendelian randomization (MR) assessment of 731

genetic ICTs and sCOVID-19 (5,101 cases, 1,383,241 controls) incidence. The

MR analysis was utilized to further quantitate the degree of plasma metabolome-

mediated regulation of immune traits in sCOVID-19.

Results: The inverse variance weighted method recognized 2 plasma

metabolites (PMs) responsible for casual associations between immune cells

and sCOVID-19 risk. These included Tridecenedioate (C13:1-DC) which

regulated the association between CD27 on IgD- CD38br (OR 0.804, 95% CI

0.699–0.925, p = 0.002) and sCOVID-19 risk (mediated proportion: 18.7%);

arginine to citrulline ratio which controlled the relationship of CD39 on

monocyte (OR 1.053, 95% CI 1.013–1.094, p = 0.009) with sCOVID-19 risk

(mediated proportion: -7.11%). No strong evidence that genetically predicted

sCOVID-19 influenced the aforementioned immune traits.

Conclusion: In this study, we have successfully identified a cause-and-effect

relationship between certain ICTs, PMs, and the likelihood of contracting severe

COVID-19. Our findings can potentially improve the accuracy of COVID-19

prognostic evaluation and provide valuable insights into the underlying

mechanisms of the disease.
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Introduction

Since 2019, Corona Virus Disease 2019 (COVID-19) has

seriously impacted the global population through its rapid

transmission and lethal outcome (Initiative, 2020). As of January

2024, the World Health Organization (WHO) reported a total of

774,469,939 confirmed cases of COVID-19 and 7,026,465 deaths

(Ablasser et al., 2013). Most patients displayed mild to severe

symptoms, including fever, cough, and dyspnea. In addition,

around 5–20% of patients experienced severe or critical

conditions characterized by acute respiratory distress syndrome,

severe hypoxemia, and acute lung damage, leading to fatal

consequences (Initiative, 2020). Among severe COVID-19

(sCOVID-19) patients experiencing respiratory failure

necessitating ventilation (i.e., arterial oxygen pressure to a

fraction of the inspired oxygen ratio ≦ 200 mmHg), the mortality

rate reached 30–60% (Initiative, 2020; Ihongbe et al., 2024).

Although the condition has severe consequences, its signalling

networks have not yet been identified.

Immune response critically modulates the pathogenesis of

COVID-19 (Merad et al., 2022). Appropriate responses of the

human innate and adaptive immunity against viruses, such as the

induction of multiple immune cells and inflammatory cytokine

subsets, are critical for combating viral replication and spread,

restricting inflammation and eliminating infected cells (Torres-

Ruiz et al., 2021). Dysregulated immunity or inflammatory

responses typically cause extensive tissue damage. Metabolomic

profiling can also impact disease risk and potentially serve as

therapy targets. Prior investigations revealed a COVID-19-

metabolome based on clinicopathological manifestations, immune

status, and disease severity. COVID-19 severity is reported to be

linked to dysregulated metabolic networks that are directly or

indirectly correlated with the immune and systemic inflammatory

response evident in COVID-19 patients (Orru et al., 2020).

Furthermore, plasma metabolites (PMs), namely, tryptophan,

kynurenine and 3-hydroxykynurenine (i.e. PMs belonging to the

kynurenine axis), can precisely estimate the COVID-19 disease

course. A recent investigation by Suguru Saito et al. showed a

significant reduction in tryptophan but elevation of kynurenine in

ICU-admitted COVID-19 patients. Kynurenine promotes PD-L1

expression in B cells, correlating with increased IL-6R expression

and STAT1/STAT3 activation (Saito et al., 2024a). Persistent

metabolomic abnormalities were also observed in long and acute

COVID patients (Saito et al., 2024b).

Mendelian randomization (MR) is a robust causal extrapolation

tool that employs genetic variation (GV) as an instrumental variable

(IV) to elucidate the exposure factor-mediated regulation of patient

outcomes in observational studies (Li et al., 2023). Due to the

arbitrary allocation of alleles during conception, this randomization

procedure effectively accounts for confounding circumstances and

decreases the likelihood of confounding. In this study, we conducted

a two-sample Mendelian randomization (2S-MR) analysis to

investigate the following: (i) Assessing the relationship between

ICTs and the risk of sCOVID-19. (ii) Determining the importance

of specific plasma metabolome profiles in influencing the effects.
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Materials and methods

Research design

In this study, we investigated the reciprocal causal relationship

between ICTs and the risk of sCOVID-19 using bidirectional 2S-

MR. In this study, single nucleotide polymorphisms (SNPs) were

called IVs. MR employs GV to denote risk factors. Hence, potential

IVs must satisfy the following three assumptions: (1) GV is

intricately linked to exposure; (2) GV has no relation with

potential confounders between exposure and outcome; and (3)

GV does not impact patient outcome using networks that do not

involve exposure. Lastly, considering the lack of a consensus on

sCOVID-19 definition, we identified sCOVID-19 as requiring

invasive and noninvasive ventilation (Initiative, 2020).
GWAS summary data sources

The employed ICT data were collected from the open-access

GWAS database, containing information from a purely European

population (GCST0001391 to GCST0002121) (Orru et al., 2020). In

all, 731 ICTs were examined; namely, absolute cell (AC) counts (n =

118), median fluorescence intensities (MFI) indicating surface

antigen levels (n = 389), morphological parameters [MP] (n = 32),

and relative cell (RC) counts (n = 192). In particular, the MFI, AC

and RC profiles included B cells, CDCs, mature T cells, monocytes,

myeloid cells, TBNK (T cells, B cells, natural killer cells), and Treg

panels. In contrast, the MP profile included CDC and TBNK panels.

The original GWAS examined 3,757 European individuals to collect

immunologic trait data, with no overlapping cohorts. To evaluate

correlations after covariate adjustment (i.e., sex, age, and age),

approximately 22 million SNPs genotyped using high-density

arrays were incorporated into a Sardinian sequence-based reference

panel. sCOVID-19 (GWAS ID: ebi-a-GCST011075) data were

plotted from IEU OpenGWAS (https://gwas.mrcieu.ac.uk/datasets/

ebi-a-GCST011075/), which contained 5101 sCOVID-19 cases and

1,383,241 controls. The plasma metabolome GWAS dataset

contained 1,091 metabolites and 309 metabolite ratios among

8,299 individuals obtained from the Canadian Longitudinal Study

on Aging (CLSA) cohort (Chen et al., 2023). All GWAS information

was collected from varying consortia and organizations, providing

no sample overlap.
IV selection and data harmonization

The analysis included SNPs with genome-wide significance (P <

5 × 10−8). Without marked genome-wide SNPs as IVs, SNPs with P

< 5 × 10-6 served as candidate IVs. Subsequently, SNPs underwent

grouping according to the linkage disequilibrium (window size =

10,000 kb and r2 < 0.001). Linkage disequilibrium estimation was

made according to the 1000 Genomes Project based on a European

sample (Genomes Project et al., 2010). If a particular exposed SNP

was not included in the outcome dataset, alternative SNPs were
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tagged using LD. Palindromic and ambiguous SNPs were omitted

from the MR analysis (Genomes Project et al., 2010). The F statistic

was computed via SNP-explained variance for individual exposures,

i.e.[(N-K-1)/K]/[R2/(1- R2)], where R2 represents the proportion of

variance in the exposure explained by the genetic variants, K

represents the genetic variant quantity, and N represents the

sample size. We eliminated weak IVs (F-statistics < 10).
MR and mediation analyses

To explore mutual causality between immune phenotypes and

sCOVID-19 risk (Figure 1A), we carried out a bidirectional 2S-MR

assessment (i.e. total effect analysis). We achieved this by producing

MR estimates using the inverse-variance weighted (IVW) approach.

All SNPs are assumed to be genuine IVs in the IVW application.

Thus, by employing this method, we obtained accurate estimation

data. Then, as supplemental studies, we used the remaining 4

techniques (weighted median, weighted models, MR-Egger, and

basic analyses) to verify the causal relationship between exposure

factors and patient outcomes. This allowed us to validate the

reliability of our results further (Li et al., 2023).

Mediation analysis is a statistical technique investigating how a

factor influences the relationship between two other variables. In

this study, we performed a mediation assessment using a 2S-MR

analysis to determine if the plasma metabolome could mediate the

causal connection between specific ICTs and the risk of sCOVID-

19. The total immune cell influences on sCOVID-19 were

categorized as follows: 1) direct influences of immune cell subsets

on sCOVID-19 risk (bm in Figure 1B); and 2) indirect influences

modulated by a mediator (b1×b2 in Figure 1B). Moreover, we

computed the percentage regulated by the mediation by dividing

the indirect effect by the total effect (Carter et al., 2021). Alongside,

95% confidence intervals were computed utilizing the delta formula.
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Sensitivity assessment

Using the MR-PRESSO distortion test, we tested alterations in

the estimates made before and following outlier correction, and a p-

value < 0.05 was set as the significance threshold. Outliers were

eliminated, and the MR causal estimates were re-assessed.

Cochran’s Q statistic and associated p values were employed to

evaluate heterogeneity among selected IVs. After rejecting the null

hypothesis, the random effects inverse variance weighting (IVW)

method was utilized. The p-value for the MR-Egger intercept was

calculated using directional pleiotropy. Finally, a leave-one-out

analysis was conducted to validate the impact of particular SNPs

on the overall causal estimates.
Statistical analysis

The MR analyses were conducted using R version 4.2.1 and the

“2S-MR” package (version 0.5.8). The MR-Pleiotropy Residual Sum

and Outlier (MR-PRESSO) analysis was conducted using the

“MRPRESSO” package in R programming language. We

conducted a PhenoScanner analysis to assess all documented

ICTs linked to our genes of interest. The significance threshold

was set at a p.adjust value of less than 0.05.
Results

Causal relation between ICTs and sCOVID-
19 risk

We used a 2S-MR analysis to identify the causal relationship

between ICTs and sCOVID-19. Following careful screening, we

found 18621 SNPs as IV (Supplementary File 1). Based on our F
FIGURE 1

Diagrams illustrating associations examined in this study. (A) The total effect between immune traits and sCOVID-19. bt is the total effect using
genetically predicted immune traits as exposure and sCOVID-19 as outcome. br is the total effect using genetically predicted sCOVID-19 as
exposure and immune traits as an outcome. (B) The total effect was decomposed into (i) indirect effect using a two-step approach (where b1 is the
total effect of immune traits on plasma metabolome, and b2 is the effect of plasma metabolome on sCOVID-19) and the product method (b1 × b2)
and (ii) direct effect (bm= bt -b1 × b2). Proportion mediated was the indirect effect divided by the total effect.
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statistical analysis, there was no weak instrumental bias. At the

significance of 0.01, our IVW analysis revealed a strong causal link

between six ICTs and sCOVID-19 risk. Among these, three ICTs

were casually linked to reduced sCOVID-19 risk, e.g., CD27 on

IgD- CD38br (OR 0.804, 95% CI 0.699–0.025, p = 0.002), CD4+ AC

(OR 0.887, 95% CI 0.812–0.969, p = 0.008), CD19 on IgD+ CD38-

(OR 0.906, 95% CI 0.849–0.967, p = 0.003). In contrast, three ICTs

were casually associated with enhanced sCOVID-19 risk, e.g., CD39

+ CD8br AC (OR 1.104, 95% CI 1.028–1.185, p = 0.007), CD19 on

IgD- CD24- (OR 1.199, 95% CI 1.075–1.337, p = 0.001) and CD39

on monocyte (OR 1.053, 95% CI 1.013–1.094, p = 0.009). The

aforementioned causal links were supported by most of the

remaining 4 MR analyses (Figure 2; Supplementary File 2).

Additionally, we revealed that the MR assessment data

exhibited no reverse causality for genetically predicted sCOVID-

19 risk concerning the six immune profiles (Supplementary File 3).
The link between plasma metabolome and
sCOVID-19 risk

Using IVM, 34843 SNPs were identified as IVs (Supplementary

File 4), and seven PMs were strongly associated with sCOVID-19 risk

at a significance level of 0.01. Among them, three PMs, namely,

malonyl carnitine contents (OR 0.797, 95% CI 0.672–0.945, p =

0.009), o-sulfo-l-tyrosine contents (OR 0.788, 95% CI 0.664–0.934, p

= 0.006) and arginine to citrulline ratio (OR 0.824, 95% CI 0.721–0.942,

p = 0.005) were casually related to reduced sCOVID-19 risk.

Alternately, four PMs, namely, tridecenedioate (C13:1-DC) (OR

1.581, 95% CI 1.167–2.143, p = 0.003), perfluorooctanesulfonate

(PFOS) (OR 1.293, 95% CI 1.077–1.552, p = 0.006), 3,5-dichloro-2,6-

dihydroxybenzoic acid (OR 1.252, 95% CI 1.080–1.451, p = 0.003) and

2-methoxyhydroquinone sulfate (1) (OR 1.278, 95% CI 1.067–1.530, p
Frontiers in Cellular and Infection Microbiology 04
= 0.008) were casually related to enhanced sCOVID-19 risk (Figure 3,

Supplementary File 5).
The link between ICTs and
plasma metabolome

According to our MR analysis, there was a casual correlation

between Tridecenedioate (C13:1-DC) levels and CD27 in IgD-

CD38br (OR 0.915, 95% CI 0.855–0.979, p = 0.010) and a casual

correlation between arginine to citrulline ratio and CD39 on

monocyte (OR 1.019, 95% CI 1.001–1.038, p = 0.039) (Figures 4,

5, Supplementary File 6). The genome-wide marked SNPs (i.e., IVs)

are listed in Supplementary File 7.

The plasma metabolome regulates the degree of association

between immunological characteristics and the risk of sCOVID-19.

We discovered a strong association between CD27 expression on

IgD− CD38br cells and reduced levels of Tridecenedioate (C13:1

−DC). This reduction in C13:1−DC was directly associated with an

increased risk of severe COVID-19 infection. The Tridecenedioate

(C13:1−DC) concentration made up 18.7% of the augmented

sCOVID-19 risk linked to the CD27 on IgD− CD38br

(proportion mediated: 18.7%; 95% CI 4.25%, 33.1%). Arginine to

citrulline ratio modulated -7.11% (95% CI -13.9%, -0.312%) CD39

action of monocyte on mediating sCOVID-19 risk (Figures 5, 6).
Sensitivity analysis

To evaluate the pleiotropy of causal estimates, we performed

various sensitivity analyses. Using Cochran’s Q-test, we showed no

heterogeneity in the causal relationship between the SNPs. We

found no horizontal SNP multi-effect using the pleiotropy test
FIGURE 2

Scatter plots of MR analyses of causal effects for immune traits on the risk of sCOVID-19.
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(Supplementary File 8). We verified the effect of individual SNPs on

total causal estimates using a leave-one-out analysis. Finally, we

reran MR assessments for the remaining SNPs after removing the

individual SNPs. Our findings were consistent, indicating that every

SNP was calculated to obtain a statistically significant causal

relationship (Supplementary File 9).
Discussion

After thoroughly examining a substantial collection of

publically accessible genetic data, we discovered that several

immunophenotypes and PMs are closely associated with the

likelihood of contracting sCOVID-19. Furthermore, we have

discovered two immunological characteristics that can genetically

forecast the risk of severe COVID-19. These qualities are partially

influenced by two specific genetic markers known as PMs.

Upon COVID-19 infection, immuno- and inflammatory

responses critically regulate the course of infection (Boechat et al.,
Frontiers in Cellular and Infection Microbiology 05
2021; Merad et al., 2022; Primorac et al., 2022). Currently, sCOVID-

19 has been associated with significant changes in immune activity

outside the central immune system. These changes include

increased innate immunological or inflammatory responses and

reduced adaptive immune response. CD4+ and CD8+ T cells

elicited by SARS-CoV-2 infection are directed against various

antigens and are significantly associated with milder disease.

Extensive lymphopenia (involving CD4+ AC) is potentially

modulated by lymphocyte sequestering within tissues or

proinflammatory cytokine-induced apoptosis and may contribute

to defective viral clearance (Boechat et al., 2021). Coinhibitory

receptors on T cells (e.g., CD8 on CD39+ CD8br) recognizing

SARS-CoV-2 peptide pools were associated with increased

frequencies of cytokine-producing T cells, contributing to

enhanced disease severity (Shahbaz et al., 2021b). A large number

of plasmablast or mature B cells (e.g., CD19 on IgD- CD24-)

expansion (reaching 30% of serum B cells and with some

association with extrafollicular responses) are also found in

sCOVID-19 patients (Mansourabadi et al., 2023). The high
FIGURE 4

Scatter plots of MR analyses of causal effects for immune traits on plasma metabolites.
FIGURE 3

Scatter plots of MR analyses of causal effects for plasma metabolites on the risk of sCOVID-19.
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plasmablast population may indicate poly-reactivity as there are

relatively low frequencies of somatic mutations in antibody clones

within patients, thereby eliciting reduced viral management and

promoting tissue damage (De Biasi et al., 2020). The Memory B cells

(MBCs) play a crucial role in controlling the occurrence and

severity of COVID-19 infection. Several investigations have found

that the number of switched (e.g., CD27 on IgD- CD38br) and

unswitched (e.g., CD19 on IgD+ CD38-) memory B cells is

significantly reduced in COVID-19 patients. This reduction is

independently associated with higher severity and mortality rates

in these patients (De Biasi et al., 2020; Colkesen et al., 2022;

Primorac et al., 2022; Mansourabadi et al., 2023). During primary

SARS-CoV-2 infection, T cells assist B cell differentiation in the

germinal centres (GC) and recruit a large repertoire of MBCs.
Frontiers in Cellular and Infection Microbiology 06
Patients with inadequate T cells have significantly poorer GC

responses, lower antigen-specific antibodies, and fewer switched

MBCs. As a result, they develop a more severe form of the disease

(Sosa-Hernandez et al., 2020).

In sCOVID-19, monocyte activation and expansion result in

hyper inflammation , which , in turn, causes capi l lary

hyperpermeability, coagulation dysfunction and substantial tissue

damage (Boechat et al., 2021; Primorac et al., 2022). CD39 is

ubiquitously expressed in human peripheral blood on > 90% of

monocytes (Diaz-Garcia et al., 2022). Wang et al. reported

augmented CD39 expression within the lung, liver, spleen, and

PBMCs of sCOVID-19 patients, which was intricately linked to the

durations of hospital and intensive care unit (ICU) stays, as well as

the markers of coagulation, suggesting strong links between
FIGURE 6

Schematic diagram of the effect of the immune traits mediation.
FIGURE 5

Forest plot to visualize the causal effects of Tridecenedioate (C13:1-DC) (A), and arginine to citrulline ratio (B) with immune traits and sCOVID-19.
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ectonucleotidases and disease progression (Diaz-Garcia et al., 2022).

Using bioinformatics, Schultz et al. revealed up-regulated CD39

contents within the leukocytes of COVID-19 patients (Schultz

et al., 2022).

Emerging studies identified several PMs as strong modulators of

the COVID-19 disease course. L-arginine regulates many biological

processes, including COVID-19 (Rees et al., 2021; Reizine et al.,

2021; Sacchi et al., 2021). Claudia Morris and colleagues reported

that both COVID-19-infected adults and children exhibit markedly

diminished plasma L-Arginine (as well as L-Arginine

bioavailability) relative to controls (Rees et al., 2021). Reizin and

his colleagues revealed strongly downregulated arginine

concentration among 13 sCOVID-19 patients and 13 with

moderate pneumonia relative to 13 healthy volunteers (Reizine

et al., 2021). As previously stated, blood samples were collected

during admission and on the fourth and seventh days of

hospitalization. They identified the most significant arginine

downregulation upon admission, i.e., 26% and 54% for mild and

severe COVID-19, respectively, compared to healthy controls.

Interestingly, the T-cell quantity was linked strongly with

arginine content and was similarly reduced in COVID-19

patients. Furthermore, a study of T-cell proliferative capacity

revealed that COVID-19 patients had much lower T-cell

proliferative ability, which may be restored with arginine

supplements. In another study, Alessandra Sacchi et al (Sacchi

et al., 2021). revealed that plasma L-Arginine content was inversely

proportional to COVID-19 severity. They also revealed that the

activated GPIIb/IIIa complex responsible for platelet activation and

thromboembolic events was strongly elevated in platelets of

sCOVID-19 patients. Previous studies have found that CD71+

erythroid cells (CECs) are expanded in COVID-19 patients,

especially those with severe disease. These CECs express arginase

I and II, which could be responsible for the reduced L-arginine

levels in COVID-19 patients (Shahbaz et al., 2021a; Elahi, 2022;

Saito et al., 2022).

L-arginine is a substrate for numerous enzymatic reactions. Its

metabolism utilizes 3 primary networks: (1) L-Arginine to L-

ornithine (Arginase-mediated), (2) L-Arginine to agmatine (L-

Arginine decarboxylase-mediated), and (3) L-Arginine to NO and

citrulline (nitric oxide (NO) synthase (NOS)-mediated) (Adebayo

et al., 2021). NO demonstrates both indirect and direct antiviral

effects. Direct inhibition of NO can effectively decrease viral activity.

Therefore, NO is considered one of the early host reactions

against viruses.

In contrast, the indirect NO effects include inflammatory and

immune response modulation. NO accelerates several reactive oxygen

and nitrogen species formation, synergistically opposing viral activity

(Adebayo et al., 2021). During the acute phase of COVID-19, there is a

large increase in arginase activity. This leads to malfunctioning the

immune system and blood vessels, inflammation, and blood clot

formation. This is caused by a decrease in the concentration of L-

arginine in the blood and a shift inmetabolism that reduces nitric oxide

production. Acute COVID-19 is also correlated with diminished

plasma L-arginine contents, which, in turn, modulates myeloid

suppressor cell growth and decreases T-cell proliferation, two typical
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inflammatory features of severe disease (Zhu et al., 2014). Arginine also

induces CD4+ and CD8+ T cell survival by switching metabolism to

oxygen consumption, increasing free respiratory capacity in activated T

cells (Bronte and Zanovello, 2005). Human monocytes consume

significant amounts of glutamine and maintain adequate enzymatic

activity to convert glutamine to citrulline and, subsequently, citrulline

to arginine. This process decreases the ratio of arginine to citrulline,

which supports our research findings (Derakhshani et al., 2021).

Perfluorooctanesulfonic acid (PFOS) belongs to Per- and

polyfluoroalkyl substances (PFAS), a class of artificial organic

chemicals possessing both hydrophilic and hydrophobic

properties (Gluge et al., 2020). PFAS is strongly associated with

multiple health conditions, such as hepatotoxicity, dyslipidemia,

endocrine outcomes, and immunotoxicity (Kvalem et al., 2020).

Human epidemiological studies have shown that children’s blood

antibody response following vaccination is adversely affected by

PFOS exposure. Furthermore, exposure to PFOS during pregnancy

may increase the risk of infection (Abraham et al., 2020). The

National Toxicology Program concluded that PFOA and PFOS pose

an immunologic hazard to humans due to their strong suppression

of antibody response observed in animal and human studies (Kim

et al., 2021). One Italian investigation reported augmented COVID-

19-related mortality risk among people who received heavy

exposure to PFAS (Catelan et al., 2021). It has been suggested

tha t the probab l e cause o f th i s was the power fu l

immunosuppressive effects of PFAS and the deposition of PFAS

in lung tissue, either alone or in conjunction with pre-existing

PFAS-related diseases, which hastened the course of COVID-19.

Philippe Grandjean et al. found increased plasma-PFAS levels

among Danish COVID-19 patients. This increase was strongly

linked to a higher likelihood of needing intensive care or death

(Grandjean et al., 2020). In the present study, we verified the critical

connection between PFOS, immune cells, and their control over

COVID-19. Still, we also proposed that PFOS is a strong regulator

of the immunological characteristic and the correlation between

COVID-19 and it. Previous research has demonstrated that

methoxyphenol ic compounds have anti- inflammatory

characteristics in leukocytes, which could potentially provide

some degree of protection in a hyperinflammatory condition

(Mrityunjaya et al., 2020; Perez de la Lastra et al., 2023).

However, we found that 2−methoxyhydroquinone sulfate directly

increased the risk of sCOVID-19. However, the fundamental

mechanism still needs to be understood.

Our research limitations are: Firstly, this investigation was

conducted on a purely European population. Therefore, the

conclusions cannot be generalized to the worldwide population.

Secondly, although we analyzed the largest COVID-19 GWAS

summary statistics to date, the data comprised meta-analyses

from numerous investigations. As a result, the sample could be

diverse, indicating that the baseline clinical characteristics, patient

demographics, distribution of concomitant diseases,recruitment

time, vaccination status and other factors may have differed

among different groups. In addition, the control population was

not vetted, which means that there is a possibility that individuals

without symptoms or with minor symptoms were unintentionally
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included in the control group. Thirdly, despite our attempts to

identify and eliminate outlier variants, we could not fully exclude

the potential of horizontal pleiotropy affecting our conclusions.

Fourthly, we employed summary-level statistics and not individual-

level data. Hence, we could not further examine causal relationships

between various subcategories, including patient sex, race, diet, and

disease status. Finally, no subsequent inquiries were conducted to

verify the established cause-and-effect relationships in this inquiry.

Therefore, conducting thorough mechanistic investigations to

confirm the relationships mentioned above is crucial.
Conclusions

In conclusion, our extensive MR analyses identified multiple

ICTs and PMs that exhibited strong causal links to sCOVID-19 risk.

Furthermore, we found two mediated relationships between the

identified PMs and ICTs. For COVID-19 patient risk classification

and outcome calculation, the ICTs and PMs—which were

previously mentioned—are, therefore, promising bioindicator

candidates. They can also significantly support investigating the

underlying mechanisms governing Pathology and infection with

sCOVID-19.
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