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Objective: To determine the optimum biofilm formation ratio of Gardnerella

vaginalis (G. vaginalis) in a mixed culture with Escherichia coli (E. coli).

Methods: G. vaginalis ATCC14018, E. coli ATCC25922, as well as five strains of G.

vaginalis were selected from the vaginal sources of patients whose biofilm

forming capacity was determined by the Crystal Violet method. The biofilm

forming capacity of E. coli in anaerobic and non-anaerobic environments were

compared using the identical assay. The Crystal Violet method was also used to

determine the biofilm forming capacity of a co-culture of G. vaginalis and E. coli

in different ratios. After Live/Dead staining, biofilm thickness was measured using

confocal laser scanning microscopy, and biofilm morphology was observed by

scanning electron microscopy.

Results: The biofilm forming capacity of E. coli under anaerobic environment was

similar to that in a 5% CO2 environment. The biofilm forming capacity of G.

vaginalis and E. coliwas stronger at 106:105 CFU/mL than at other ratios (P<0.05).

Their thicknesses were greater at 106:105 CFU/mL than at the other ratios, with

the exception of 106:102 CFU/mL (P<0.05), under laser scanning microscopy.

Scanning electron microscopy revealed increased biofilm formation at 106:105

CFU/mL and 106:102 CFU/mL, but no discernible E. coli was observed at 106:102

CFU/mL.

Conclusion:G. vaginalis and E. coli showed the greatest biofilm forming capacity

at a concentration of 106:105 CFU/mL at 48 hours and could be used to simulate

a mixed infection of bacterial vaginosis and aerobic vaginitis in vitro.
KEYWORDS

Gardnerella vaginalis, Escherichia coli, biofilm, mixed vaginitis, bacterial vaginosis,
aerobic vaginitis
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1 Introduction

Mixed vaginitis is a group of vaginal infections caused by the

coexistence of two or more vaginal pathogens, leading to

abnormalities in the vaginal microenvironment and causing

different signs and symptoms (Paavonen and Brunham, 2018;

Xiao et al., 2022). Depending on the vaginal pathogen, they can

be further categorized into more than 10 types. The most common

of which include bacterial vaginosis (BV), trichomoniasis vaginalis

(TV), vulvovaginal candidiasis (VVC), and aerobic vaginitis (AV).

Mixed vaginitis is becoming more common (Maladkar, 2015).

The literature reports varying incidence rates across different

regions. This variation may be attributed to various factors such

as varying levels of pathogen exposure among different races and

regions, atypical clinical symptoms, significant cognitive differences,

and variations in detection methods and levels (Nyirjesy et al.,

2020). High-quality epidemiological data is not yet available, and

the incidence varies considerably domestically and internationally,

ranging from 4.44% to 56.80% (Rivers et al., 2011; Wang et al.,

2016). Depending on the vaginal pathogens, they can be divided

into various types, such as BV + AV, BV + VVC, BV + TV, and

VVC+AV. According to earlier reports, the most common kind of

mixed vaginitis is BV + VVC. Conversely, since the introduction of

the concept of AV by Donders et al. in 2002 (Donders et al., 2002)

and the increased awareness of AV among clinicians in recent years,

the prevalence of BV + AV is currently considered to be the highest

among the types of mixed vaginitis (Salinas et al., 2020; Pacha-

Herrera et al., 2022), ranging from 37.14% to 55.34% (Fan et al.,

2013; Cooperative Group of Infectious Disease, Chinese Society of

Obstetrics and Gynecology, Chinese Medical Association, 2021).

Both BV and AV can result in serious health complications for

women. In addition to the common symptoms of vaginitis, they can

also lead to a higher likelihood of pelvic inflammatory disease and

HPV infection. When present during pregnancy, the risks of

miscarriage, preterm labor, chorioamnionitis, neonatal infections,

and other adverse outcomes increase significantly (Feng et al., 2023;

Kenfack-Zanguim et al., 2023; Qulu et al., 2023).

The mechanism of mixed vaginitis is unclear, but mixed

infections with multiple pathogens often result in the formation

of a mixed biofilm that can interact in a variety of ways, either

synergistic or antagonistic interactions. This increases the

pathogens’ resistance and capacity to elude the host’s immune

response (Allison et al., 2016; Castro et al., 2016; Koo et al., 2018;

Lohse et al., 2018). Machado et al (MaChado and Cerca, 2015;

Salinas et al., 2018) pointed out that the biofilm formation by

Gardnerella vaginalis (G. vaginalis) and other anaerobic bacterial

plays a key role in the pathogenesis of BV. Therefore, the interaction

and influence between multiple pathogens in mixed vaginitis should

be clarified during treatment to further adjust the usage and dosage

of applicable medications to improve the curative effect. However,

studies on mixed infections, especially those involving interspecies

interactions between multiple pathogens and the impact of biofilms

on diseases, are still at early stages (Schlecht et al., 2015). Therefore,
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there is an urgent need to study the biofilm state and the interaction

between different pathogens in mixed infections and to construct an

infection model of mixed vaginitis. This will provide ideas for

improving the efficacy of the treatment of mixed vaginitis and

reducing the risk of recurrence.

While a number of studies have examined the relationship

between G. vaginalis and Candida in BV + VVC in mixed vaginitis

(Fox et al., 2014; Allison et al., 2016); relatively few have examined

BV + AV (Janulaitiene et al., 2017; Morrill et al., 2020). G. vaginalis

is predominant in BV (Salinas et al., 2018), and Escherichia coli (E.

coli) is also predominant in patients with AV (Wang et al., 2020;

Prasad et al., 2021). Therefore, this study aimed to establish a stable

in vitro situation that is most suitable for the growth of G. vaginalis

and E. coli, to simulate the mixed infection status of BV and AV.

Additionally, it provided a basic in vitro model for the subsequent

study of the related mechanism and treatment of BV + AV

mixed infection.
2 Materials and methods

2.1 Collection of specimens

The strains of Gardnerella and E. coli in our study included G.

vaginalis ATCC14018 (Vaneechoutte et al., 2019), E. coli

ATCC25922, and other Gardnerella species isolated from patients

with BV. Clinical symptoms and the Nugent score were used to

diagnose BV in patients who did not have any other urogenital

infections. Antibiotics had not been given to the patients during the

preceding week. This study was approved by the Ethics Committee

of Beijing Obstetrics and Gynecology Hospital, Capital Medical

University (2022-KY-064-01).
2.2 Biofilm formation by the crystal
violet method

G. vaginalis and E. coli were cultured using supplementing with

brain-heart infusion (sBHI), which comprised brain-heart infusion

broth (AOBOX, Beijing, China), 0.3% starch, and 0.3% glucose (He

et al., 2021). The overnight growth of G. vaginalis and E. coli were

adjusted to 0.5 McFarland (1.5 × 108 CFU/mL), and diluted to 1

×106 CFU/mL, and then added to a 96-well plate (Falcon, Corning

Inc., NY, USA). Then it was incubated at 37°C in an anaerobic

environment (AnaeroPouch-Anaero, C-1, Mitsubishi Gas Chemical

CO., INC., Tokyo, Japan). After incubation, the bacterial solution

was discarded and the wells washed by 1× phosphate buffer saline

(PBS) (P1020, Solarbio, Beijing, China). After staining the samples

with 0.2 percent crystal violet (C8470, Solarbio, Beijing, China),

they were rinsed with 1× PBS and subsequently decolored with 95%

alcohol. The OD value of the eluate was detected using an enzyme

marker at 580 nm. The OD cutoff value (ODc) was determined by

taking the mean value of the negative controls that contained only
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sBHI plus three times the standard deviation. The biofilm forming

capacity was then calculated by dividing the microtiter wells’ OD

value by ODc (Shiroda and Manning, 2020; Dantas-Medeiros et al.,

2021). All analyses were repeated three times on different dates.

2.2.1 Comparison of the biofilm forming
capacity of E. coli in anaerobic and
non-anaerobic environments

G. vaginalis is an anaerobic bacterium that requires stringent

anaerobic environments. On the other hand, E. coli is a facultative

anaerobic bacterium that can be cultured under favorable conditions.

It is necessary to conduct preliminary experiments to confirm

whether the biofilm forming capacity of E. coli differs in anaerobic

and non-anaerobic environments. The biofilm forming capacity of E.

coli was determined by the Crystal Violet (CV) method after

incubation at 37°C, 5% CO2 and anaerobic environment for 48 hours.

2.2.2 Comparison of the biofilm forming capacity
of G. vaginalis alone, E. coli alone, and both
when co-cultured for 48 hours.

G. vaginalis ATCC14018 and E. coli ATCC25922 were mixed

and cultured in sBHI to formulate bacterial volume ratios of

100:106, 101:106, 102:106, 103:106, 104:106, 105:106, 106:106, 106:105,

106:104, 106:103, 106:102, 106:101 and 106:100 CFU/mL, which were

added to the 96-well plates and co-cultured for 48 hours at 37°C in

an anaerobic environment. Thereafter, using the CV method, the

biofilm forming capacity was ascertained.
2.3 Observation and measurement of the
thickness of biofilm formation by confocal
laser scanning microscopy

With some modifications, the Filmtracer Live/Dead biofilm

viability kit (L10316, Thermo Fisher Scientific, United States) was

used to stain the formed biofilms in accordance with the

manufacturer’s instructions (He et al., 2021). After that, Confocal

Laser Scanning Microscopy (CLSM) (NIKON ECLIPSE TI, Nikon,

Tokyo, Japan) and imaging system (NIKON C2, Nikon, Tokyo,

Japan) were used to measure the thickness of biofilm formation. In

accordance to method 2.2.2, the samples were incubated

anaerobically at 37°C for 48 hours with different bacterial volume

ratios. After incubation, the samples were washed three times with

sBHI. And then incubated with fluorescent stain, which was

prepared by taking 3mL of propidium iodide stain and 3mL of

SYTO®9 stain from the Filmtracer Live/Dead biofilm viability kit

and adding them to 1mL of sBHI by avoiding light. The samples

were then put in a 20×20 mm dish and 1 mL of sBHI was added to

cover the surface by 2 mm (He et al., 2021). Claims were made using

CLSM, and the excitation wavelengths for green and red light were

488 nm and 561 nm, respectively. In order to obtain a series of

images of each layer and combine them, tomography was

performed at intervals of 1 mm in the z-axis direction. For each

sample, at least four fields of view were chosen in order to detect the

thickness of the biofilm (Beaudoin et al., 2017; Ma et al., 2022).
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2.4 Observation of biofilm formation by
scanning electron microscopy

Similar to experimental method 2.3, different proportions of G.

vaginalis and E. coli were co-cultured on specialized cell climbing

glass (YA0350, Solarbio, Beijing, China) in 24-well plates at 37°C in

an anaerobic environment for 48 hours. Biofilm formation was

observed by scanning electron microscopy (SEM) (JSM-7900F,

JEOL, Japan) at 5 kV after fixation with 1.5% glutaraldehyde

(Bulacio et al., 2015; Niu et al., 2017).
2.5 Statistical analysis

Data was analyzed using SPSS version 26.0 (SPSS Statistics for

Windows Version 26.0, IBM Corp, Armonk, NY, USA) by the

unpaired t-test or non-parametric Wilcoxon signed-rank test. A P

value < 0.05 was considered statistical significance.
3 Results

3.1 Collection of specimens

The Gardnerella strains included G. vaginalis ATCC14018 and

five Gardnerella species strains (G. vaginalis 1-G. vaginalis 5)

isolated from patients with BV. All Gardnerella strains were

identified as G. vaginalis by 16S rRNA sequencing. E. coli

ATCC25922 was identified as E. coli.
3.2 Biofilm formation

3.2.1 Biofilm formation of G. vaginalis and E. coli
by the CV method

As shown in Table 1, all strains of G. vaginalis exhibited the

strongest biofilm forming capacity at 48 hours, which was stronger

than the biofilm forming capacity at 24 hours and 72 hours, with a

statistically significant difference (P<0.05). Additionally, G vaginalis

ATCC14018 exhibited a stronger biofilm forming capacity at 48

hours compared to other strains, also with a statistically significant

difference (P<0.05). Consequently, G. vaginalis ATCC14018 was

chosen for further co-culture. The biofilm forming capacity of E.

coli at 48 hours was stronger than that at 24 hours, and this

difference was statistically significant (P<0.05), whereas the

difference was not statistically significant (P>0.05) in contrast to

the value after 72 hours. However, 48 hours was chosen as the co-

culture observation period because the biofilm forming capacity was

stronger at 48 hours than it was at 72 hours.

3.2.2 Comparison of the biofilm forming capacity
of E. coli in anaerobic and non-
anaerobic environments

There was no statistically significant difference in the biofilm

forming capacity of E. coli between an anaerobic environment and a

5% CO2 environment (P = 0.230, t = -1.277), which is commonly used
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for culturing E. coli. Therefore, the subsequent co-cultivation assay with

G. vaginalis could be performed in an anaerobic environment.

3.2.3 Comparison of the biofilm forming capacity
of G. vaginalis alone, E. coli alone, and both co-
cultured for 48 hours

As demonstrated in Figure 1, the biofilm forming capacity of G.

vaginalis and E. coli was strong at bacterial volume ratios of 106:105

CFU/mL and 106:102 CFU/mL, with statistically significant

differences (P<0.01) when compared to all other ratios and with

G. vaginalis and E. coli grown in isolation. The bacterial volume

ratio of 106:105 CFU/mL resulted in a stronger biofilm forming
Frontiers in Cellular and Infection Microbiology 04
capacity compared to 106:102 CFU/mL, and this difference was

statistically significant (P<0.05). Therefore, a concentration of

106:105 CFU/mL was chosen for subsequent experiments.
3.3 Observation and measurement of the
biofilm thickness by CLSM

According to the date in Table 2, the thickest biofilm was

formed when the volume ratio of G. vaginalis to E. coli was 106:105

CFU/mL. This ratio resulted in a biofilm thickness as measured by

CLSM that was significantly greater than all other ratios, except for

106:102 CFU/mL (P<0.05).

Figure 2 shows the performance and 3D images under CLSM

after Live/Dead staining and it can be seen that there are more

bacteria at the volume ratio of G. vaginalis to E. coli of 106:105 CFU/

mL and 106:102 CFU/mL than the other ratio. We could also

determine that the biofilm formed at 106:105 CFU/mL and 106:102

CFU/mL was the thickest by looking at the 3D image’s scale lines.
3.4 Observation of biofilm formation
by SEM

The number of bacteria and biofilm formation were higher

when the volume ratio of G. vaginalis to E. coli was 106:105 CFU/mL

and 106:102 CFU/mL (Figures 3B, C) than only G. vaginalis was

cultured (Figure 3D). As shown in Figure 3A, despite both being

rod-shaped, E. coli (yellow arrow) is longer than G. vaginalis (red

arrow). Almost no E. coli was seen as demonstrated in Figure 3C.
4 Discussion

The incidence of mixed vaginitis has been increasing annually

in recent years. It also makes diagnosing and treating the infection

more difficult due to the combination of several pathogenic bacterial
FIGURE 1

Biofilm forming capacity in co-culture of G. vaginalis and E. coli at
different ratios. aThe biofilm forming capacity of G. vaginalis and E.
coli at bacterial volume ratios of 106:105 CFU/mL is stronger than
other ratios (P<0.05). bThe biofilm forming capacity of G. vaginalis
and E. coli at bacterial volume ratios of 106:102 CFU/mL is stronger
than other ratios except for 106:105 CFU/mL(P<0.05).
TABLE 2 Biofilm thickness in co-culture of G. vaginalis and E. coli at
different ratios.

Strains Biofilm thickness (mm)

G. vaginalis: E. coli=106:100 62.98 ± 15.568a

G. vaginalis: E. coli=106:101 65.63 ± 16.378b

G. vaginalis: E. coli=106:102 82.62 ± 14.565c

G. vaginalis: E. coli=106:103 54.64 ± 4.894d

G. vaginalis: E. coli=106:104 64.29 ± 17.310e

G. vaginalis: E. coli=106:105 94.22 ± 12.758f

G. vaginalis: E. coli=106:106 43.71 ± 5.223g

G. vaginalis ATCC14018 71.22 ± 6.827h

E. coli ATCC25922 60.75 ± 9.988i
Paf = 0.022; Pbf = 0.022; Pcf = 0.277; Pdf = 0.000; Pef = 0.032; Pgf = 0.000; Phf = 0.010; Pif = 0.006;
(example: Paf = 0.022 represents a statistically significant difference between a and f).
TABLE 1 Determination of biofilm forming capacity of G. vaginalis and
E. coli.

Strains

Biofilm forming
capacity at 24
hours (Mean

± SD)

Biofilm forming
capacity at 48
hours (Mean

± SD)

Biofilm forming
capacity at 72
hours (Mean

± SD)

G.
vaginalis 1

1.15 ± 0.17a 3.79 ± 1.24b 2.04 ± 0.59c

G.
vaginalis 2

1.01 ± 0.23d 4.04 ± 0.84e 2.27 ± 0.67f

G.
vaginalis 3

0.92 ± 0.12g 3.43 ± 0.83h 1.97 ± 0.47i

G.
vaginalis 4

1.10 ± 0.20j 4.07 ± 0.73k 1.96 ± 0.36l

G.
vaginalis 5

1.04 ± 0.19m 3.63 ± 0.39n 1.79 ± 0.44°

G.
vaginalis

ATCC14018
1.17 ± 0.14p 5.72 ± 0.83q 2.40 ± 0.15r

E.
coli

ATCC25922
1.29 ± 0.13s 1.73 ± 0.17t 1.67 ± 0.45u
Pab = 0.003; Pbc = 0.011; Pde = 0.000; Pef = 0.002; Pgh = 0.000; Phi = 0.004; Pjk = 0.000;
Pkl = 0.000; Pmn = 0.000; Pno = 0.000; Ppq = 0.000; Pqr = 0.000; Pst = 0.001; Ptu = 0.743.
(example: Pab = 0.003 represents a statistically significant difference between a and b).
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infections, unusual symptoms, and potential interactions between

various vaginal pathogens. Imbalances in vaginal flora and biofilm

formation have also been linked to an increased risk of infection

with human immunodeficiency virus, herpes simplex type 2 and

other sexually transmitted diseases like Chlamydia (MaChado et al.,

2022). And it also increases the chances of recurrent infections. Our

previous study involving 23,181 patients demonstrated that the

most common mixed infection pattern was BV + AV in mixed

vaginitis (Zong et al., 2023), which is consistent with previous

findings (Fan et al., 2013). However, there are a few studies on
Frontiers in Cellular and Infection Microbiology 05
mixed infection modes and the interaction mechanisms of multiple

strains of mixed vaginitis (Benyas and Sobel, 2022; Xiao et al., 2022).

According to recent research, Gardnerella may cause BV

through creating biofilms, promoting the attachment of other

BV-associated pathogens, promoting the formation of biofilms in

a wide range of microorganisms (Hardy et al., 2017; Jung et al.,

2017), and generating pro-inflammatory cytokines and other

virulence factors (Jang et al., 2017; Cerca, 2019; Shipitsyna et al.,

2019). The interaction between a variety of microorganisms,

including Gardnerella, is the basis of the pathogenesis of BV. The
FIGURE 2

Biofilm formation of G. vaginalis and E. coli via CLSM. (A1) CLSM image at 106:100 CFU/mL; (A2) 3D image at 106:100 CFU/mL; (B1) CLSM image at
106:101 CFU/mL; (B2) 3D image at 106:101 CFU/mL; (C1) CLSM image at 106:102 CFU/mL; (C2) 3D image at 106:102 CFU/mL; (D1) CLSM image
at 106:103 CFU/mL; (D2) 3D image at 106:103 CFU/mL; (E1) CLSM image at 106:104 CFU/mL; (E2) 3D image at 106:104 CFU/mL; (F1) CLSM image at
106:105 CFU/mL; (F2) 3D image at 106:105 CFU/mL; (G1) CLSM image at 106:106 CFU/mL; (G2) 3D image at 106:100 CFU/mL; (H1) CLSM image
of cultured G. vaginalis only; (H2) 3D image of cultured G. vaginalis only; (I1) CLSM image of cultured E. coli only; (I2) 3D image of cultured
G. vaginalis only.
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formation of biofilm is a key pathogenesis and drug resistance

mechanism (Africa et al., 2014; Muzny et al., 2019; Castro et al.,

2020). Anti-anaerobic medication penetration can be slowed down

and bacterial tolerance to the environment can be increased by the

physical barrier of a biofilm (Onderdonk et al., 2016). Meanwhile,

the expression of the bacterial virulence factor cytolysin reduces the

immune response and enhances chronic colonization in women

(Castro et al . , 2017). It can also reverse the vaginal

microenvironment that is conducive to biofilm formation.

Antimicrobial resistance has thus grown over the previous few

decades and is still growing. There are some treatment options that

are currently in use that are becoming less effective (Muñoz-

Barreno et al., 2021). The interplay of various pathogen species,

the role of biofilms, and whether or not it makes treatment more

challenging are urgent problems that need to be solved for mixed

vaginitis (Lohse et al., 2018).

AV is a vaginal inflammation that results in congestion and

edema of the vaginal mucosa as well as the production of purulent

secretions. It is caused by an increase in E. coli, Streptococcus, and

other opportunistic pathogens with a decrease in or absence of

Lactobacillus . The three main pathogenic bacteria are

Staphylococcus aureus, Streptococcus, and E. coli (Tansarli et al.,
Frontiers in Cellular and Infection Microbiology 06
2013; Rumyantseva et al., 2016; Donders et al., 2017). The

development of biofilms contributes significantly to E. coli’s

resistance to antibiotic invasion (Sharma et al., 2016).

Furthermore, it has also been demonstrated that in urinary tract

infection, the presence of Gardnerella induces the proliferation of E.

coli, which plays an important role in urinary tract infection

(Gilbert et al., 2017). Therefore, in this study, G. vaginalis as well

as E. coli were co-cultured to observe biofilm formation and the

interactions between various pathogens in order to create a model

for further drug trials.

Biofilm formation is a continuous process of adhesion,

coaggregation, maturation and dispersion (Jung et al., 2017). In

this study, we measured the biofilm forming capacity of a reference

strain of G. vaginalis, five G. vaginalis strains from BV patients, and

an E. coli reference strain at various points in time. G. vaginalis and

E. coli showed the greatest biofilm forming capacity at 48 hours.

This indicated that the biofilm was maturing at 48 hours. These

results are comparable to those of Castro et al (Castro et al., 2021).

Qin et al. also discovered a similar outcome, namely that eight

clinical strains of Gardnerella do not spontaneously dissolve during

continuous cultivation and instead reach a steady biofilm formation

in vitro at 48 hours (Qin et al., 2023). Using the CV method, we also
FIGURE 3

Biofilm formation of G. vaginalis and E. coli by SEM. (A) SEM image at a bacterial volume ratio of 106:106 CFU/mL; (B) SEM image at a bacterial
volume ratio of 106:105 CFU/mL; (C) SEM image at a bacterial volume ratio of 106:102 CFU/mL; (D) SEM image cultured G. vaginalis only. Red arrow:
G. vaginalis; yellow arrow: E. coli.
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observed that the biofilm forming capacity of G. vaginalis was

greater after 48 hours than it after 24 hours. Meanwhile, the biofilm

forming capacity of the reference strain of G. vaginalis was greater

than that of the clinical strain as measured in this study. Because the

most severe scenario of mixed vaginitis infection was simulated in

this study using the combination with the strongest biofilm forming

capacity in the co-culture, reference strains of G. vaginalis and E.

coli were chosen and their co-cultivation was observed for 48 hours

to see how their biofilms formed.

G. vaginalis is an anaerobic bacterium that is cultured under

harsh conditions (Li et al., 2020), while E. coli is a facultative

anaerobic bacterium, who is typically cultured in 5% CO2

environment (Blancarte-Lagunas et al., 2020). There are not any

conclusive studies on whether its biofilm forming capacity is different

in an anaerobic environment and a 5% CO2 environment. For the

first time, we compared the biofilm forming capacity of E. coli in the

two environments in this study, and found no statistically significant

differences between the two environments. As a result, G. vaginalis

and E. coli could be co-cultured in an anaerobic environment.

The most popular and broadly applicable technique for

calculating the biofilm forming capacity is the CV method

(Magana et al., 2018). However, some studies suggest that the CV

method has a risk of unstable measurement, that the biofilm is easily

removed by the rinsing process. Mixed infections with multiple

pathogens make biofilm formation more complex (Røder et al.,

2016; Magana et al., 2018). The ability to form biofilms cannot be

determined solely by the CVmethod. Castro et al (Castro et al., 2022)

co-cultured three BV-related anaerobic bacteria, G. vaginalis,

Atopobacterium, and Prevotella, and compared biofilm formation

using the CV method and fluorescence staining. Every method and

culture time produced different results. Therefore, co-cultured

biofilms should not be subjected to the CV method alone as an

accurate quantitative method. In addition to the CV method, biofilm

formation in G vaginalis and E coli co-culture biofilm model was

evaluated in this study in a number of ways using biofilm thickness

measurement under CLSM following Live/Dead staining, pathogenic

bacteria observation, and biofilm morphology analysis under SEM.

The benefits of CLSM after Live/Dead staining include clear imaging,

the capacity to asses bacterial viability (Freitas et al., 2014; Beaudoin

et al., 2017), and the capacity to measure biofilm thickness in the Z-

axis direction (He et al., 2021), all of which help to further minimize

errors brought on by the use of the CV method. In our study, the

volume ratio of 106:105 CFU/mL forG. vaginalis and E. coli produced

the thickest biofilm and differed statistically from the other

concentrations, with the exception of 106:102 CFU/mL. Biofilm

formation was greater under SEM when the ratio of G. vaginalis to

E. coli was 106:105 CFU/mL and 106:102 CFU/mL. This was the same

as the biofilm forming capacity measured by the CV method and

biofilm thickness measured by CLSM. This study verified that, at a

ratio of 106:105 CFU/mL, the biofilm forming capacity of G. vaginalis

and E. coli was superior to that of other ratios, G. vaginalis by itself,

and E. coli alone, employing a variety of techniques like the CV

method, measurement of biofilm thickness by CLSM after Live/Dead

staining, and SEM observation. Thus, future research on mixed BV

and AV infections should take this ratio as a model.
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However, as the amount of E. coli decreased, no obvious E. coli was

observed under SEM. Actually, E coli was essentially absent when the

ratio ofG vaginalis to E coliwas 106:103 CFU/mL by SEM. On the other

hand, the biofilm forming capacity peaked at a bacterial biomass ratio

of 106:102 CFU/mL and 106:105 CFU/mL. Research has shown that

92% of Atopobium lost viability when incubated alone for 48 hours

without G vaginalis, but that viability increased when Atopobium was

co-cultured with G vaginalis or after being treated with sterile

supernatants of G vaginalis (Castro et al., 2020). According to an in

vitro study, Staphylococcus aureus could infiltrate deep host tissues and

contribute to the pathogenic process through the hyphae that carry

adherent Candida (Schlecht et al., 2015). Meanwhile, research has

demonstrated that the biofilm that Candida forms could shield mixed

anaerobic bacteria, enabling them to grow in an oxygen environment

(Fox et al., 2014). And mutual promotion of proliferation between E.

coli and Streptococcus had been demonstrated in a cross-sectional study

(Cools et al., 2016). Furthermore, a strong inhibitory effect on the

biofilm of G. vaginalis has been shown for the supernatant of a co-

culture of Enterococcus faecalis and Lactobacillus (Zhang et al., 2023).

More research is needed to determine whether E. coli acts similarly,

whether its products can encourage the formation of Gardnerella

biofilms, and the precise mechanism of action.

In conclusion, the ideal ratio of biofilm formation in mixed

infections of G. vaginalis and E. coli was identified. This information

can be applied to future research on mixed infections of BV and AV

and their drug susceptibility. However, this study was limited to in

vitro experiments with only two species, G. vaginalis and E. coli.

Moreover, as BV and AV are linked to numerous other related

bacteria, more research is required to create a mixed infection model

of BV and AV in the future. Additionally, more research in the

intricate vaginal microenvironment is required to figure out the best

way to give medications and increase mixed vaginitis’s effectiveness.
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