
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Ang Li,
Harbin Institute of Technology, China

REVIEWED BY

Yake Yao,
University, China
Ricardo Oliveira,
National Institute for Agricultural and
Veterinary Research (INIAV), Portugal
Silvia Pires,
Weill Cornell Medicine, United States

*CORRESPONDENCE

Xiang He

xiangge530@hotmail.com

Guoping Li

lzlgp@163.com

†These authors have contributed equally to
this work

RECEIVED 13 February 2024

ACCEPTED 29 April 2024
PUBLISHED 23 May 2024

CITATION

Li J, Xiong A, Wang J, Wu X, Bai L, Zhang L,
He X and Li G (2024) Deciphering the
microbial landscape of lower respiratory tract
infections: insights from metagenomics and
machine learning.
Front. Cell. Infect. Microbiol. 14:1385562.
doi: 10.3389/fcimb.2024.1385562

COPYRIGHT

© 2024 Li, Xiong, Wang, Wu, Bai, Zhang, He
and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 23 May 2024

DOI 10.3389/fcimb.2024.1385562
Deciphering the microbial
landscape of lower respiratory
tract infections: insights from
metagenomics and
machine learning
Jiahuan Li1,2†, Anying Xiong2,3†, Junyi Wang2,3†, Xue Wu1,
Lingling Bai2, Lei Zhang2,3, Xiang He2,3,4* and Guoping Li1,2,3*

1Clinical Medicine Department, North Sichuan Medical College, Nanchong, China, 2Laboratory of
Allergy and Precision Medicine, Chengdu Institute of Respiratory Health, the Third People’s Hospital
of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China, 3Department of
Pulmonary and Critical Care Medicine, Chengdu third people’s hospital branch of National Clinical
Research Center for Respiratory Disease, Affiliated Hospital of ChongQing Medical University,
Chengdu, China, 4National Center for Respiratory Medicine, National Clinical Research Center for
Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory
Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
Background: Lower respiratory tract infections represent prevalent ailments.

Nonetheless, current comprehension of the microbial ecosystems within the

lower respiratory tract remains incomplete and necessitates further

comprehensive assessment. Leveraging the advancements in metagenomic

next-generation sequencing (mNGS) technology alongside the emergence of

machine learning, it is now viable to compare the attributes of lower respiratory

tract microbial communities among patients across diverse age groups, diseases,

and infection types.

Method: We collected bronchoalveolar lavage fluid samples from 138 patients

diagnosed with lower respiratory tract infections and conducted mNGS to

characterize the lung microbiota. Employing various machine learning

algorithms, we investigated the correlation of key bacteria in patients with

concurrent bronchiectasis and developed a predictive model for

hospitalization duration based on these identified key bacteria.

Result: We observed variations in microbial communities across different age

groups, diseases, and infection types. In the elderly group, Pseudomonas

aeruginosa exhibited the highest relative abundance, followed by

Corynebacterium striatum and Acinetobacter baumannii. Methylobacterium

and Prevotella emerged as the dominant genera at the genus level in the

younger group, while Mycobacterium tuberculosis and Haemophilus

influenzae were prevalent species. Within the bronchiectasis group, dominant

bacteria included Pseudomonas aeruginosa, Haemophilus influenzae, and

Klebsiella pneumoniae. Significant differences in the presence of Pseudomonas

phage JBD93 were noted between the bronchiectasis group and the control

group. In the group with concomitant fungal infections, the most abundant

genera were Acinetobacter and Pseudomonas, with Acinetobacter baumannii

and Pseudomonas aeruginosa as the predominant species. Notable differences

were observed in the presence of Human gammaherpesvirus 4, Human
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betaherpesvirus 5, Candida albicans, Aspergillus oryzae, and Aspergillus

fumigatus between the group with concomitant fungal infections and the

bacterial group. Machine learning algorithms were utilized to select bacteria

and clinical indicators associated with hospitalization duration, confirming the

excellent performance of bacteria in predicting hospitalization time.

Conclusion: Our study provided a comprehensive description of the microbial

characteristics among patients with lower respiratory tract infections, offering

insights from various perspectives. Additionally, we investigated the advanced

predictive capability of microbial community features in determining the

hospitalization duration of these patients.
KEYWORDS

metagenome, lower respiratory tract infection, respiratory microorganisms, machine
learning, feature engineering
1 Introduction

Lower respiratory tract infections are prevalent worldwide,

encompassing a spectrum of severity from acute bronchitis to

severe pneumonia (Mizgerd, 2006, 2008). However, these

infections can be attributed to single or multiple microorganisms,

exhibiting a range of virulence from commensal to highly

pathogenic (De Roux, 2006; Webster and Govorkova, 2006;

Weber et al., 2007). Accurate identification of the causative

microorganisms is imperative for effective treatment and

prevention of complications. The rapid advancement of mNGS

technology offers a more sensitive detection method for pathogenic

microorganisms compared to traditional microbiological

techniques (Miao et al., 2018). The lung microbiota plays a vital

role in maintaining respiratory health and influencing the severity

of lower respiratory tract diseases (Fenn et al., 2022). Although

studies have explored the characteristics of lung microbiota across

different severity levels of lung infections using metagenomics

(Zhan et al., 2023), multidimensional analysis of lung microbiota

characteristics remains limited.

Machine learning algorithms are algorithms designed to

automatically analyze data, uncover patterns, and predict

unknown data based on these patterns. They exhibit robust fitting

and generalization capabilities, particularly for classification tasks

involving complex features. Integration of machine learning into

medicine holds the promise of delivering more accurate diagnoses

and personalized treatments for patients (Weiss et al., 2012, 2015).

By combining machine learning with mNGS, our objective is to

address practical clinical challenges from a microbial standpoint.

This involves comprehensively elucidating patient microbiota

characteristics and leveraging machine learning predictive models.

In this study, to explore the characteristics of patients with

lower respiratory tract infections, we grouped the patient with

different criteria, such as age and comorbid conditions. We
02
analyzed the microbial differences among various groups

based on different classification criteria and investigated the

correlations and predictive capabilities of the microbiota using

machine learning, specifically focusing on the prediction of

hospitalization duration.
2 Methods

2.1 Study population

This study enrolled 157 patients with lower respiratory tract

infections treated at the Respiratory and Critical Care Medicine

Department of Chengdu Third People’s Hospital from March 1 to

June 30, 2023. Following a thorough evaluation by two seasoned

clinicians, 138 patients were selected for inclusion. The research

methodology entailed prospective specimen collection and

subsequent blinded retrospective analysis, adhering to the

principles of the Helsinki Declaration. Participants provided

written informed consent, and the study’s protocols received

approval from the Chengdu Third People’s Hospital Institutional

Review Board, ensuring compliance with all pertinent ethical

standards. The characterization of lower respiratory tract

infections is based on the criteria outlined in Huang et al. (Huang

et al., 2018).
2.2 Specimen collection

A total of 138 patients’ bronchoalveolar lavage fluid (BALF)

samples were collected to analyze the respiratory tract microbiota,

with each sample labeled according to patient details. The collection

procedure involved several steps as follows: In cases of localized

lesions, the segment containing the lesion was chosen. For diffuse
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lesions, the most severe segment was selected (Pan et al., 2022). The

bronchoscope tip was positioned in the target bronchial segment or

sub-end opening. Sterile physiological saline at a temperature of

37°C or room temperature was injected rapidly through the

operating channel in multiple injections of 20–50 mL each, with a

total volume ranging from 60–120 mL. Immediately after saline

injection, appropriate negative pressure was applied to aspirate the

bronchoalveolar lavage fluid, aiming for a recommended total

recovery rate of ≥30%. The collected fluid comprised secretions

from approximately 10 mL of bronchial terminals and alveoli. Any

potentially contaminated portion at the front end was discarded,

and the remaining portion, constituting at least approximately 5

mL, was promptly collected into a test tube. The collected BALF

samples were stored at -80°C. All samples were obtained from the

area of lung infiltration, with priority given to the site of most severe

infiltration in cases of multiple infiltrated areas.
2.3 DNA extraction, library preparation,
and sequencing

Initially, cell membrane lysis and host DNA depletion were

performed on BALF samples. Following this, 250 ml of the post-lysis
supernatant was transferred into a 1.5 mL centrifuge tube and

combined with 300 ml of a lysis buffer mixture, followed by

homogenization through vortexing. After a brief centrifugation,

the mixture underwent a 10-minute incubation at 70°C. DNA

extraction was performed using a magnetic bead mixture

consisting of 350 ml isopropanol and 15 ml magnetic beads. The

DNA concentrations were quantified using the Qubit dsDNA HS

Assay Kit (Thermo Fisher Scientific). Subsequently, the DNA

underwent fragmentation, end-complementation, and sequencing

adapter ligation following the library construction protocol. Finally,

the libraries were sequenced using the Vision 1000 high-throughput

sequencing platform, targeting an output of 20 million 50 bp single-

end sequence data per read.
2.4 Bioinformatics analysis

Data quality control and species classification: To ensure the

accuracy and reliability of subsequent information analysis results,

raw sequencing data undergoes filtering and processing using fastp

software to obtain quality-controlled data. Bowtie2 aligns the

sequences to the host genome, removing host-aligned sequences.

Kraken2 annotates and classifies all effective sequences of the

samples to study species composition and diversity information.

Bracken re-estimates species composition abundance and excludes

background contaminating DNA interference, utilizing negative

controls in each mNGS run. Top 15 species by abundance are

visualized using the R package ggplot2, with statistical testing via

the Wilcoxon rank-sum test.

Alpha diversity analysis: Alpha diversity, measuring abundance

and diversity of microbial communities, employs statistical indices

estimating species richness and diversity for each sample. The Chao

index, estimating species count using the Chao1 algorithm, and the
Frontiers in Cellular and Infection Microbiology 03
Ace index estimate total species richness. The Shannon index

assesses microbial diversity, while the Simpson index quantifies

biodiversity. Alpha diversity indices are calculated for each sample

using the R package Vegan.

Beta diversity analysis: Beta diversity compares microbial

community compositions of different samples or groups.

Principal Coordinate Analysis (PCoA) extracts significant

elements capturing sample differences, visualized on a two-

dimensional plot. Bray Curtis distance measures dissimilarity

between samples, while UniFrac distance computes PCoA

analysis in the R package Vegan. The p-value for PCoA analysis

is calculated using adonis, and boxplot p-values using the Wilcoxon

rank-sum test.

Differential species analysis: LEfSe (Linear discriminant analysis

Effect Size) identifies biomarkers in high-dimensional data. It

detects species with significant abundance differences between

groups using the Kruskal-Wallis rank-sum test. Subsequently, the

Wilcoxon rank-sum test assesses differential species consistency

across subgroups. Linear regression analysis (LDA) estimates the

influence magnitude of abundance for each component. Differential

species between groups are calculated using LEfSe software with

thresholds of LDA>=2 and p-value<=0.05.
2.5 Statistics analysis

In the clinical data, continuous variables with a normal

distribution are presented as mean ± standard deviation (SD),

whereas non-normally distributed variables are presented as

median (Q1, Q3). Statistical analysis involves the application of

Student’s t-test and Wilcoxon rank-sum test. Categorical variables

are depicted as percentages and scrutinized using the Chi-square

test or Fisher’s exact test. A two-sided p-value < 0.05 is regarded as

statistically significant in all instances. Machine learning feature

selection and statistical analysis were carried out using R version

4.2.3 and Python version 3.10.9.
3 Results

3.1 Sample characteristics

The workflow is depicted in Figure 1. In this study, a cohort of

138 patients diagnosed with lower respiratory tract infections was

recruited. Based on their clinical characteristics, patients were

stratified into three subgroups according to age (>65 years or ≤65

years), presence or absence of bronchiectasis, and presence or

absence of fungal infections (Table 1). Specifically, the cohort

comprised 72 patients aged over 65 and 66 patients aged 65 or

younger. Among these, 23 patients exhibited bronchiectasis while

115 did not. Furthermore, fungal infections were present in 50

patients, while 88 patients did not exhibit fungal infections. The

spectrum of lower respiratory tract infections included community-

acquired pneumonia, acute exacerbation of chronic obstructive

pulmonary disease, bronchiectasis, obstructive pneumonia, acute

bronchitis, and asthma.
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3.2 Distinct bacterial types and intergroup
variations exist among different subgroups

3.2.1 Age groups
In the age group comparison (Figure 2A), the top 15

microorganisms at the genus level in the elderly group were ranked

by their relative abundance. These microorganisms included

Pseudomonas, Streptococcus, Corynebacterium, Methylobacterium,

Acinetobacter, Prevotella, Xanthomonas, Aspergillus. At the species

level, prevalent species were identified as Pseudomonas aeruginosa,

Corynebacterium striatum, Acinetobacter baumannii, Aspergillus

fumigatus, Human alphaherpesvirus 1, and Parvimonas micra. In

the younger group, the predominant 15 microorganisms, including

bacteria, fungi, and viruses, consisted of Methylobacterium,

Streptococcus, Prevotella, Haemophilus, and Mycobacterium at the

genus level, and Mycobacterium tuberculosis, Haemophilus

influenzae, and Xanthomonas campestris at the species level.

Pseudomonas was most abundant at the genus level in the elderly

group, whileMethylobacterium was highest in the younger group. At

the species level, Mycobacterium tuberculosis was highest in the

younger group. Although there was no statistically significant

difference in a-diversity between the younger and elderly groups

(Figure 2B), b-diversity analysis, including PCA, PCoA, and NMDS

(Figure 2C), revealed significant differences, indicating meaningful

grouping between the two groups. LEfSe analysis (Figure 2D) showed

more common pathogenic microbial species in the elderly group,

such as Human gammaherpesvirus 4 (EBV), Human betaherpesvirus

5, and Enterococcus faecalis, while the majority of the younger group

consisted of oral and upper respiratory symbiotic bacteria.

3.2.2 Merging the bronchiectasis groups
In the comparison between patients with and without

bronchiectasis (Figure 3A), the bronchiectasis group exhibited a
Frontiers in Cellular and Infection Microbiology 04
higher abundance of Pseudomonas, Haemophilus, Acinetobacter,

Streptococcus, Klebsiella, Aspergillus, and Alpha influenzavirus

among the top 15 microorganisms at the genus level, ranked by

relative abundance. At the species level, dominant species included

Pseudomonas aeruginosa, Haemophilus influenzae, Klebsiella

pneumoniae, Acinetobacter baumannii, Aspergillus fumigatus, and

Influenza A virus. Conversely, in the non-bronchiectasis group, the

top 15 microorganisms at the genus level were Methylobacterium,

Streptococcus, Pseudomonas, Prevotella, Acinetobacter, Aspergillus,

and Alpha influenzavirus. At the species level, prevailing species

were Pseudomonas aeruginosa, Mycobacterium tuberculosis,

Xanthomonas campestris, Corynebacterium striatum, Acinetobacter

baumannii, Aspergillus fumigatus, and Influenza A virus. Notably, the

bronchiectasis group exhibited higher abundance of Pseudomonas

and Pseudomonas aeruginosa at both the genus and species levels,

followed by Haemophilus (Haemophilus influenzae) infection. The

non-bronchiectasis group showed a higher abundance of

Methylobacterium and Streptococcus at the genus level, and

Pseudomonas aeruginosa and Mycobacterium tuberculosis at the

species level. Both groups had a similar prevalence of fungal and

viral infections. Analysis of a-diversity (Figure 3B) revealed that the

bronchiectasis group had lower Shannon and Simpson indices

compared to the non-bronchiectasis group, indicating decreased

microbial diversity. Furthermore, the analysis of b-diversity
(Figure 3C) including PCA, PCoA, and NMDS showed statistically

significant differences (p<0.05) between the two groups, highlighting

distinct microbial compositions. Results from LEfSe analysis

(Figure 3D) indicated significant differences in bacterial

composition, with an enrichment of Cupriavidus sp. ISTL7,

Pseudomonas phage JBD93, and Mycolicibacterium neoaurum in

the bronchiectasis group. In contrast, the non-bronchiectasis group

predominantly consisted of normal skin and oral flora, including

Methylobacterium, Streptococcus oralis, and Phyllobacterium sp. 628.
FIGURE 1

Study design and flow diagram.
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TABLE 1 Patients and sample characteristics in three groups, including biochemical parameters and treatment medications.

p fun (n = 50) N (n = 88) p

0.507 70 (59, 78.75) 62.5 (51, 71) 0.003

0.303 0.005

10 (20) 40 (45)

40 (80) 48 (55)

0.771 0.006

34 (68) 78 (89)

16 (32) 10 (11)

0.548 16.5 (12, 29.75) 11 (8, 20) < 0.001

0.304 5.23 (4.31, 7.58) 5.1 (4.49, 7.61) 0.7

0.674 6.4 (5.3, 9.5) 7.15 (5.3, 9.5) 0.955

0.793 0.97 (0.63, 1.31) 0.98 (0.7, 1.5) 0.328

0.024 3.54 ± 1.14 3.9 ± 1.04 0.076

0.346 0.92 (0.68, 1.45) 1 (0.86, 1.26) 0.187

0.516 2.07 ± 0.82 2.28 ± 0.71 0.125

0.966 9.55 (7.03, 12.31) 8.91 (7.41, 11.39) 0.789

0.613 61.1 (57.22, 64.89) 64.55 (61.48, 68.65) 0.002

0.439 31.3 ± 6.02 34.56 ± 5.14 0.002

0.293 28.25 (25.73, 34.2) 30.1 (26.45, 34) 0.494

0.396 24.25 (13.9, 37.83) 20.2 (12.73, 34.35) 0.365

0.368 24.4 (18.88, 31.37) 20.1 (16.9, 27.55) 0.028

0.239 1.13 (0.74, 1.56) 1.05 (0.8, 1.5) 0.667

0.635 217.05 (176.99, 287.79) 168.68 (142.4, 220.4) < 0.001

0.34 8 (6.77, 13.37) 6.58 (5.22, 8.2) < 0.001

0.243 6.9 (4.52, 12.43) 4.03 (2.79, 5.87) < 0.001

0.422 77.16 ± 12.78 66.31 ± 13.26 < 0.001

0.895 1.21 ± 0.72 1.63 ± 0.66 < 0.001

0.181 15.67 ± 8.71 26.11 ± 12.45 < 0.001

(Continued)
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group old (n = 72) young (n = 66) p bro (n = 23) N (n = 115)

age, Median (Q1,Q3) 74.5 (70, 80) 53.5 (43.25, 59) < 0.001 63 (57.5, 76.5) 66 (52.5, 73)

gender, n (%) 0.203

female 22 (31) 28 (42) 11 (48) 39 (34)

male 50 (69) 38 (58) 12 (52) 76 (66)

NIPPV, n (%) 0.003

N 51 (71) 61 (92) 18 (78) 94 (82)

Y 21 (29) 5 (8) 5 (22) 21 (18)

days of hospitalization, Median (Q1,Q3) 16.5 (10, 34) 11 (8, 15.75) < 0.001 11 (8, 23.5) 13 (9, 23)

2hPG, Median (Q1,Q3) 5.27 (4.49, 7.72) 5.03 (4.45, 6.81) 0.417 5.69 (4.64, 9.04) 5.16 (4.45, 7.6)

HbA1c, Median (Q1,Q3) 6.4 (5.3, 9.5) 8.3 (5.3, 10.62) 0.925 5.6 (5.3, 9.45) 7 (5.3, 9.5)

TG, Median (Q1,Q3) 0.96 (0.65, 1.41) 1 (0.64, 1.49) 0.993 0.83 (0.68, 1.41) 1.01 (0.65, 1.43)

total cholesterol, Mean ± SD 3.76 ± 1.23 3.78 ± 0.93 0.875 4.24 ± 1.04 3.67 ± 1.08

HDL-C, Median (Q1,Q3) 1.02 (0.75, 1.42) 0.98 (0.71, 1.21) 0.373 1.02 (0.86, 1.44) 0.97 (0.7, 1.27)

LDL-C, Mean ± SD 2.23 ± 0.8 2.17 ± 0.71 0.654 2.31 ± 0.88 2.18 ± 0.73

TBIL, Median (Q1,Q3) 9.12 (7.3, 11.09) 9.12 (7.3, 11.55) 0.733 9.43 (7.27, 11.01) 8.97 (7.31, 11.58)

TP, Median (Q1,Q3) 62.8 (58.08, 65.38) 64.65 (60.75, 70.05) 0.006 62.9 (60.4, 68) 63.69 (60, 67.59)

ALB, Mean ± SD 31.5 ± 5.68 35.44 ± 4.94 < 0.001 34.04 ± 4.05 33.25 ± 5.95

globulin, Median (Q1,Q3) 30.3 (26.2, 34.35) 28.95 (26.08, 33.05) 0.477 28.3 (25.3, 33.1) 29.96 (26.5, 34.59)

alanine aminotransferase, Median (Q1,Q3) 20.55 (12.47, 29.35) 26.69 (14.12, 40.85) 0.025 23 (16.45, 37.85) 20.6 (12.65, 34.65)

AST, Median (Q1,Q3) 23.45 (17.9, 31.27) 20.55 (17.12, 28.8) 0.24 26.6 (17.2, 30.65) 21.1 (17.4, 28.8)

AST-ALT rate, Median (Q1,Q3) 1.23 (0.92, 1.64) 0.96 (0.69, 1.27) < 0.001 0.98 (0.75, 1.23) 1.1 (0.81, 1.56)

LDH, Median (Q1,Q3) 204 (160.43, 257.35) 172.2 (138.95, 221.98) 0.014 181 (157.05, 208.65) 181 (149.97, 240.1)

WBC, Median (Q1,Q3) 7.7 (6.2, 10) 6.61 (4.94, 8.28) 0.036 7.6 (5.95, 11.52) 6.91 (5.48, 8.88)

NEU, Median (Q1,Q3) 5.61 (3.42, 7.84) 4.31 (2.66, 7.15) 0.075 5.08 (3.62, 10.31) 4.7 (3.05, 7.07)

NEU%, Mean ± SD 73.76 ± 12.94 66.4 ± 14.3 0.002 72.48 ± 14.54 69.79 ± 13.97

Lym, Mean ± SD 1.35 ± 0.75 1.61 ± 0.64 0.029 1.49 ± 0.79 1.47 ± 0.7

lymphocyte percentage, Mean ± SD 19.43 ± 12.11 25.49 ± 11.77 0.003 19.2 ± 11.96 22.96 ± 12.3
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TABLE 1 Continued

23) N (n = 115) p fun (n = 50) N (n = 88) p

0.94) 0.45 (0.33, 0.56) 0.006 0.54 (0.42, 0.79) 0.42 (0.32, 0.54) 0.006

6.5 ± 2.27 0.957 6.3 ± 2.69 6.63 ± 2.05 0.465

4.23) 4.07 (3.55, 4.47) 0.619 3.84 (3.49, 4.3) 4.14 (3.7, 4.47) 0.076

293.5) 221 (171, 286.5) 0.131 222 (163.5, 264.75) 226.5 (192.5, 291) 0.353

) 70 (41, 104.5) 0.076 68 (41, 105.75) 66 (36.75, 97.25) 0.521

43.41) 8.82 (1.25, 32.7) 0.913 24.04 (5.04, 48.66) 4.4 (0.8, 18.86) < 0.001

0.45) 0.07 (0.04, 0.2) 0.117 0.1 (0.05, 0.42) 0.07 (0.03, 0.2) 0.009

24) 3.27 (0.01, 31.8) 0.284 3.63 (0.12, 34.1) 3.27 (0.01, 24) 0.11

98.25) 77.5 (67, 98.8) 0.938 75.6 (65, 89.05) 86.8 (67, 106.2) 0.078

70.2) 65.2 (54.8, 77.68) 0.384 63.65 (56.2, 80.49) 65.47 (53.83, 76.59) 0.723

3) 2.21 (1.73, 2.98) 0.108 2.37 (1.84, 3.02) 2.06 (1.54, 2.9) 0.153

3.86 ± 0.51 0.652 3.83 ± 0.54 3.89 ± 0.49 0.571

81 139.9 ± 3.87 0.61 140.67 ± 4.19 139.58 ± 3.61 0.126

2, 107.4) 105.8 (103.02, 108.3) 0.355 103.99 (101.23, 107.55) 106.05 (103.88, 108.3) 0.012

2.15 ± 0.14 0.343 2.1 ± 0.15 2.17 ± 0.13 0.014

1.01 ± 0.24 0.684 0.94 ± 0.29 1.06 ± 0.24 0.016

0.93) 0.86 (0.79, 0.92) 0.266 0.83 (0.78, 0.93) 0.86 (0.8, 0.92) 0.359

, 297.9) 251.4 (188.3, 307.55) 0.704 218.15 (155.27, 261.52) 268.27 (198.38, 320.4) 0.002

13.06) 9.2 (5.76, 14.27) 0.97 6.75 (4.19, 10.7) 11.86 (7.33, 14.99) < 0.001

total cholesterol; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterolcholesterol; TBIL, total
rogenase; WBC,White blood cell count; NEU, neutrophil count;NEU%, Neutrophil percentage; Lym, lymphocyte count; Lym%,
ation rate measurement; PCT, procalcitonin;CRP, C-reactive protein; IL-6, interleukin-6; Ccr, endogenous creatinine clearance;
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group old (n = 72) young (n = 66) p bro (n =

PBMC, Median (Q1,Q3) 0.47 (0.33, 0.6) 0.47 (0.33, 0.62) 0.947 0.62 (0.41,

PBMC%, Mean ± SD 6.28 ± 2.48 6.76 ± 2.07 0.212 6.53 ± 2.48

RBC, Median (Q1,Q3) 3.72 (3.43, 4.26) 4.24 (3.92, 4.59) < 0.001 3.91 (3.66,

PLT, Median (Q1,Q3) 210.5 (164, 267.75) 246 (195.5, 296) 0.028 247 (216.5,

ESR, Median (Q1,Q3) 71 (51, 100.5) 63.5 (32.5, 93) 0.198 66 (26.5, 79

C-reactive protein, Median (Q1,Q3) 13.39 (2.51, 47.07) 3.86 (0.8, 25.98) 0.026 5.63 (0.85,

procalcitonin, Median (Q1,Q3) 0.1 (0.04, 0.27) 0.06 (0.04, 0.21) 0.344 0.17 (0.04,

interleukin-6, Median (Q1,Q3) 3.63 (0.02, 32.33) 3.19 (0.01, 23.05) 0.209 0.05 (0.01,

Ccr, Median (Q1,Q3) 71.55 (53.2, 85.52) 95.5 (74.42, 110.72) < 0.001 83.5 (62.6,

Scr, Median (Q1,Q3) 65.2 (54, 83.3) 62.6 (55.75, 74.95) 0.457 62.2 (52.25

b2 microglobulin, Median (Q1,Q3) 2.65 (1.73, 3.31) 1.89 (1.53, 2.55) < 0.001 1.76 (1.29,

Potassium, Mean ± SD 3.91 ± 0.55 3.82 ± 0.45 0.268 3.91 ± 0.47

sodium, Mean ± SD 140.25 ± 4.56 139.67 ± 2.89 0.369 140.35 ± 3.

Chlorine, Median (Q1,Q3) 104.9 (102.15, 108.15) 106.1 (103.81, 108.27) 0.1 105.4 (102.

calcium, Mean ± SD 2.1 ± 0.13 2.19 ± 0.13 < 0.001 2.12 ± 0.12

Inorganic phosphate, Mean ± SD 0.95 ± 0.24 1.1 ± 0.27 < 0.001 1.05 ± 0.35

magnesium, Median (Q1,Q3) 0.86 (0.79, 0.94) 0.86 (0.79, 0.91) 0.604 0.88 (0.82,

uric acid, Median (Q1,Q3) 245.65 (180.34, 306.28) 245.6 (189.4, 314.17) 0.664 227.3 (174.

iron, Median (Q1,Q3) 8.38 (4.78, 12.91) 10.88 (6.62, 14.64) 0.081 10.17 (6.41

NIPPV, non invasive positive pressure ventilation; 2hPG, 2-hour postprandial blood glucose; HbA1c, Hemoglobin A1C; TG, Triglycerides; TC,
bilirubin; TP, Total protein; ALB, Albumin; GLB, globulin; ALT, Alanyl aminotransferase; AST, aspartate aminotransferase; LDH, lactate dehyd
lymphocyte percentage; PBMC, Peripheral blood mononuclear cell; RBC, red blood cell count; PLT, platelet count; ESR, Erythrocyte sedimen
Scr, Serum creatinine; b2-MG, b2 microglobulin; UA, uric acid.
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3.2.3 Merging the fungal infection groups
In the grouping of fungal and bacterial infections (Figure 4A), we

observed that the fungal infection group exhibited a higher abundance

of Acinetobacter, Pseudomonas, Klebsiella, and Stenotrophomonas at

the genus level. Aspergillus predominated among fungal infections,

while viral infections included Simplexvirus. At the species level,

dominant microorganisms in the fungal infection group included

Acinetobacter baumannii, Pseudomonas aeruginosa, Aspergillus

fumigatus, and Corynebacterium striatum, while viral infections

featured Human alphaherpesvirus 1. In contrast, the group without

fungal infections showed a higher abundance of Methylobacterium at

the genus level, and Pseudomonas aeruginosa and Mycobacterium
Frontiers in Cellular and Infection Microbiology 07
tuberculosis at the species level. a-diversity analysis (Figure 4B)

indicated that the non-fungal infection group had higher Richness

compared to the fungal infection group, suggesting increased

abundance of microbial taxa and a more diverse and stable

microbial ecosystem. b-diversity analysis (Figure 4C) also revealed

significant differences in microbial composition between the two

groups, indicating meaningful grouping. Moreover, LEfSe analysis

(Figure 4D) demonstrated distinct microbial compositions in the

fungal infection group compared to the non-fungal infection group,

with notable bacteria such as Pseudomonas aeruginosa, Acinetobacter,

and Chryseobacterium bernardetii, and viruses including Human

gammaherpesvirus 4 (EBV) and Human betaherpesvirus 5.
B C

D

A

FIGURE 2

Microbial characteristics across age groups in patients with pulmonary infections. (A) The distribution of the top 15 microbial taxa at the genus level
and species level. (B) Analysis of microbial alpha diversity. (C) Analysis of microbial beta diversity. (D) LEfSe analysis was performed on young and old
groups of microorganisms to demonstrate the distribution of the top 30 microorganisms at the species level.
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Additionally, there were differential abundances of fungal species such

as Candida albicans, Aspergillus oryzae, and Aspergillus fumigatus in

the fungal infection group. In contrast, the non-fungal infection group

was characterized by higher abundances of Methylobacterium at the

genus level, and Haemophilus influenzae, Cutibacterium acnes,

Filifactor alocis, and Labrys sp. KNU 23 at the species level.
3.3 Correlation analyses

Next, correlation analysis was conducted on the top 30 bacteria

in the six groups based on an LDA threshold of LDA>=2 and p-

value <= 0.05. Positive correlations were observed between
Frontiers in Cellular and Infection Microbiology 08
Methylobacterium, Neisseria, and Capnocytophaga at the species

level in the young group, while a negative correlation was noted

betweenMethylobacterium andHuman gammaherpesvirus 4 (EBV),

Enterococcus faecium in the elderly group (Figure 5A).

Furthermore, the analysis (Figure 5B) revealed positive

correlations between ycolicibacterium neoaurum and Cupriavidus

sp ISTL7 in the bronchiectasis group with merging bronchiectasis,

while the non-merging bronchiectasis group showed positive

correlations among most symbiotic bacteria. Subsequently,

significant negative correlations were identified between

Acinetobacter bacteria (Acinetobacter sp FDAARGOS 494,

Acinetobacter sp FDAARGOS 560) and certain bacterial species

from Methylobacterium, Stenotrophomonas maltophilia,
B C

D

A

FIGURE 3

Microbial characteristics in patients with merging bronchiectasis and non-merging group in lower respiratory tract infections. (A) The distribution of
the top 15 microbial taxa at the genus level and species level. (B) Analysis of microbial alpha diversity. (C) Analysis of microbial beta diversity. (D)
LEfSe analysis was performed on two groups of microorganisms to demonstrate the distribution of the top 30 microorganisms at the species level.
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Cutibacterium acnes, Phyllobacterium sp 628, Labrys sp KNU 23,

and Pseudomonas aeruginosa in the merging fungal infection

group (Figure 5C).

To explore the association between clinical medication, clinical

indicators, and bacterial presence in clinical diagnosis and treatment,

a machine learning approach was employed to identify key variables

for the bronchiectasis group based on patients’ clinical characteristics.

A total of 31 key bacteria (Figure 5D), 14 clinical indicators, and 14

medications were identified through feature selection. Subsequently,

correlation analysis was performed. Significant associations were

observed between Luteitalea pratensis and key markers of

inflammation, including C-reactive protein, Procalcitonin, and

lymphocyte percentage. Hymenobacter sp. APR13 exhibited
Frontiers in Cellular and Infection Microbiology 09
correlations with C-reactive protein and Procalcitonin, while

Staphylococcus phage StB12 was associated with erythrocyte

sedimentation rate (ESR). Streptococcus virus 2972 showed a

correlation with Procalcitonin, and Leptotrichia buccalis

demonstrated a correlation with interleukin-6. In terms of liver

function markers, Gimesia fumaroli displayed correlations with

aspartate aminotransferase and total cholesterol. Prosthecochloris

sp. HL-130-GSB and Spirosoma aerolatum were related to aspartate

aminotransferase. Additionally, correlations were observed among

Elizabethkingia anophelis, Fusobacterium necrophorum, and

magnesium, globulin, and creatinine. In the correlation between

bacteria and drugs (Figure 5E right), associations were noted

between Glucocorticoids and Leptotrichia buccalis, Pelodictyon
B C

D

A

FIGURE 4

Microbial characteristics in patients with merging fungal infections and non-merging group in lower respiratory tract infections. (A) The distribution
of the top 15 microbial taxa at the genus level and species level. (B) Analysis of microbial alpha diversity. (C) Analysis of microbial beta diversity. (D)
LEfSe analysis was performed on two groups of microorganisms to demonstrate the distribution of the top 30 microorganisms at the species level.
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luteolum, and Staphylococcus phage StB12. Piperacillin was associated

with Lacunisphaera limnophila and Staphylococcus phage StB12, while

Voriconazole was correlated with Fusobacterium nucleatum. Human

albumin injection showed relationships with Gimesia fumaroli, and

cephalosporin drugs demonstrated associations with Fusobacterium

pseudoperiodonticum and Fusobacterium periodonticum.
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3.4 Machine learning prediction models

To evaluate the predictive influence of bacteria on

hospitalization duration in patients with lower respiratory tract

infections, we divided the hospital stay days of all patients into two

groups: a short group and a long group, based on the median value
B

C D

E

A

FIGURE 5

Correlation analysis was performed between two groups within each cluster and the key bacteria in the bronchiectasis group. (A–C) Microbial
correlations among the control groups of different age groups, bronchiectasis groups, and fungal groups were analyzed based on the top 30
microorganisms identified through LEfSe analysis. (D) A total of 31 bacterial features were selected based on RFECV feature selection from the
bronchiectasis group and the control group. (E) Based on the clinical data characteristics of the patients, feature variables were selected through
machine learning. After screening, 31 key bacteria, 14 clinical indicators, and 14 medications were identified in the bronchiectasis group. Correlation
analysis was then conducted. Left panel: Analysis of the correlation between clinical indicators and key bacteria. Right panel: Analysis of the
correlation between medications and key bacteria on the right.
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of 13. Furthermore, we utilized machine learning techniques to

develop a predictive model, incorporating the selected variables

(Supplementary Tables S4, S5). Remarkably, in the random forest

models constructed separately based on clinical indicators and

bacteria, the model incorporating bacteria demonstrated superior

predictive performance (Figure 6).
4 Discussion

4.1 Age

Pseudomonas aeruginosa is a Gram-negative bacterium that can

survive in various environments and is widely distributed (Silby et al.,

2011). As the age of patients infected with Pseudomonas aeruginosa

increases, the number of drug-resistant strains also increases (Hu

et al., 2019). In the elderly group, the most prevalent genera in BALF

are Pseudomonas, with Pseudomonas aeruginosa being the dominant

species. In contrast, the microbial abundance in the young group is

noticeably different. Mycobacterium tuberculosis, the causative agent

of tuberculosis, shows a significant correlation with age, with a higher

likelihood of transmission and infection in younger individuals

(Borgdorff et al., 2001; Yang et al., 2012). Haemophilus influenzae,

a common inhabitant of the oral and respiratory tracts, is a

characteristic respiratory microbiota dominated by Streptococcus

and Haemophilus (Haemophilus influenzae) in the young group

compared to the old group. Additionally, Corynebacterium

striatum, a highly abundant species in the genus Corynebacterium,

is normally found in various mucosal locations such as human skin

and the nasopharynx (Funke et al., 1997). There are reports

suggesting that Corynebacterium striatum is increasingly recognized

as an infection-related bacterium (Dıéz-Aguilar et al., 2013; Yang

et al., 2018). In 2018, researchers in the United States reported three
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cases of community-acquired pneumonia (CAP) with strains

predominantly belonging to the genus Corynebacterium, indirectly

indicating a close association between the genus Corynebacterium

and lower respiratory tract infections (Yang et al., 2018). However,

most elderly individuals have compromised immune function, which

is a prerequisite for Corynebacterium infection (Nudel et al., 2018; Lee

et al., 2022).Acinetobacter baumannii is the most common bacterium

in mechanically ventilated patients (Xie et al., 2018), and the rising

antimicrobial resistance of Acinetobacter has led to a broader

recognition that it is no longer exclusively a nosocomial pathogen

in elderly individuals. It is extensively prevalent in long-term acute

care facilities, nursing homes, and the community (Sengstock et al.,

2010). Our results show that the majority of patients infected with

Acinetobacter baumannii are in the old group. In the old group,

Methylobacterium mesophilicum and Rothia mucilaginosa are

opportunistic infection bacteria associated with immunodeficiency

(Sanders et al., 2000; Chavan et al., 2013; Maraki and Papadakis,

2015), although only a few cases have been reported (Sanders et al.,

2000; Engler and Norton, 2001; Maraki and Papadakis, 2015). While

individual cases of Rothia mucilaginosa infection have been reported

in patients with normal immune function (Baeza Martıńez et al.,

2014), it is not a primary consideration for lower respiratory tract

infections in patients. As for Prevotella, it primarily resides in the

intestines and oral cavity (Tett et al., 2021). Although the diversity of

Prevotella is related to the host’s diet and lifestyle, it also plays a

critical role in maintaining human health and disease (Tett et al.,

2021). Related studies have shown that Prevotella can regulate

inflammatory responses (Marietta et al., 2016) and some lung

inflammation (Bernasconi et al., 2016), may be associated with

respiratory dysbiosis (Welp and Bomberger, 2020). In terms of

fungi, we also observed Aspergillus fumigatus, a representative of

the Aspergillus genus. Aspergillus fumigatus is the most common

species in the Aspergillus genus, but fungal infections often have few
FIGURE 6

A comparison of machine learning models under different predictor variables was conducted. Based on microbial and clinical indicators, machine
learning models using random forest were constructed to predict patients’ length of hospital stay. The term “Accuracy” refers to the proportion of
correctly classified samples to the total number of samples. The Receiver Operating Characteristic (ROC) curve is a comprehensive indicator that
reflects the sensitivity and specificity of continuous variables. “Precision,” also known as positive predictive value, represents the proportion of true
positive samples among predicted positive samples. “Recall,” also known as sensitivity, represents the proportion of true positive samples among all
positive samples. The F1 score is a weighted average of precision and recall. Delong test, p<0.05(0.0284629), the statistical significance
was significant.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1385562
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1385562
notable characteristics and the pathogen may not be detectable for a

long time. Therefore, diagnosing fungal infections in patients with

normal immune function can be challenging, especially as age

increases and immune function declines (Zhang et al., 2014; Zhou

et al., 2023). A multicenter retrospective study has shown that virus

reactivation is associated with an increased risk of mortality in

patients (Huang et al., 2023). Our LEfSe analysis reveals that the

old group has a greater number of common pathogenic

microorganism species compared to the young group, such as

Human gammaherpesvirus 4 (EBV) and Human betaherpesvirus 5.

In the young group, the majority of microorganisms are symbiotic

bacteria in the oral cavity and upper respiratory tract, whereas a

negative correlation exists between Methylobacterium and Human

gammaherpesvirus 4 (EBV) and Enterococcus faecium in the

old group.
4.2 Bronchiectasis

Pseudomonas aeruginosa is among the most commonly isolated

pathogens in the sputum of bronchiectasis patients, whether in the

stable or exacerbation phase of the disease in clinical settings

(Tunney et al., 2013; Lin et al., 2016). Moreover, Pseudomonas

aeruginosa is a significant risk factor for the severity and prognosis

of bronchiectasis (Loebinger et al., 2009; Wang et al., 2018). In the

combined bronchiectasis group, Pseudomonas is the most abundant

genus, with Pseudomonas aeruginosa being the predominant

spec i e s . In the non-merg ing bronch i ec t a s i s g roup ,

Methylobacterium genus belongs to the opportunistic infection

bacteria (Sanders et al., 2000) and is commonly colonized in

various parts of the human body (Kaye et al., 1992; Liu et al.,

1997). Additionally, the relative abundance of Pseudomonas and

Pseudomonas aeruginosa is lower than that in merging the

bronchiectasis group. Haemophilus influenzae is significantly

associated with the severity of bronchiectasis (Purcell et al., 2014).

Within the combined bronchiectasis group, we also found that its

relative abundance ranks second. In merging bronchiectasis group,

their relative abundance ranks second. Additionally, Klebsiella

pneumoniae is a bacterium that distinguishes the merging

bronchiectasis group from non-merging group and aligns with

previous studies (Huang et al., 2020). Moreover, our study

identified significant differences in Acinetobacter baumannii, a

bacterium of the Acinetobacter genus, between the merging and

non-merging bronchiectasis groups. This disparity extends beyond

relative abundance to include variations in the presence of other

bacteria within the Acinetobacter genus across these groups. In

terms of fungi and viruses, although there is no significant difference

at the species level between the two groups, The relative abundance

of common fungi (such as Aspergillus) and Alphainfluenzavirus was

higher in the merging bronchiectasis group compared to the non-

merging group. In terms of a-diversity, Many studies have

indicated that the occurrence of diseases can lead to a reduction

in microbial diversity (Oriano et al., 2020; Liu et al., 2023; Wu et al.,

2023), our research similarly demonstrates a decrease in microbial

diversity in the merging bronchiectasis group. Particularly

noteworthy in the LEfSe analysis is the significant difference in
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bacteria, including Cupriavidus sp. ISTL7, which is commonly

found in the human environment (Gupta et al., 2019, 2021) and

the significant difference in Pseudomonas phage JBD93, indirectly

reflecting the changes in Pseudomonas aeruginosa in this group.

This is similar to an arms race between bacteria and phages, and

phages may directly participate in interactions with immune cells

and play a role in immune regulation (Lepage et al., 2008; Letarov

and Kulikov, 2009). The rise of bacterial drug resistance has sparked

considerable interest in the relationship between bacteriophages

and Pseudomonas aeruginosa (Haddock et al., 2023), along with a

renewed focus on phage therapy (Fujiki et al. , 2023).

Mycolicibacterium neoaurum, a mycobacterium opportunistic

infection, was previously mainly found in immunocompromised

individuals (Pang et al., 2022). However, there have been more

reports of infections in cases that have undergone invasive medical

examinations or surgeries (Shapiro et al., 2023). In the mouse

experiment, it was demonstrated that Mycolicibacterium

neoaurum enhances the suppressive activity of regulatory T cells

(Tregs) and increases the mortality rate in cases of Salmonella co-

infection (Wang et al., 2020). We also found a positive correlation

betweenMycolicibacterium neoaurum and Cupriavidus sp. ISTL7 In

the merging bronchiectasis group.
4.3 Fungus

In the merging fungal infection group, in addition to

Aspergillus, especially Aspergillus fumigatus, which has a relatively

high abundance, Acinetobacter and Pseudomonas, including

Acinetobacter baumannii and Pseudomonas aeruginosa, show the

highest abundance. This is consistent with previous studies (Zhao

et al., 2021). It has been reported that Acinetobacter and fungal

infections are correlated as two related pathogenic microorganisms

(Thoma et al., 2022). Previous studies have also reported that the

colonization of Candida in the respiratory tract of patients increases

the risk of Pseudomonas ventilator-associated pneumonia (Azoulay

et al., 2006). In the LEfSe analysis of this group, Candida albicans,

Aspergillus oryzae, and Aspergillus fumigatus were found to be

significantly different from the non-merging fungal infection

group. Therefore, we speculate that there is a strong correlation

between Acinetobacter, Pseudomonas aeruginosa, and fungal

infections. Generally, in healthy individuals, innate immunity

serves as a barrier against Aspergillus infection. However,

individuals with compromised immune function are more

vulnerable to Aspergillus infection, particularly in combination

with viral infections (Huang et al., 2023). At the viral species

level , Human gammaherpesvirus 4 (EBV) and Human

betaherpesvirus 5 are distinguishable from the non-merging

fungal infection group. And Methylobacterium is the most

abundant in the non-fungal infection group. Meanwhile, the non-

merging fungal infection group has a higher richness compared to

the merging fungal infection group. A higher abundance microbial

ecosystem is usually considered more diverse and stable.

Additionally, there are species differences between the two

groups. The correlation heatmap demonstrates a significant

negative correlation between Acinetobacter bacteria (Acinetobacter
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sp. FDAARGOS 494, Acinetobacter sp. FDAARGOS 560), and some

common environmental bacteria, suggesting possible competition

between Acinetobacter and these bacteria (Littman and

Pamer, 2011).
4.4 Correlation analysis

We conducted further analysis on the correlation between drugs

and bronchiectasis -associated infection bacteria. Leptotrichia buccalis

is a normal oral bacterium, and there have been isolated reports of it

causing severe infectious cavitary pneumonia and sepsis in

immunocompromised patients (Morgenstein et al., 1980). The genus

Staphylococcus is a common bacterium in the human living

environment, and Staphylococcus phage StB12 is closely associated

with Staphylococcus. It participates in the encoding and evolution of

virulence genes and antibiotic resistance in Staphylococcus (Brüssow

et al., 2004). Therefore, our study elucidates the correlation between the

use of glucocorticoids and penicillin-like drugs, such as pipracillin, and

the prevalence of these phages. While phage therapy has a long-

standing history and has been extensively explored in medicine

(Samson et al., 2023), it remains uncertain whether these drugs are

indirectly or directly related to bacteriophages. As for cephalosporin

drugs and voriconazole, Fusobacterium is the main related bacteria.

Literature reports have shown that culturing of Fusobacterium

nucleatum supernatant induces the expression of SARS-CoV-2

receptor ACE2 and the production of interleukins IL-6 and IL-8 in

alveolar epithelial cells, exacerbating SARS-CoV-2 infection (Takahashi

et al., 2021). There is also evidence to suggest that Fusobacterium may

have a potential role in protecting the oral mucosa from SARS-CoV-2

infection (Nardelli et al., 2021). In our study, we demonstrated an

association between pipracillin, voriconazole, and the presence of

Fusobacterium, which requires further experimental research to

determine whether Fusobacterium is an enemy or friend in patients

with bronchodilator. In the correlation analysis of clinical indicators

and infection bacteria related to bronchiectasis. Previous studies have

found a correlation between CRP and Pneumocystis jirovecii in

patients with non-HIV immunodeficiency (Zhao et al., 2022), as well

as a correlation between monocyte count and fungal infections (Wang

et al., 2022). Magnesium is usually considered to have anti-

inflammatory effects (Tam et al., 2003), but there are reports that in

animal experiments, magnesium may inhibit neutrophil oxidative

burst, which is harmful for chronic diseases (Bussière et al., 2002).

However, only bacteria such as Pseudomonas aeruginosa were

discussed, and we speculate that some common environmental

bacteria, including Fusobacterium and Prevotella, are also involved.
4.5 Machine learning

Machine learning applications in disease diagnosis (Lai et al.,

2024), complication prediction (Pax et al., 2024), and forecasting of

factors such as bacterial drug resistance and predictive models for

bacteriophage therapy of Escherichia coli urinary tract infections
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have demonstrated promising predictive efficacy (Hu et al., 2023;

Dixit et al., 2024; Keith et al., 2024; Nsubuga et al., 2024).

Additionally, numerous clinical machine learning prediction

models have been developed to predict disease prognosis and

survival time by collecting large-scale clinical features (Kogan

et al., 2022; Li et al., 2022; Tang et al., 2022; Li et al., 2023),

demonstrating excellent predictive performance. However, in the

actual treatment of patients with lower respiratory tract infections

(Sethi, 2010; Jain et al., 2015), the complex relationships between

microorganisms must be considered. Microorganisms are

important reference factors, and it is crucial to understand the

relationship between microorganisms and time of hospital stay

during the diagnosis and treatment process. The relationship

between bacteria and time of hospital stay remains understudied.

Our developed machine learning prediction model revealed that

incorporating specific bacteria as predictors for the time of

hospitalization in cases of lower respiratory tract infections

resulted in significantly improved predictive accuracy. This novel

insight offers a fresh perspective in patient care, and we anticipate

that by advancing our ability to precisely detect microorganisms, we

can further tailor individualized treatment strategies.
5 Conclusion

In conclusion, we initially scrutinized the microbial community

characteristics based on age, the presence of bronchiectasis-related

infection, and fungal infection. Furthermore, we examined the

correlation between the microbial community and clinical

indicators, as well as treatment medications in the bronchodilator

group. Finally, leveraging machine learning techniques, we

juxtaposed specific microbial features with clinical attributes to

assess the predictive efficacy of patient hospital stay duration. These

findings elucidate the variances in microbial community

characteristics in lower respiratory tract infections across diverse

conditions and underscore the potential of bacterial features in

forecasting the length of patient hospitalization.
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Dıéz-Aguilar, M., Ruiz-Garbajosa, P., Fernández-Olmos, A., Guisado, P., Del Campo,
R., Quereda, C., et al. (2013). Non-diphtheriae Corynebacterium species: an emerging
respiratory pathogen. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc Clin.
Microbiol. 32, 769–772. doi: 10.1007/s10096-012-1805-5
Dixit, A., Freschi, L., Vargas, R., Gröschel, M. I., Nakhoul, M., Tahseen, S., et al.
(2024). Estimation of country-specific tuberculosis resistance antibiograms using
pathogen genomics and machine learning. BMJ Glob. Health 9, e013532.
doi: 10.1136/bmjgh-2023-013532

Engler, C., and Norton, R. (2001). Recurrent Methylobacterium mesophilicum sepsis
associated with haemodialysis. Pathol. (Phila.) 33, 536–537. doi: 10.1080/
00313020120083331

Fenn, D., Abdel-Aziz, M. I., Van Oort, P. M. P., Brinkman, P., Ahmed, W. M., Felton,
T., et al. (2022). Composition and diversity analysis of the lung microbiome in patients
with suspected ventilator-associated pneumonia. Crit. Care 26, 203. doi: 10.1186/
s13054-022-04068-z

Fujiki, J., Nakamura, K., Nakamura, T., and Iwano, H. (2023). Fitness trade-offs
between phage and antibiotic sensitivity in phage-resistant variants: molecular action
and insights into clinical applications for phage therapy. Int. J. Mol. Sci. 24, 15628.
doi: 10.3390/ijms242115628

Funke, G., von Graevenitz, A., Clarridge, J. E., and Bernard, K. A. (1997). Clinical
microbiology of coryneform bacteria. Clin. Microbiol. Rev. 10, 125–159. doi: 10.1128/
CMR.10.1.125

Gupta, J., Rathour, R., Maheshwari, N., and Shekhar Thakur, I. (2021). Integrated
analysis of Whole genome sequencing and life cycle assessment for
polyhydroxyalkanoates production by Cupriavidus sp. ISTL7. Bioresour. Technol.
337, 125418. doi: 10.1016/j.biortech.2021.125418

Gupta, J., Rathour, R., Singh, R., and Thakur, I. S. (2019). Production and
characterization of extracellular polymeric substances (EPS) generated by a
carbofuran degrading strain Cupriavidus sp. ISTL7. Bioresour. Technol. 282, 417–
424. doi: 10.1016/j.biortech.2019.03.054

Haddock, N. L., Barkal, L. J., Ram-Mohan, N., Kaber, G., Chiu, C. Y., Bhatt, A. S.,
et al. (2023). Phage diversity in cell-free DNA identifies bacterial pathogens in human
sepsis cases. Nat. Microbiol. 8, 1495–1507. doi: 10.1038/s41564-023-01406-x

Hu, Y.-Y., Cao, J.-M., Yang, Q., Chen, S., Lv, H.-Y., Zhou, H.-W., et al. (2019). Risk
factors for carbapenem-resistant pseudomonas aeruginosa, Zhejiang Province, China.
Emerg. Infect. Dis. 25, 1861–1867. doi: 10.3201/eid2510.181699
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcimb.2024.1385562/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1385562/full#supplementary-material
https://doi.org/10.1378/chest.129.1.110
https://doi.org/10.1016/j.arbr.2014.09.008
https://doi.org/10.1016/j.arbr.2014.09.008
https://doi.org/10.1164/rccm.201512-2424OC
https://doi.org/10.1093/aje/154.10.934
https://doi.org/10.1128/MMBR.68.3.560-602.2004
https://doi.org/10.1079/BJN2001498
https://doi.org/10.3109/08880018.2013.783893
https://doi.org/10.3109/08880018.2013.783893
https://doi.org/10.1183/09031936.06.00058605
https://doi.org/10.1007/s10096-012-1805-5
https://doi.org/10.1136/bmjgh-2023-013532
https://doi.org/10.1080/00313020120083331
https://doi.org/10.1080/00313020120083331
https://doi.org/10.1186/s13054-022-04068-z
https://doi.org/10.1186/s13054-022-04068-z
https://doi.org/10.3390/ijms242115628
https://doi.org/10.1128/CMR.10.1.125
https://doi.org/10.1128/CMR.10.1.125
https://doi.org/10.1016/j.biortech.2021.125418
https://doi.org/10.1016/j.biortech.2019.03.054
https://doi.org/10.1038/s41564-023-01406-x
https://doi.org/10.3201/eid2510.181699
https://doi.org/10.3389/fcimb.2024.1385562
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Li et al. 10.3389/fcimb.2024.1385562
Hu, X., Zhao, Y., Han, P., Liu, S., Liu, W., Mai, C., et al. (2023). Novel Clinical mNGS-
Based Machine Learning Model for Rapid Antimicrobial Susceptibility Testing of
Acinetobacter baumannii. J. Clin. Microbiol. 61, e0180522. doi: 10.1128/jcm.01805-22

Huang, H.-Y., Chung, F.-T., Lo, C.-Y., Lin, H.-C., Huang, Y.-T., Yeh, C.-H., et al.
(2020). Etiology and characteristics of patients with bronchiectasis in Taiwan: a cohort
study from 2002 to 2016. BMC Pulm. Med. 20, 45. doi: 10.1186/s12890-020-1080-7

Huang, D. T., Yealy, D. M., Filbin, M. R., Brown, A. M., Chang, C.-C. H., Doi, Y.,
et al. (2018). Procalcitonin-guided use of antibiotics for lower respiratory tract
infection. N. Engl. J. Med. 379, 236–249. doi: 10.1056/NEJMoa1802670

Huang, L., Zhang, X., Pang, L., Sheng, P., Wang, Y., Yang, F., et al. (2023). Viral
reactivation in the lungs of patients with severe pneumonia is associated with increased
mortality, a multicenter, retrospective study. J. Med. Virol. 95, e28337. doi: 10.1002/
jmv.28337

Jain, S., Self, W. H., Wunderink, R. G., Fakhran, S., Balk, R., Bramley, A. M., et al.
(2015). Community-acquired pneumonia requiring hospitalization among U.S. Adults.
N. Engl. J. Med. 373, 415–427. doi: 10.1056/NEJMoa1500245

Kaye, K. M., Macone, A., and Kazanjian, P. H. (1992). Catheter infection caused by
Methylobacterium in immunocompromised hosts: report of three cases and review of
the literature. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc Am. 14, 1010–1014.
doi: 10.1093/clinids/14.5.1010

Keith, M., Park de la Torriente, A., Chalka, A., Vallejo-Trujillo, A., McAteer, S. P.,
Paterson, G. K., et al. (2024). Predictive phage therapy for Escherichia coli urinary tract
infections: Cocktail selection for therapy based on machine learning models. Proc. Natl.
Acad. Sci. U.S.A. 121, e2313574121. doi: 10.1073/pnas.2313574121

Kogan, Y., Robinson, A., Itelman, E., Bar-Nur, Y., Jakobson, D. J., Segal, G., et al.
(2022). Developing and validating a machine learning prognostic model for alerting to
imminent deterioration of hospitalized patients with COVID-19. Sci. Rep. 12, 19220.
doi: 10.1038/s41598–022-23553–7

Lai, C. K.-C., Leung, E., He, Y., Cheung, C.-C., Oliver, M. O. Y., Yu, Q., et al. (2024).
A machine learning-based risk score for prediction of infective endocarditis among
patients with Staphylococcus aureus bacteraemia - The SABIER score. J. Infect. Dis.,
jiae080. doi: 10.1093/infdis/jiae080

Lee, Y. W., Huh, J. W., Hong, S.-B., Jung, J., Kim, M. J., Chong, Y. P., et al. (2022).
Severe pneumonia caused by corynebacterium striatum in adults, Seoul, South Korea
2014–2019. Emerg. Infect. Dis. 28, 2147–2154. doi: 10.3201/eid2811.220273

Lepage, P., Colombet, J., Marteau, P., Sime-Ngando, T., Doré, J., and Leclerc, M.
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