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Purpose: To develop a predictive nomogram based on computed tomography

(CT) radiomics to distinguish pulmonary tuberculosis (PTB) from community-

acquired pneumonia (CAP).

Methods: A total of 195 PTB patients and 163 CAP patients were enrolled from

three hospitals. It is divided into a training cohort, a testing cohort and validation

cohort. Clinical models were established by using significantly correlated clinical

features. Radiomics features were screened by the least absolute shrinkage and

selection operator (LASSO) algorithm. Radiomics scores (Radscore) were

calculated from the formula of radiomics features. Clinical radiomics conjoint

nomogram was established according to Radscore and clinical features, and the

diagnostic performance of the model was evaluated by receiver operating

characteristic (ROC) curve analysis.

Results: Two clinical features and 12 radiomic features were selected as optimal

predictors for the establishment of clinical radiomics conjoint nomogram. The

results showed that the predictive nomogram had an outstanding ability to

discriminate between the two diseases, and the AUC of the training cohort was

0.947 (95% CI, 0.916-0.979), testing cohort was 0.888 (95% CI, 0.814-0.961) and

that of the validation cohort was 0.850 (95% CI, 0.778-0.922). Decision curve

analysis (DCA) indicated that the nomogram has outstanding clinical value.

Conclusions: This study developed a clinical radiomics model that uses

radiomics features to identify PTB from CAP. This model provides valuable

guidance to clinicians in identifying PTB.
KEYWORDS

pulmonary tuberculosis, community-acquired pneumonia, computed tomography,
radiomics, nomogram
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Introduction

Tuberculosis is a chronic respiratory infection caused by

Mycobacterium tuberculosis, among which pulmonary

tuberculosis (PTB) is the most common, accounting for more

than 80% of tuberculosis (Dheda et al., 2016; Drain et al., 2018).

In general, the early symptoms of PTB are not obvious and often go

unnoticed, thus accelerating the progress of the disease. Therefore,

early diagnosis is crucial to the treatment of tuberculosis (Walzl

et al., 2018). At present, the diagnosis of tuberculosis mainly

depends on sputum smear and culture, and the gold standard for

diagnosis is sputum bacteriological detection. However,

bacteriological detection of sputum takes longer time, usually

more than four weeks (Schito et al., 2015; Suárez et al., 2019). As

a result, the source of infection cannot be controlled, leading to an

increase in the incidence of tuberculosis and mortality. Secondary

tuberculosis is the most common type of PTB in adults, and its

imaging manifestations are varied and often confused with other

pulmonary infections, especially community-acquired pneumonia

(CAP) (Lyon and Rossman, 2017; Nachiappan et al., 2017).

CAP is pneumonia acquired outside a hospital. The most

common pathogens are Streptococcus pneumoniae, Hemophilus

Influenza, and atypical bacteria (e.g. Chlamydia pneumoniae,

Mycoplasma pneumoniae, Legionella, and the virus). CAP often

manifests as fever, cough, excessive phlegm, chest pain, dyspnea,

tachypnea, and tachycardia. Secondary tuberculosis also has some

of the same symptoms (Qi et al., 2021), but they are treated with

different drugs (Modi and Kovacs, 2020; Peloquin and Davies,

2021). The incidences of PTB and CAP in the world is increasing

year by year, and many patients are not treated in time, often

resulting in serious complications. Therefore, a simple and

noninvasive method to quickly distinguish PTB from CAP is

necessary for later treatment of the disease.

Radiomics is a computational, noninvasive method for

extracting quantitative features from images and transforming the

information into a mineable database (Mayerhoefer et al., 2020).

Radiomics can provide multitudes of information that cannot be

found by the naked eye, and can sensitively judge the subtle changes

of morphology and function in different parts of the lesion (Moon

et al., 2019; Han et al., 2023). This approach has been widely used

not only in lung cancer (He et al., 2020; Kirienko et al., 2021; Tunali

et al., 2021), but now in COVID-19 as well (Bouchareb et al., 2021).

but it is seldom studied in PTB and CAP.

Our study aims to develop a predictive nomogram based on

computed tomography (CT) radiomics. It is used early to

distinguish PTB from CAP so that these patients can receive

timely treatment.
Method

Patients

We collected patients with pulmonary tuberculosis or

community-acquired pneumonia from June 2018 to May 2023
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from three medical centres. There were 195 PTB patients and 163

CAP patients who met the inclusion and exclusion criteria. Clinical

characteristics collected included sex, age, white blood cell count

(WBC), neutrophil ratio (NEUT%), neutrophil to lymphocyte ratio

(LYMPH%), C-reactive protein (CRP), Hemoglobin (HGB),

platelets (PLT), albumin (ALB), glucose (GLU), T-SPOT result,

fever (body temperature ≥37.3°C), cough, expectoration, and

hemoptysis. This retrospective study was approved by the

Research Ethics Committee of the First Affiliated Hospital of

Anhui Medical University (Hospital I), Hefei Second People’s

Hospital (Hospital II) and the First Affiliated Hospital of

Soochow University (Hospital III).

Inclusion criteria
1.Patients with PTB and CAP, and CT imaging data before anti-

tuberculosis and anti-infective treatment; 2. The CT imaging data is

clear and can be extracted for interpretation. 3. There was no

complication of respiratory diseases with pulmonary imaging

features (such as lung cancer, interstitial lung disease, and so on).

Exclusion criteria
1. Under 18 years of age; 2. Insufficient clinical information to

provide; 3. CT showed no obvious lung lesions.

Diagnostic criteria for patients with PTB
Patients with PTB were diagnosed with having a positive smear

or tuberculosis culture in at least one respiratory tract sample

(sputum or alveolar lavage fluid or lung puncture fluid).

Diagnostic criteria for patients with CAP
Adults over 18 years of age with clinical signs suggestive of CAP,

acquired outside the hospital or less than 48 hours after admission,

meet CAP criteria (Cao et al., 2018).
CT examinations

All enrolled patients underwent plain chest CT scans before

antibiotic or anti tuberculous medication. The CT scanning

equipment and parameters of the three hospitals are shown in

supplementary document Supplementary Table S1. Scan range

from the apex of both lungs to the bottom of the lungs. All chest

CT parameters were fixed according to the guidelines of the CT

scanning protocol.
CT image segmentation and radiomic
feature extraction

A radiologist with 10 years of experience in radiology used ITK-

SNAP 3.8.0 (ITK-SNAP Home (itksnap.org)) manually segmented

the lung window of all CT images. The same window parameters

were selected for all CT images (window width 2000HU, window

level-400HU). Because of the diffuse and multiple manifestations of

inflammatory lesions, it is difficult to accurately delineate all lesions.
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Therefore, we selected the maximum level of ground-glass

attenuation and outlined all the lesions in this level as a volume

of interest (VOI), then sketch layer by layer to form the 3D VOI.

Another radiologist with more than 10 years of experience reviewed

the imaging features of the lesion as well as the VOI. The two

radiologists worked independently. The consistency and

repeatability of the results were evaluated by inter-class and intra-

class correlation coefficients (ICCs). The higher the ICC value, the

higher the reproducibility. Features with ICC below 0.75 are

considered to have poor feature consistency, so they will be

removed. Before extracting radiomic features, all images were

resampled and image normalized to achieve zero mean and unit

variance (Zhu et al., 2021; Yang et al., 2022). All radiomics features

were extracted from VOIs using PyRadiomics (van Griethuysen

et al., 2017).
Radiomic signature construction

First, the dataset of hospital I and hospital II is randomly

assigned to the training and testing cohort in a 8:2 ratio, and the

dataset of hospital III is validation cohort. The training cohort is

used to predict the model. The testing cohort and validation cohort

are used to independently evaluate the performance of the model.

Finally, Z-score is used to standardize the training cohort data, and

use it to normalize the test and validation cohorts. Then, the

features with ICCs >0.75 were retained, and the features with

P <0.05 were screened by univariate logistic analysis. A least

absolute shrinkage and selection operator (LASSO) and

multivariate logistic analysis were used for further screening, and

independent risk predictors were retained (P <0.05). Finally,

Radscore was calculated by using the formula based on radiomics

characteristics. We used the support vector machine (SVM)

algorithm to construct the radiomics prediction model. SVM is a

large-margin classification model. Its basic model is a linear

classifier defined in the feature space with the maximum interval

(Valkenborg et al., 2023).
Construction of the clinical model

Univariate analysis was performed according to the included

clinical characteristics with CAP and PTB in training cohort.

Multivariate logistic regression analysis was performed for the

clinical factors with P < 0.05. The clinical model was predicted

according to the results of multivariate logistic regression analysis

(P < 0.05) and variance inflation factor.
Establishment of a clinical radiomics
conjoint nomogram

The clinical radiomics conjoint nomogram was constructed by

combining the clinical factors related to the clinical model with

Radscore in the radiomics model. receiver operating characteristic
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(ROC) curve and Decision curve analysis (DCA) were used to

compare the diagnostic and predictive performance of the clinical

model, radiomics model, and clinical radiomics conjoint model in

the training and test cohorts.
Statistical analyses

All radiomics analyses were conducted using Python version

3.5.6. Statistical analysis was performed using R 4.1.2 (R: The R

Project for Statistical Computing (r-project.org)). Continuous

variables with normal distribution were expressed as mean ±

standard deviation. Data that are not normally distributed were

expressed as median (range interquartile) and analyzed using the

rank-sum test. Independent samples t-test or Mann-Whitney U test

were used to compare continuous variables. The Chi-square test or

Fisher exact test was used for categorical variables. A two-sided p-

value < 0.05 was used to indicate statistical significance.
Results

Basic clinical characteristics

After the screening, a total of 358 patients were included in this

study, including 195 PTB patients and 163 CAP patients. Among

them, 170 patients were trained, 73 patients were tested and 115

patients were verified. The study flow diagram is shown in

Supplementary Figure S1. Table 1 shows the clinical features of

patients. In the all cohort, univariate and multivariate logistic

regression showed that T-SPOT.TB result (P < 0.001) and fever

(P < 0.001) were two independent predictors in the clinical model

(Supplementary Table S2).
Constructed radiomics model

A total of 1557 radiomics features were extracted from each

VOI, and a total of 12 different features were screened out by

LASSO (Table 2). The details of the radiomics feature screening

process are shown in Figure 1. The Radscore formula showed in

Appendix S1.

In the identification of PTB and CAP in radiomicsmodel, the AUC

of the training cohort was 0.887 (95%CI: 0.839- 0.936), the AUC of the

testing cohort was 0.787 (95%CI:0.684-0.891) and the AUC of the

validation cohort was 0.792 (95%CI:0.706-0.879) (Figure 2).
Establishment of a clinical radiomics
conjoint nomogram

Based on the data of the training cohort, a clinical radiomics

conjoint nomogram was established combined with the radiomics

score, T-SPOT result, and fever, as shown in Figure 3. The C index

of the nomogram is 0.955 (95%CI, 0.926 - 0.984).
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1388991
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1388991
TABLE 1 Clinical features of Patients with PTB and CAP.

features All Cohort Training Cohort Testing Cohort Validation Cohort

CAP PTB CAP PTB CAP PTB CAP PTB

n 163 195 74 96 32 41 58 57

Sex (%)

Female 86 (24%) 79 (22.1%) 45 (26.5%) 40 (23.5%) 12 (16.4%) 11 (15.1%) 30 (26.1%) 28 (24.3%)

Male 77 (21.5%) 116 (32.4%) 29 (17.1%) 56 (32.9%) 20 (27.4%) 30 (41.1%) 28 (24.3%) 29 (25.2%)

Age 51 (31, 67) 61 (46, 71.5) 49 (30.25, 66) 62 (41, 73)
52
(35.75, 66.25)

64 (49, 70) 60 (42.25, 69.75) 52 (31, 67)

WBC 6.26 (4.93, 8.20) 7.19 (5.54, 9.36) 6.26 (4.51, 8.70) 7.20 (5.57, 9.35) 5.97 (5, 7.44)
6.92
(4.99, 8.97)

7.64 ± 2.92 7.12 ± 2.88

NEUT%
64.2
(55.8, 74.75)

72.64
(63.95, 81.01)

64.49 ± 14.63 71.38 ± 11.92 64.32 ± 12.17 72.81 ± 11.96 72.26 ± 10.70 66.53 ± 14.73

LYMPH%
25.8
(16.35, 32.15)

15.54
(11.4, 24.75)

24.9
(16.16, 35.06)

16.5 (11.65, 24.88)
27.3
(20.49, 31.83)

14.9
(8.8, 24.7)

15.52
(11.55, 24.48)

23.5
(14.84, 31)

HGB 122 (110.5, 134) 114 (100.5, 125) 120.5 (111, 131)
114.5
(101, 126.25)

125.47 ± 16.629
114.12
± 20.44

113 (98, 122.5)
124
(110, 134)

PLT 217 (183, 290) 247 (204.5, 334)
215.5
(174.25, 290)

233.5
(195.5, 318.25)

218.56 ± 56.786 288.9 ± 126.4 254 (221, 337.75)
235
(196, 303)

ALB 37.93 ± 6.17 34.86 ± 5.63 38.51 ± 6.01 35.11 ± 5.18
38.4
(34.28, 41.53)

33.9
(30.4, 37.9)

35.10 ± 5.81 37.37 ± 6.48

GLU 5.33 (4.73, 6.04) 5.06 (4.56, 5.79) 5.33 (4.65, 6.14) 4.985 (4.54, 5.54) 5.21 (4.76, 5.77)
5.12
(4.56, 6.13)

5.09 (4.6, 5.76)
5.41
(4.97, 6.17)

CRP
22.1
(2.81, 76.89)

28.2 (7.45, 70.05)
18.19
(2.98, 66.04)

28.78 (6.30, 54.83)
16.4
(1.35, 61.36)

24.4
(7.4, 77.7)

28.64 (9.5, 71.95)
36.1
(3.44, 83.1)

T-SPOT, (%)

negative 129 (36%) 42 (11.7%) 62 (36.5%) 19 (11.2%) 23 (31.5%) 7 (9.6%) 16 (13.9%) 44 (38.3%)

Positive 34 (9.5%) 153 (42.7%) 12 (7.1%) 77 (45.3%) 9 (12.3%) 34 (46.6%) 42 (36.5%) 13 (11.3%)

Fever, (%)

≥37.3°C 122 (34.1%) 67 (18.7%) 53 (31.2%) 35 (20.6%) 26 (35.6%) 10 (13.7%) 36 (31.3%) 14 (12.2%)

<37.3°C 41 (11.5%) 128 (35.8%) 21 (12.4%) 61 (35.9%) 6 (8.2%) 31 (42.5%) 22 (19.1%) 43 (37.4%)

Cough,(%)

Yes 139 (38.8%) 163 (45.5%) 12 (7.1%) 17 (10%) 26 (35.6%) 35 (47.9%) 9 (7.8%) 6 (5.2%)

No 24 (6.7%) 32 (8.9%) 62 (36.5%) 79 (46.5%) 6 (8.2%) 6 (8.2%) 49 (42.6%) 51 (44.3%)

Expectoration,(%)

Yes 109 (30.4%) 151 (42.2%) 25 (14.7%) 23 (13.5%) 20 (27.4%) 30 (41.1%) 10 (8.7%) 17 (14.8%)

No 54 (15.1%) 44 (12.3%) 49 (28.8%) 73 (42.9%) 12 (16.4%) 11 (15.1%) 48 (41.7%) 40 (34.8%)

Hemoptysis,(%)

No 132 (36.9%) 140 (39.1%) 61 (35.9%) 69 (40.6%) 22 (30.1%) 32 (43.8%) 39 (33.9%) 49 (42.6%)

Yes 31 (8.7%) 55 (15.4%) 13 (7.6%) 27 (15.9%) 10 (13.7%) 9 (12.3%) 19 (16.5%) 8 (7%)
F
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The data of normal distribution were described as mean ± standard deviation (SD) compared by t test. Data that are not normally distributed were expressed as median (range interquartile) and
analyzed using the rank-sum test.
WBC, white blood cell count; NEUT%, neutrophil ratio; LYMPH%, neutrophil to lymphocyte ratio; CRP, C-reactive protein; HGB, Hemoglobin; PLT, platelets; ALB, albumin; GLU, glucose.
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Assessment of the performance of the
established model

The results showed that the predictive nomogram had an

outstanding ability to discriminate between the two diseases, with

an AUC of 0.947 (95%CI, 0.916-0.979) on the training cohort, 0.888

(95%CI, 0.814-0.961) on the testing cohort and 0.850 (95%CI,

0.778-0.922) on the validation cohort. The discriminative power

of the clinical model, radiomics model, and clinical radiomics
Frontiers in Cellular and Infection Microbiology 05
model in the training and test cohorts is shown in Figure 3. The

results showed that the clinical radiomics conjoint model was

superior to the clinical model and the radiomics model. The

calibration curve and precision-recall curve of the three models in

the training cohort, test cohort and validation cohort are shown in

Figure 4. Table 3 provides a summary of the sensitivity, specificity,

accuracy, positive predictive value, negative predictive value, false

negative rate, false discovery rate, and false positives rate for all

three models across the three cohort.
Discussion

At present, the clinical manifestations and CT imaging

manifestations of PTB and CAP are similar. Clinically, it is

difficult to distinguish between these two diseases. Previous

studies have shown that solitary pulmonary tuberculosis and lung

cancer can be effectively distinguished by combining CT imaging

features and clinical variables (Yang et al., 2018; Feng et al., 2020;

Hu et al., 2021). However, there are few studies on using radiomics

to identify PTB from CAP. Our study used the methods to develop a

model to more accurately identify PTB from CAP. Our results show

that radiomic features can accurately differentiate between these

two diseases both in a training and test cohort. Clinical radiomics

nomogram can further improve its prediction efficiency, and DCA

confirmed its clinical application value.

China is a region with high incidence of PTB, and the

clinical manifestations of PTB are very similar to those of CAP.

Moreover, CT findings of PTB are varied (Skoura et al., 2015).

Typical CT findings include central lobular nodules, cavities,
FIGURE 1

The radiomics flow chart of the study.
TABLE 2 Radiomic Features Selection from the CT in the
Training Cohort.

feature Coefficient
p

value

exponential_glrlm_LongRunEmphasis -0.3308 0.0000

exponential_glrlm_ShortRunEmphasis -0.4325 0.0000

exponential_glszm_SizeZoneNonUniformityNormalized -0.3487 0.0343

exponential_glszm_SmallAreaEmphasis 0.4888 0.0000

gradient_glcm_Idmn 0.4440 0.0521

lbp-3D-m2_firstorder_90Percentile 0.4718 0.0010

log-sigma-1-0-mm-3D_glcm_ClusterShade 0.5316 0.0230

logarithm_glrlm_LongRunHighGrayLevelEmphasis -0.3129 0.0000

logarithm_ngtdm_Coarseness 0.3535 0.0719

original_shape_Maximum2DDiameterRow 0.4228 0.1130

wavelet-HLL_firstorder_Mean 0.3940 0.0035

wavelet-LHH_firstorder_Median -0.4954 0.0141
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calcification, and caseous necrosis (Wang et al., 2021). However, an

increasing number of patients with PTB have atypical

manifestations, often presenting only as lung consolidation or

ground glass shadow, which is easily confused with CAP

(Yeh et al., 2014; Zeng et al., 2021). But the treatment is

completely different. Clinically, the failure to identify PTB

patients and CAP patients at an early stage is often one of the

causes of tuberculosis transmission.

To distinguish PTB from CAP, we observed in univariate

analysis of clinical characteristics that male, T-SPOT positivity,

absence of fever, hemoptysis, and increased lymphocyte percentage

were more common in patients with tuberculosis, consistent with

previous findings (Jolobe, 2012; Yoon et al., 2013; Cavallazzi et al.,

2014b; Cavallazzi et al., 2014a). Multivariate logistic analysis

showed that among clinical factors, T-SPOT results and fever

could be used as independent predictors to distinguish these two

diseases. The T-SPOT assay is an interferon (IFN)-g release assay. It
is based on detecting secreted IFN-g in M. tuberculosis-specific T-

cells stimulated by Mycobacterium-specific antigens (Ma et al.,

2019). Previous studies have shown that T-SPOT results have
Frontiers in Cellular and Infection Microbiology 06
some power in the diagnosis of active pulmonary tuberculosis,

but results are also affected by the state of the subjects (Zhu et al.,

2014; Uda et al., 2020). Fever, especially hyperpyrexia, is more

common in patients with CAP. Patients with PTB usually present

with low-grade fever or even most do not present with fever (Chon

et al., 2013), which is consistent with our findings. But on the whole,

the clinical manifestations of the two diseases are similar, but the

drugs used for treatment are different.

Our results revealed 12 radiomic features that differed

significantly between PTB and CAP. These features typically

capture texture variations to quantify the spatial relationships of

voxels in an image (Pantic et al., 2014; Rios Velazquez et al., 2017).

It is difficult for radiologists’ eyes alone to find these changes, so

radiomic features can pick up subtle changes that are not discernible

to the naked eye.

Therefore, we combined T-SPOT results and fever with the

Radscore of 12 radiomics features selected by us to establish a

clinical radiomics conjoint model in the training cohort. At the

same time, the performance of the model is verified in the test

cohort and the validation cohort respectively. The results showed
FIGURE 3

The clinical radiomics conjoint nomogram.
FIGURE 2

The ROC curves of the three models. (A) Three models of ROC curves in the training cohort. (B) Three models of ROC curves in the testing cohort.
(C) Three models of ROC curves in the validation cohort.
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that the clinical radiomics conjoint model is more advantages than

the single radiomics model and clinical model. This indicates that

the application of the clinical radiomics model is an efficient

method that can help clinicians accurately distinguish PTB from

CAP at an early stage.

There are some limitations in our study. First, this study is a

retrospective study, and the error caused by confounding factors

cannot be controlled. Secondly, although the study included three

different medical centers, the overall sample size was small. Finally,

the nomogram works best with linear models. If the model was

complicated and non-linear, a standard nomogram would result in
Frontiers in Cellular and Infection Microbiology 07
error. Therefore, we look forward to conducting a large prospective

study to validate our preliminary results.
Conclusions

In conclusion, this study developed a clinical radiomics conjoint

model that uses radiomics features to identify PTB from CAP.

Compared with the single radiomics model and clinical model, this

model is more accurate, sensitive and specific. This model is of great

value for the early detection, diagnosis and treatment of PTB.
TABLE 3 Performance of the Clinical Model, Radiomics Model, and Clinical Model in the Training Cohort, Test Cohort and validation Cohort.

Different Models AUC SEN SPE ACC F1 PPV NPV FNR FDR FPR

Radiomics Model Train Cohort 0.887 0.885 0.716 0.812 0.842 0.802 0.828 0.115 0.198 0.284

Test Cohort 0.787 0.756 0.563 0.671 0.721 0.689 0.643 0.244 0.311 0.438

Validation
Cohort 0.793 0.776 0.649 0.713 0.732 0.692 0.740 0.224 0.308 0.351

Clinical Model Train Cohort 0.855 0.802 0.838 0.818 0.832 0.865 0.765 0.198 0.135 0.162

Test Cohort 0.827 0.805 0.719 0.767 0.795 0.786 0.742 0.195 0.214 0.281

Validation
Cohort 0.799 0.707 0.772 0.739 0.732 0.759 0.721 0.293 0.241 0.228

Conjoint Model Train Cohort 0.948 0.875 0.892 0.882 0.894 0.913 0.846 0.125 0.087 0.108

Test Cohort 0.888 0.805 0.844 0.822 0.835 0.868 0.771 0.195 0.132 0.156

Validation
Cohort 0.850 0.759 0.825 0.791 0.786 0.815 0.771 0.241 0.185 0.175
fron
AUC, the area under the curve; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, Positive predictive value; NPV, Negative predictive value; FNR, False negative rate; FDR, False discovery
rate; FPR, False positives rate.
FIGURE 4

The decision curve and precision-recall curve analysis for three models. (A) Three models of decision curve in the training cohort. (B) Three models
of decision curve in the testing cohort. (C) Three models of decision curve in the validation cohort. (D) Three models of precision-recall curve in the
training cohort. (E) Three models of precision-recall curve in the testing cohort. (F) Three models of precision-recall curve in the validation cohort.
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