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Objective: To explore the underlying mechanisms the airway microbiome

contributes to Acute Exacerbation of Chronic Obstructive Pulmonary

Disease(AECOPD).

Methods: We enrolled 31 AECOPD patients and 26 stable COPD patients, their

sputum samples were collected for metagenomic and RNA sequencing, and then

subjected to bioinformatic analyses. The expression of host genes was validated

by Quantitative Real-time PCR(qPCR) using the same batch of specimens.

Results: Our results indicated a higher expression of Rothia mucilaginosa

(p=0.015) in the AECOPD group and Haemophilus influenzae(p=0.005) in the

COPD group. The Different expressed genes(DEGs) detected were significantly

enriched in "type I interferon signaling pathway"(p<0.001, q=0.001) in gene

function annotation, and "Cytosolic DNA-sensing pathway"(p=0.002, q=0.024),

"Toll-like receptor signaling pathway"(p=0.006, q=0.045), and "TNF signaling

pathway"(p=0.006, q=0.045) in KEGG enrichment analysis. qPCR amplification

experiment verified that the expression ofOASL and IL6 increased significantly in

the AECOPD group.

Conclusion: Pulmonary bacteria dysbiosis may regulate the pathogenesis of

AECOPD through innate immune system pathways like type I interferon signaling

pathway and Toll-like receptor signaling pathway.
KEYWORDS

airwaymicrobiome, chronic obstructive pulmonary disease, innate immune system, IFN,
TLR, Rothia mucilaginosa, Haemophilus influenzae
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1 Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a

heterogeneous disease underpinned by persistent airflow

restriction and reacted airway inflammation in response to

harmful exposure, resulting in a progressive decline in lung

function and respiratory symptoms (Christenson et al., 2022).

While inflammation, alpha1-antitrypsin deficiency, and oxidative

stress response have long been considered major pathogenic factors

of COPD (Barnes, 2020), novel research elucidated that airway

microbiome dysbiosis is a critical factor as well (Zuo et al., 2015;

Wang et al., 2016).

The lower airway microbiome structure bears difference to

stable-stage COPD when COPD is aggravated, usually manifested

as a decline in microbial abundance and diversity. Sputum analysis

of AECOPD patients usually described the elevated abundance of

Proteobacteria, Haemophilus, and Staphylococcus are presented as

aggravation factor, Veillonella was described as protective factor

(Mayhew et al., 2018; Wang et al., 2018; Leitao et al., 2019; Dicker

et al., 2021; Su et al., 2022), but the relative abundance of Firmicutes

in the acute stage contradicted in some studies (Wang et al., 2010;

Huang and Boushey, 2015). No comprehensive conclusion relating

the pulmonary microbiome in AECOPD has been reached so far.

Besides, microbiome-host interaction might play a crucial role

in the pathogenesis of AECOPD (Huang et al., 2014). The

expression of host genes concerning inflammation pathways and

immune response, especially macrophage, were increased in

AECOPD patients (Yang et al., 2022). In vivo and in vitro studies

conducted by Yan Z et al., indole-3-acetic acid derived by airway

microbiome, especially lactobacilli, mitigates neutrophilic

inflammation, emphysema, apoptosis, and lung function decline

in COPD patients (Yan et al., 2022). Furthermore, a multi-omic

meta-analysis deduced that airway microbiota promoted the

biosynthesis of palmitate, homocysteine, and urate in COPD.

These compounds enhanced the airway inflammation through the

activation of pro-inflammatory agents (Wang et al., 2020).

While the aforementioned research presented notable findings,

their sample size is limited. Also, there exists a deficiency in the

identification of host genes when COPD patients experienced

exacerbation. A larger qualified patients were recruited and

categorized into the Acute Exacerbation of COPD group

(AECOPD group) and stable-stage COPD group (COPD group)

in our protocol. Their sputum specimens were collected for

metagenomics Next Generation Sequencing (mNGS) and RNA

sequencing, to explore the potential mechanisms by which airway

microbiome contributes to AECOPD and prepare for further

research and intervention.
2 Materials and methods

2.1 Materials

This study recruited a total of 57 COPD patients in Huai'an First

People's Hospital (inpatient or outpatient), of which 31 patients

underwent exacerbation and 26 patients remained stable in the past
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6 months. All participants provided consent and underwent

thorough gargling procedures thrice using 10ml of 0.9% normal

saline each time, before collecting sputum samples following a full

rinse of their oral cavities and posterior pharynx wall. These samples

were sent to the laboratory for storage in the refrigerator at -80°C for

further sequencing within 2 hours. The inclusion criteria were listed:

(1) all recruiters required a post-bronchodilator FEV1/FVC ratio that

is less than 0.70, an exposure history of risk factors and/or clinical

symptoms (Labaki and Rosenberg, 2020); (2) stable COPD patients

means that the symptoms of cough, phlegm or wheezing were stable

in 6 months; (3) no systemic steroids or antibiotics use in the past 2

months (Faner et al., 2017); (4) a smoking history or current smokers.

Patients complicated with other respiratory tract infections,

systematic inflammatory diseases, immunodeficiency or malignant

tumor were excluded. All the informed consent forms were signed

before the specimens were collected. The study was compatible with

the Declaration of Helsinki and was approved by the ethics

committee of our hospital (Ethics Number: YX-2021–098-01).
2.2 Metagenomic sequencing

Samples of sputum collected were liquefied by 0.1% dithiothreitol

(DTT) for 20 minutes at 56°C before extraction. The Qubit (Thermo

Fisher Scientific) was used for the quantity assessment of samples and

NanoDrop (Thermo Fisher Scientific) for the quality assessment. The

KAPA Hyper Prep kit (KAPA Biosystems) was used for the

preparation of DNA libraries. The constructed DNA library was

sequenced 150bp on Illumina NovaSeq 6000 (Illumina). After

splitting raw sequencing data with bcl2fastq2, Trimmomatic was

used to remove adapter contamination, low low-quality reads, and

duplicated and shot (length<36 bp) reads for high-quality sequencing

data. By using bowtie2, reads that could be mapped to human

reference genome (hs37d5) were subtracted, reads that couldn't be

mapped were retained for comparison with microorganism genome

database (downloaded from GenBank release 238, ftp://

ftp.ncbi.nlm.nih.gov/genomes/genbank/), the matching reads were

obtained for further microbial identification and abundance

estimating, using Kraken2 version 2.1.0 and Bracken version 2.5.0

respectively. Here we present criteria that were considered positive

results of mNGS: 1. the read number≥1 at the species level for

Legionella, Mycobacterium, and Legionella pneumophila; 2. non-

overlapping read number≥3 at the species level for other bacteria

(except for the above three in criterion 1), virus, fungi, and parasite.

We generally didn't consider the pathogen in the Negative 'no-

template' control (NTC) positive, unless the reads detected were

more than 10 times that in the NTC.
2.3 RNA sequencing

We used Trizol regent to extract RNA in the sputum samples,

RNase H to eliminate ribosomal RNA, and KAPA Stranded RNA-

seq Kit with RiboErase (HMR) (KAPA Biosystems) to prepare

library that was sequenced on Illumina NovaSeq NGS platforms

(Illumina) afterward. We used bcl2fastq v2.19.0.316 (Illumina, Inc.)
frontiersin.org

ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/
ftp://ftp.ncbi.nlm.nih.gov/genomes/genbank/
https://doi.org/10.3389/fcimb.2024.1386201
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1386201
to perform base calling for the generation of sequence reads in

FASTQ format (Illumina 1.8+ encoding). We used Trimmomatic

(version 0.36) to perform Quality control (QC), STAR (version

2.5.3a) to map transcriptome, and RSEM (version 1.2.31) to carry

out isoform and gene-level quantification. We used R packages

DESeq2 (version 1.22.2) to conduct differential expression analysis

and select Differentially Expressed Genes (DEGs) following the

principles below: Log2 Fold Change > 2 and P value < 0.05. We used

in-house R scripts to plot associated volcano plots and heatmaps,

and KOBAS (version 3.0) to conduct GO and KEGG

enrichment analysis.
2.4 Quantitative real-time PCR
amplification experiment

TRNzol total RNA extraction reagent was used for sample RNA

extraction; NanoDrop® ND-2000 was used to determine RNA

concentration and purity; denatured agarose gel electrophoresis

was used to detect RNA integrity; reverse transcription was used to

synthesize cDNA; Real-Time PCR was used to detect 3 multiple

pores in each sample.
2.5 Statistics analysis

Quantitative data that displayed normal distribution and

homogeneity of variance was expressed as (x ± S). To compare

averages between the two groups, we used a two-independent

sample t-test. When the data did not display normal distribution,

we used the Mann–Whitney U-test, and data was expressed as

Median(M). Qualitative data were expressed as percentages. To

compare the data between groups, we used the Pearson chi-square

(c2) test, and when necessary, Fisher's exact probability test (SPSS

25.0, IBM Inc). Statistical analysis was performed by R software

(v4.0.1). Differential relative abundance of taxonomic groups at the

genus level among groups was tested by using Kruskal-Wallis rank

sum test (R package "kruskal.test"). The genera with mean relative

abundances greater than 1% and penetrance greater than 40%

among all samples were compared. Spearman's correlations

between the clinical features and the relative abundances of

genera, as well as the DEGs and the relative abundance of species

were calculated by the R package "cor.test", and FDR correction was

adopted to adjust all p values. The comparison of host genes used

Student's t test or non-parametric test(Graphpad Prism 9).
3 Results

3.1 Demographic data

This study recruited 31 AECOPD patients and 26 stable COPD

patients, whose sputum samples were collected and analyzed to seek

discrepancies in their microbial composition. The demographic

data was summarized in Table 1 (original data can be found in

Supplementary Material 1), with patients' age ranging from 42 to 87
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years. Male smokers account for a higher proportion of all recruits.

No statistical difference of age, sex, Body Mass Index(BMI),

Nutritional Risk Screening(NRS) 2002, FEV1/FVC, Inhaled

Corticosteroids(ICS) rate, and Exacerbation Frequency Over the

Past Year was observed. Smoking Index(p=0.040), COPD

Assessment Test(CAT) score(p<0.001) and mMRC questionnaire

(p<0.001) increased in the AECOPD group, and FEV1(%pred)

(p=0.030) decreased in the AECOPD group. GOLD classification

(p=0.042) and GOLD Groups(p=0.029) differed as well.
3.2 Overall microbiota
compositional profiles

The microbiota compositional profiles were exhibited in

Figure 1. In the genus level, Fusobacterium(accounts for 0.38% in
TABLE 1 General demographic data between AECOPD group and
COPD group.

COPD
(N=26)

AECOPD
(N=31)

p-value

Age, mean ± SD 68.54 ± 8.00 72.00 ± 8.48 0.121

Sex, Male, n (%) 23(88.5) 28(90.3) 1

Smoking Index, M 500 800 0.040

BMI, M 23.1 22 0.059

NRS2002, M 1.5 2 0.057

CAT Score, M 12 23 <0.001

mMRC Questionnaire, M 2 3 <0.001

FEV1/FVC (%) 51.38
± 11.94

46.58 ± 10.91 0.119

FEV1(% pred), M 43.5 33 0.030

GOLD, n (%) 0.042

1 1(3.8) 1(3.2)

2 8(30.8) 3(9.7)

3 14(53.8) 14(45.2)

4 3(11.5) 13(41.9)

Groups, n (%) 0.029

A 9(34.6) 3(9.7)

B 9(34.6) 9(29.0)

E 8(30.8) 19(61.3)

Inhaled Corticosteroid,
Y (%)

15(57.7) 24(77.4) 0.111

Exacerbation Frequency
Over the Past Year

0.220

≥2, n (%) 8(30.8) 19(61.3)

0–1, n (%) 18(69.2) 12(38.7)
The bold values mean statistical significance.
BMI, Body Mass Index; NRS, Nutritional Risk Screening 2002; ICS, Inhaled Corticosteroid;
CAT, COPD Assessment Test score.
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the AECOPD group vs 1.78% in the COPD group, p<0.001) and

Haemophilus(5.31% vs 10.11%, p=0.007) increased in the AECOPD

group, Moraxella(1.20% vs 0.20%, p=0.039), Rothia(24.07% vs

14.43%, p=0.032) and Granulicatella(1.43% vs 0.40%, p=0.018)

deceased in the AECOPD group. In the species level, Rothia

mucilaginosa (21.07% in the AECOPD group vs 11.41% in the

COPD group, p=0.015) increased and Haemophilus influenzae

(2.41% vs 5.76%, p=0.015) decreased when compared the

AECOPD group to the COPD group.
3.3 Differential expression analysis

After RNA sequencing and analysis, 2229 DEGs were selected,

2014 of them were upregulated in AECOPD and 215 of them were

downregulated in AECOPD. After p-value adjustment, a total of 28

upregulated DEGs were identified in the AECOPD group (Table 2).

The corresponding volcano plots and heatmaps are displayed in

Figure 2. Among them, Interferon Alpha Inducible Protein 6 (IFI6)

showed the largest expression difference (q<0.001), while

Oligoadenylate synthase-like (OASL) (q<0.001) demonstrated the

most significant variation between the two groups.

Principal Component Analysis(PCA) analysis was carried to

present the difference of microbiota structure between groups. The

two groups were not significantly separated at PC1 and PC2

coordinates(p=0.067), considering that there was no significant

difference in microflora deconstruction between the two groups

(Figure 3A). The Venn diagram is used to visualize the number of
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DEGs in both groups. The two groups shared 22,466 genes,

accounting for 54.7% of group AECOPD and 42.3% of group

COPD (Figure 3B).

Among the categories of "Cellular Component" (CC),

"Molecular Function" (MF), and "Biological Process" (BP) in GO

enrichment analysis, we observed significant enrichment of DEGs

in "type I interferon signaling pathway" (p<0.001, q=0.001) and

"defense response to virus" (p<0.001, q=0.023). The integrated gene

annotation was presented in Figure 4A, from which we can observe

the aggregation of DEGs in intracellular material production.

KEGG Enrichment Analysis revealed five distinguished

upregulated pathways. These pathways include "Influenza A"

(p<0.001, q=0.012), "Herpes simplex infection" (p<0.001,

q=0.014), "Cytosolic DNA-sensing pathway" (p=0.002, q=0.024),

"Toll-like receptor signaling pathway" (p=0.006, q=0.045), and

"TNF signaling pathway" (p=0.006, q=0.045), The plotdots

representing these pathways are displayed in Figure 4B. Based on

the aforementioned results, we produced Table 3 to integrate key

pathways and related genes.
3.4 Relative quantification and comparison
analysis of host genes

According to the RNA isolation results and DEG analysis, we

used Quantitative Real-time PCR(qPCR) to quantify the gene

expression of OASL, IL6, IFI35, IFI6 and CXCL10 in each sample.

Figure 5 was plot after gene quantification analysis and discriminant
A B

DC

FIGURE 1

Microbiota compositional profiles and difference analysis between the AECOPD group and the COPD group. (A, B) Depicted the abundance of
microbiota with bar charts in the genus level (A) and species level (B) respectively. The y-axis represents the percentage of each bacterium. The
legend represents the color of each bacterium. (C, D) Depicted the distinguished microbiota with boxplots in the genus level (C) and species level
(D) respectively, *p < 0.05, **p < 0.01, ***p < 0.001.
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analysis. The expression of IL6(p<0.001) and OASL(p=0.003) were

significantly elevated in the AECOPD group. IFI35(p=0.31), IFI6

(p=0.16) and CXCL10(p=0.06) demonstrated no difference.

Original data can be found in Supplementary Material 2.
3.5 Correlation analysis between DEGs and
clinical markers

Spearman's rank correlation coefficient was calculated between

related clinical indicators and DEGs, revealing that the pseudogene

"RP11–497H16.4" exhibited a positive correlation with CAT

(r=0.40, p<0.01), mMRC (r=0.37, p<0.01), and GOLD (r=0.32,

p<0.05), as well as a negative correlation with FEV1/FVC (r=-

0.32, p<0.05). Additionally, "OASL" had a positive correlation with
Frontiers in Cellular and Infection Microbiology 05
CAT as well (r=0.34, p<0.05) (Figure 6). The original data can be

found in Supplementary Material 3.
3.6 Microbiota network analysis and
correlation with different expressed genes

We built a correlation network in the species level in Figure 7.

Entercoccus gallinarum(Bacillota phylum) and Bergeyella cardium

(Bacteroidota phylum) were recognized as the core microbiome of

the COPD group. Leptotrichia hofstadii(Fusobacteriota phylum) and

Neisseria mucosa(Pseudomonadota phylum) were the most associated

microbiome in the AECOPD group. We correlated the microbial data

with the DEGs in Figure 8. The results exhibited a positive correlation

in the abundance of Rothia mucilaginosa with RANGAP1 and PARP12
TABLE 2 Twenty-eight DEGs between the AECOPD group and the COPD group.

Gene ID Gene name Log2(FC) p-value p-adjust

ENSG00000126709.10 IFI6 3.703 0.000 0.000

ENSG00000135114.8 OASL 3.429 0.000 0.000

ENSG00000149418.6 ST14 2.620 0.000 0.005

ENSG00000250918.2 RP11–497H16.4 2.067 0.000 0.006

ENSG00000125148.6 MT2A 2.693 0.000 0.006

ENSG00000204103.2 MAFB 2.637 0.000 0.006

ENSG00000123989.9 CHPF 2.498 0.000 0.006

ENSG00000111335.8 OAS2 2.635 0.000 0.007

ENSG00000068079.3 IFI35 2.921 0.000 0.008

ENSG00000181449.2 SOX2 4.303 0.000 0.008

ENSG00000169245.4 CXCL10 3.332 0.000 0.008

ENSG00000126062.3 TMEM115 2.878 0.000 0.011

ENSG00000185745.8 IFIT1 2.749 0.000 0.014

ENSG00000108679.8 LGALS3BP 2.653 0.000 0.023

ENSG00000173432.6 SAA1 3.074 0.000 0.024

ENSG00000178685.9 PARP10 2.274 0.000 0.024

ENSG00000185338.4 SOCS1 2.923 0.000 0.024

ENSG00000196547.10 MAN2A2 2.209 0.000 0.028

ENSG00000125826.15 RBCK1 2.062 0.000 0.029

ENSG00000002549.8 LAP3 2.200 0.000 0.032

ENSG00000134326.7 CMPK2 2.576 0.000 0.037

ENSG00000138376.6 BARD1 4.221 0.000 0.038

ENSG00000100401.15 RANGAP1 2.201 0.000 0.038

ENSG00000059378.8 PARP12 2.342 0.000 0.038

ENSG00000213165.2 AC090425.1 1.285 0.000 0.038

ENSG00000136244.7 IL6 3.922 0.000 0.046

ENSG00000127586.12 CHTF18 3.013 0.000 0.049

ENSG00000166592.7 RRAD 2.591 0.000 0.049
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expression, it manifested the negative correlation in the abundance of

OASL expression with Actinobacillus ureae, Fusobacterium

necrophorum, Peptostreptococcus anaerobius, and Peptostreptococcus

stomatis as well.
4 Discussion

Previous study showed that Proteobacteriato-Firmicutes ratio and

Prevotellawere found to be easily influenced by Inhaled Corticosteroids

(ICS) use (Ramsheh et al., 2021), and smoking generally resulted in an

elevated abundance of Haemophilus (Hunt et al, 2020). To eliminate
Frontiers in Cellular and Infection Microbiology 06
these interferences, we controlled the ICS use and smoking history with

no statistic difference while recruitment. In our study, we presented

microbial composition and host transcriptional profiles of 31 patients

underwent exacerbation and 26 patients at stable stage. This is the first

study to discuss the potential mechanism underlying the exacerbation

of COPD, as far as we know.

The microbial compositional analysis elucidated a higher

expression of Fusobacterium and Haemophilus in the stable stage

COPD, and Rothia, Moraxella, and Granulicatella were more

prevalent during acute exacerbation. The transcriptional profile

indicated an integration of DEGs in type I interferon (IFN)

signaling pathway and TLRs signaling pathway.
A B

FIGURE 2

Differentially Expressed Genes between AECOPD and COPD patients. According to the relative abundance of DEGs in each sample, the Top 50
different DEGs were selected to draw a heatmap (A) between the AECOPD group and the COPD group. All 50 DEGs were upregulated. The color
gradient and similarity degree reflect the similarity and difference of two samples at different classification levels, the warmer the tone, the greater
the value. (B) Illustrated the volcano map of DEGs between AECOPD and COPD patients. Red dots, p-adjusted<0.05. Black dots, p<0.05. Bounded
by Log2 Fold Change=0 on the abscissa, the left side represents down-regulated genes and the right side represents up-regulated genes.
A B

FIGURE 3

Comparison of microbial and transcriptional composition between groups. (A) PCA analysis of microbial data between groups. Microbiota
composition bear no significant difference between the AECOPD group and the COPD group. (B) Venn map illustrating the abundance and
similarities of different expressed genes.
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Type I IFNs mainly include IFN-a and IFN-b, which are

important effector molecules involved in antiviral immunity.

Bacterial infection induces type I IFNs as well (Gonzalez-Navajas

et al., 2012). Its production is mainly induced by surface or internal

receptors (such as TLRs and cGAS) on innate immune cells (mainly

macrophages) upon their contact with virus-specific antigenic

substances (DNA, RNA). Then it is transmitted by intracellular

signaling molecules, and activated transcription factor IRF3/7 to

initiate the expression of type I IFN genes. This pathway promotes

the pathogenesis of COPD via miR-21/SATB1/S100A9/NF-kB axis

(Kim et al., 2021).

Toll-like receptors (TLRs) are associated with microbiome-

COPD interplay. TLRs are momentous mediators for pathogens

to recognize exogenous pathogen-associated molecular patterns

(PAMPs) and host-derived damage-associated molecular patterns
Frontiers in Cellular and Infection Microbiology 07
(DAMPs), inducing and sustaining the inflammation caused by the

microbiome in COPD selectively (Zuo et al., 2015). TLR4 acted as a

pathogen recognition receptor to identify lipopolysaccharides (LPS)

or endotoxins produced by gram-negative bacteria (Knobloch et al.,

2011; Oliveira and Reygaert, 2023), subsequently initiates the TIR-

domain-containing adapter-inducing interferon-b signaling

pathway and upregulated the expression of type I IFN (De Nardo,

2015; Zuo et al., 2015; Gajanayaka et al., 2021). Haemophilus,

Moraxella, and Fusobacterium all functioned in this way to

some extent.

Through gene function annotation, we discovered that genes

associated with type I IFN signaling pathways, such as IFI6, IFI35,

OASL, OAS2 and IFIT1, were integrated in the AECOPD group.

Among them, OASL was verified to upregulated in AECOPD group

by qPCR experiment using the same sample. OASL is a crucial
A B

FIGURE 4

GO and KEGG enrichment analysis. (A) Depicted the GO term annotation of DEGs in a histogram. The x-axis represents the gene function in the GO
standard. The y-axis represents the number of genes gathered, and the ratio of DEGs aggregated in this term. (B) Demonstrated a Plotdot portrayed
accordingly according to the KEGG Pathway enrichment analysis of the AECOPD and COPD groups. The Y-axis represents the pathway of each
molecule to play a function. The X-axis means Gene Ratio, which is the proportion of genes enriched to the target pathway gene in the gene list.
Bubble area size means the number of enriched genes. Bubble color means enrichment significance, that is, the size of the q value.
TABLE 3 Key upregulated pathways and related genes between AECOPD group and COPD group.

Terms Database p-value p-adjust Regulate Gene Name

type I interferon
signaling pathway

GO <0.001 0.001 UP IFI35|OAS2|IFI6|
OASL|IFIT1

defense response to virus GO <0.001 0.023 UP OAS2|OASL|IL6|
CXCL10|IFIT1

Influenza A KEGG PATHWAY 0.001 0.012 UP IL6|CXCL10|OAS2

Herpes simplex infection KEGG PATHWAY 0.001 0.014 UP IFIT1|IL6|OAS2

Cytosolic DNA-
sensing pathway

KEGG PATHWAY 0.002 0.024 UP IL6|CXCL10

Toll-like receptor
signaling pathway

KEGG PATHWAY 0.006 0.045 UP IL6|CXCL10

TNF signaling pathway KEGG PATHWAY 0.006 0.045 UP IL6|CXCL10
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factor in the activation of type I IFNs and it was acknowledged as

the product induced by virus infection, but many studies revealed

the elevated expression of OASL during bacterial infection (Kutsch

et al., 2008; Weiss et al., 2010). However, the mechanism of his role

in bacterial infection is not clear, and scholars speculate that it may

be consistent with the pathway of viral infection (Leisching et al.,
Frontiers in Cellular and Infection Microbiology 08
2017), which is associated with the phagocytosis of macrophages.

OAS2 is part of OAS family, its expression was relatively low in this

study. IFI6 has been reported to exhibit antiviral activity toward the

Hepatitis C Virus (HCV) (Liu et al., 2019) and the Influenza A

Virus. IFI35 negatively regulates NF-kB when complexed with an

N-Mye interactor (Jian et al., 2018), thus, acting negatively toward
A B

D

E

C

FIGURE 5

Relative quantification of DEGs by qPCR and gene expression comparison analysis. The horizontal coordinate of the column bar graph represents
the grouping, and the vertical coordinate represents the relative quantitative data of each gene. Student's t test or non-parametric test were used for
comparison between the two groups. ***p<0.001, **p<0.01. (A) IL6. (B) OASL. (C) IFI35. (D) IFI6. (E) CXCL10.
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the development of COPD. Additionally, IFI35 can also promote

inflammation via activating macrophages through DAMPs, making

it a potential treatment therapy for COPD.

Through KEGG pathway enrichment analysis, IL6 and CXCL10

expressed higher and were integrated in pathways concerning TLRs,

TNFs, and Cytosolic DNA-sensing. qPCR amplification experiment

validated that the expression of IL6 resembled significant

increasement in the AECOPD group than the stable COPD
Frontiers in Cellular and Infection Microbiology 09
group. Previous study suggested the negative correlation between

IL6 expression and pulmonary function (Zhu et al., 2022). Besides,

IL6 was related to bacterial infection and inflammation response

(Tang et al., 2012; Zhu et al., 2022), correlated IL6ST was reported

to elevate when COPD aggravates (Ko et al., 1988). However, no

specific study in relation to COPD pathogenesis and IL6 expression

has been done so far. It needs to be further explored for the

intervention value. CXCL10 is involved in a wide variety of
FIGURE 6

A heatmap plot according to the correlation of DEGs and clinical indicators. Cool tones represent a positive correlation and warm tones represent a
negative correlation. The color gradient represents the degree of correlations, the darker the color, the higher the correlation. **p<0.01, *p<0.05,
two tailed.
FIGURE 7

Microbiota network analysis. The triangle represents species originated form the SCOPD group, the circle represents species originated form the
AECOPD group. The results show that different nodes represent different dominant species, and the connections between nodes indicate that there
is a correlation between the two species. The stronger the correlation, the obvious connection lines, where the red line indicates a positive
correlation and the blue line indicates a negative correlation. In addition, node colors are defined by gate level, and node colors are the same,
indicating that these species belong to the same gate. Through the number of node connections, it is possible to identify species that are more
related to other members of the flora, and then explore the biological significance of the correlation between these species.
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processes during pathogen invasion and has been reported to

modulate an individual's susceptibility to COPD (Wang et al.,

2018). Inhibited CXCL10 protects against COPD progression by

reducing the secretion of inflammatory factors (Jing et al., 2018; Ju

and He, 2021). Therefore, inhibiting type I IFNs and upstream

inflammatory factors could potentially postpone COPD

progression. We also found a certain positive relationship

between OAS2, CXCL10, and herpes simplex infection.

This study identified several other host genes. CHPF encodes a

protein that mainly functions in the chondroitin sulfate

biosynthetic process, which is strongly correlated with matrix

metalloproteinases, a proteinase that contributes to airway

remodeling in COPD (Papakonstantinou et al., 2016). Studies

have shown that MAFB participation in the pathophysiology of

COPD affects the maturation and differentiation of macrophages

and generates MMPs, ultimately leading to aggravated pulmonary

emphysema and airflow restriction (Sato et al., 2011; Aida et al.,

2014). The protein encoded by ST14 is an epithelial-derived,

integral membrane serine protease, while MT2A is a member of

the metallothionein family and acts as an antioxidant in vivo. No

research related to COPD and these genes has been carried out so

far. Genes detected by microbiome-host analysis could have the

potential to screen those who were susceptible to pathogen

infections and intervene at an early stage.

Our research identified an unprocessed pseudogene, RP11–

497H16.4, which was remarkably elevated and strongly associated
Frontiers in Cellular and Infection Microbiology 10
with many clinical assessment indicators. This 1180 bp length gene

has no protein transcripted and possibly originated from sequence

changes after gene duplication.

H.influenzae, which belongs to the phyla proteobacteria, has

been reported to act as an opportunistic pathogen by inducing a

neutrophilic-mediated inflammation via the activation of PAMPs

and the inflammatory cascade that follows (Bafadhel et al., 2015;

Barker et al., 2015; Brightling and Greening, 2019). This process

recruited both innate and adaptive immune cells, like macrophages,

endothelial and epithelial cells (Sidletskaya et al., 2020).

Furthermore, CD40, CD83, and CD86 expressed in monocyte-

derived cells have also been found to be involved (Larsen et al.,

2012; Oliveira and Reygaert, 2023). Haemophilus was commonly

considered to be one of the initiating pathogens of type I IFNs (Lu

et al., 2018; Yang et al., 2019) via TLRs. Moraxella was

acknowledged as an inducement (Ramsheh et al., 2021) and a

major factor (Wang et al., 2019) of AECOPD. As a gram-negative

bacteria, it can induce TLR2-initiated inflammatory responses

generated by pulmonary epithelial cells (Slevogt et al., 2008). Our

research also found elevated levels of Moraxella in the AECOPD

group. However, previous scholars were prone to a negative linear

relationship between the expression level of type I IFNs production

and the abundance of airway microbiota. Yoshihiko et al (Raita and

Eur, 2022). deduced that a higher proportion of Haemophilus

colonized in the nasopharynx was closely related to

downregulated type I IFNs expression, which is consistent with
FIGURE 8

Correlation analysis between different expressed genes and microbiota. Spearman correlation analysis was performed using the relative abundance
of all bacteria at the species level and the DEGs. The green circle represents the DEGs, the orange circle represents the microbiota. The red line
means positive correlation, and the blue line means negative correlation.
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our research observation. Wang Z et al (Wang et al., 2019).

recognized Haemophilus as a stable stage colonizer as well.

Haemophilus was thought to be an inducement of AECOPD

before, now we think comprehensive research is needed in

the future.

Elimination of type I IFN signaling was also found to improve

clearance and survival following secondary bacterial pneumonia

(Tian et al., 2012). However, Klaile E et al (Klaile et al., 2013).

stressed that type I IFN could reduce the inflammation responses by

enhancing the expression of The Carcinoembryonic Antigen-

related Cell Adhesion Molecules (CEACAM) 1 due to negative

interactions between Moraxella and CEACAM1. These research

findings align with the hypothesis that type I IFNs are protective in

acute viral infections but can have either protective or deleterious

roles in bacterial infections (Trinchieri, 2010). We suppose that the

viral-bacterial co-infection via type I IFNs could exhibit a

competitive relationship, and it often occurs in the early stage of

exacerbation in COPD. Once the damage has been caused by a virus

infection, it tends to evolve into a Synergistic relationship.

Unfortunately, our study did not analyze the viral load of

research samples. However, through KEGG enrichment analysis,

it is not difficult to find that microbe-host differential genes were

enriched in viral infection pathways such as influenza A Virus and

Herpes Simplex Virus.

The co-infection of viruses and bacteria has been acknowledged

as a synergistic effect that correlates with the severity of COPD

(Wilkinson et al., 2006; George et al., 2014). Preceding or

concurrent viral respiratory tract infection can predispose to

secondary bacterial co-infection via damaging the airway and

dysregulating immune responses (Bakaletz, 2017). These

infections can also induce neutrophil elastase, which can cleave

the antimicrobial peptides SLPI and elafin (Mallia et al., 2012).

R.mucilaginosa is a normal flora of the oropharynx and is often

detected in induced sputa samples. It has been reported to have an

inhibitory effect on pathogen- or lipopolysaccharide-induced pro-

inflammatory response via inhibiting NF-kB pathway activation

and negatively correlated with pro-inflammatory markers (IL-8, IL-

1b) and MMPs (Rigauts et al., 2022; Melo-Dias et al., 2023).

Additionally, Rothia triggered a Th17 immune response and

reduced the frequency of exacerbation in COPD patients as well

(Ren et al., 2018). Rothia was observed to be significantly elevated in

the AECOPD group but reduced in the stable COPD group in our

research. Based on the anti-inflammatory effect of Rothia and our

results, we suppose that Rothia may increase the bacterial load and

play an anti-inflammatory role in the acute exacerbation of COPD

through some potential mechanisms that need to be further

explored. Therefore, Rothia may present itself as a potential

biologic therapy to intervene in stable COPD patients, thus

reducing the number of acute exacerbations and improving long-

term prognosis.

Microbiota network analysis identified a few species that play

central roles in microbial interactions, yet the abundance detected

was low, and no statistical significance was observed after

calculation as well. A multi-center or longitudinal analysis would

be more suitable under this situation.
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However, some drawbacks to our experiment must be

acknowledged. Firstly, ICS can affect respiratory microflora over a long

period. Although we controlled for no statistical difference in the history

of ICS use between AECOPD and stable COPD, the type and dorse of

ICS still need to be discussed. Secondly, although we obtained a rough

estimate of viral load in our samples, further analysis relating to the virus

load could refine our study. Thirdly, though the participants were all

smokers, but the smoking index needs to stratify to explore the influence

concerning smoking degree or smoking status(current or past).
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