Skip to main content

ORIGINAL RESEARCH article

Front. Cell. Infect. Microbiol.
Sec. Virus and Host
Volume 14 - 2024 | doi: 10.3389/fcimb.2024.1393432

Identifying the plasma metabolome responsible for mediating immune cell action in severe COVID-19: a Mendelian randomization investigation

Provisionally accepted
  • 1 Taikang Xianlin Drum Tower Hospital, Taizhou, Jiangsu, China
  • 2 First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China

The final, formatted version of the article will be published soon.

    The immune response regulates the severity of . This study examined the cause-and-effect relationship between immune cell traits (ICTs) and the risk of severe COVID-19. Additionally, we discovered the potential role of plasma metabolome in modulating this risk.Methods: Employing data from a genome-wide association study (GWAS), we conducted a two-sample Mendelian randomization (MR) assessment of 731 genetic ICTs and sCOVID-19 (5,101 cases, 1,383,241 controls) incidence. The MR analysis was utilized to further quantitate the degree of plasma metabolome-mediated regulation of immune traits in sCOVID-19.The inverse variance weighted method recognized 2 plasma metabolites (PMs) responsible for casual associations between immune cells and sCOVID-19 risk. These included Tridecenedioate (C13:1-DC) which regulated the association between CD27 on IgD-CD38br (OR 0.804, 95% CI 0.699-0.925, p = 0.002) and sCOVID-19 risk (mediated proportion: 18.7%); arginine to citrulline ratio which controlled the relationship of CD39 on monocyte (OR 1.053, 95% CI 1.013-1.094, p = 0.009) with sCOVID-19 risk (mediated proportion: -7.11%). No strong evidence that genetically predicted sCOVID-19 influenced the aforementioned immune traits.In this study, we have successfully identified a cause-and-effect relationship between certain ICTs, PMs, and the likelihood of contracting severe COVID-19. Our findings can potentially improve the accuracy of COVID-19 prognostic evaluation and provide valuable insights into the underlying mechanisms of the disease.

    Keywords: immune cells, Plasma Metabolome, Severe COVID-19, Mediator, Mendelian randomization

    Received: 29 Feb 2024; Accepted: 30 Jul 2024.

    Copyright: © 2024 Chen and Hua. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: Liang Chen, Taikang Xianlin Drum Tower Hospital, Taizhou, Jiangsu, China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.