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Introduction: Sharingmicrobiome data among researchers fosters new innovations

and reduces cost for research. Practically, this means that the (meta)data will have to

be standardized, transparent and readily available for researchers. The microbiome

data and associated metadata will then be described with regards to composition

and origin, in order tomaximize the possibilities for application in various contexts of

research. Here, we propose a set of tools and protocols to develop a real-time FAIR

(Findable. Accessible, Interoperable and Reusable) compliant database for the

handling and storage of human microbiome and host-associated data.

Methods: The conflicts arising from privacy laws with respect to metadata,

possible human genome sequences in the metagenome shotgun data and FAIR

implementations are discussed. Alternate pathways for achieving compliance in

such conflicts are analyzed. Sample traceable and sensitive microbiome data,

such as DNA sequences or geolocalized metadata are identified, and the role of

the GDPR (General Data Protection Regulation) data regulations are considered.

For the construction of the database, procedures have been realized tomake data

FAIR compliant, while preserving privacy of the participants providing the data.

Results and discussion: An open-source development platform, Supabase, was

used to implement the microbiome database. Researchers can deploy this real-

time database to access, upload, download and interact with humanmicrobiome

data in a FAIR complaint manner. In addition, a large language model (LLM)

powered by ChatGPT is developed and deployed to enable knowledge

dissemination and non-expert usage of the database.
KEYWORDS

database, fair principles, general data protection regulation (GDPR), (meta)data,
microbiome, pseudonymize, real-time
Abbreviations: AI, Artificial Intelligence; API, Application Programming Interface; CSV, Comma Separated

Values; CVT, Controlled Vocabulary Terms; DNA, Deoxy Ribonucleic Acid; FAIR, Findable. Accessible,

Interoperable and Reusable; GDPR, General Data Protection Regulation; IP, Intellectual Property; LLM,

Large Language Model; NMDC, National Microbiome Data Collaborative; MIxS, Minimum Information

about any (x) Sequence; SQL, Structured Query Language; SSO, Single Sign-On.
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GRAPHICAL ABSTRACT
1 Introduction

1.1 Data and data sharing

Data sharing facilitates collaboration between researchers and

therefore could lead to new findings as various disciplines and

research groups utilize the data differently (Yoong et al., 2022). The

FAIR principles are standards by which data can be more easily

exchanged, preserved, and curated for research purposes (Chue Hong

et al., 2021). The downstream reuse of data would often run into

significant issues, such as incomplete metadata, absence of raw data, or

incompatibility of software, leading to datasets being practically

unusable outside of the primary research case for which they were

conceived (Roche et al., 2015). Crucially, in development of machine

learning techniques, the efficiency of the algorithms relies heavily on the

quality of the labels (Willemink et al., 2020; Wilding et al., 2022). In

such cases, standardizing the metadata would enable the generation of

high quality labels and help systematize the label generation process.

Machines can thenmore easily query the database for the right data and

perform operations on it, while researchers, for example, can easily

combine datasets to get new insights. This removes the friction that

exists with different data formats and gives space for more efficient and

faster data handling, which results in new insights to evolve more

rapidly (Abuimara et al., 2022). Large numerical datasets, such as data

originating from multiscale simulation studies (Sheraton et al., 2019;

Béquignon et al., 2023), -omics (Subramanian et al., 2020) or imaging

studies (Bray et al., 2017; Baglamis et al., 2023), should be properly

categorized along with clearly described provenance. Additionally, the

origin and composition of the data will have to be described, to enable

data reconstructions in such a way that it cannot be misinterpreted. To

overcome these obstacles of non-standardized or flawed use of data and

to ensure proper data sharing, the Findability, Accessibility,

Interoperability and Reusability (FAIR) principles were introduced
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(Wilkinson et al., 2016). A FAIR compliant database makes it very

easy for all types of data to be discovered, since the metadata has been

standardized (Da Silva Santos et al., 2023). Every FAIR object (image,

table, text, etc.) or dataset should have a unique identifier assigned,

which should then be described with rich metadata. In a study

evaluating the FAIR4HEALTH initiative, the implementation of

FAIR principles has been proven to save researchers on average

approximately 56% of their time in data gathering and compilation

activities and approximately 16,800 euros per month in institution

funding, when conducting health research efforts (Martıńez-Garcıá

et al., 2023). There are additional contextual advantages such as

avoidance of the risk of repetition of research and expedited literature

gathering (Garabedian et al., 2022). FAIR compliance or open-data

availability requirements for scientific research is gradually becoming

crucial. There are requirements set out by funding agencies and journals

to make data open source. Advanced planning for FAIR set-up is

crucial to keep costs and implementation durations at minimal.

Retrospective FAIRification processes, such as in pharmaceutical

research and development (R&D) departments, have been show to

entail significant costs (Alharbi et al., 2021). Assuming a 2.5% cost of

total project budget for FAIR implementation, it has been shown to save

around €2.6 billion per year for EU Horizon 2020 projects (European

Commission, 2018). It is therefore imperative to incentivize and initiate

FAIR deployment at the early stages of a project rather than towards the

end of life of a project or after publication of research.

1.2 FAIR principles in the context of human
microbiome data

Here, the focus is on application of the FAIR principles to

human microbiome research. “Microbiome data” refers to the

genetic material that is collected and analyzed from a community

of microorganisms, such as bacteria, viruses, fungi, and other
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microbes, that live in a specific environment. Techniques such as

microbiome shotgun sequencing is one of the methods to generate

microbiome data. This involves breaking down the genetic material

from all the microorganisms in a sample into small fragments, or

reads. By comparing these reads to reference databases, researchers

can identify and quantify the different microorganisms present in

the sample, as well as determine the functions of the genes that are

present. When looking at microbiome data, for which, in this case,

the microbiome will be defined according to Berg et al. (2020) as “all

of the microbial components in a given ecosystem or plant, animal

or human system”, a few issues arise with FAIR compliance. There

are microbiome databases such as National Microbiome Data

Collaborative (NMDC) (The National Microbiome Data

Collaborative Data Portal: an integrated multi-omics microbiome

data resource, 2022) that focus on providing a FAIR-adherent

platform for storage of microbiome meta data. Microbiome data

from non-human systems, such as plant-associated or aquatic

ecosystems, which are not bound by intellectual property (IP) and

ethical considerations, could be readily uploaded to these platforms

with minimal filtering or data clean-up. However, the microbiome

(meta)data derived from humans, contains highly confidential

information such as fragments of human DNA. Consequently, it

is not permissible to disclose this data to the general public (Irving

and Clarke, 2019). If this pseudonymized or anonymized data were

to be made public and combined with the metadata of the dataset,

which includes information regarding for example the age, sex and
Frontiers in Cellular and Infection Microbiology 03
(approximate) location of the donor, it could lead to an intrusion on

the privacy of the donor, thus violating the GDPR (Gürsoy et al.,

2022). To enable open data publications, human (host) DNA data

scrubbing tools have been proposed. However, such tools do not

remove all human host DNA. Additionally, during this process, the

tools may incorrectly remove some non-host DNA data. Bad actors

could potentially use this partly scrubbed datasets and their

derivatives to orchestrate serious privacy violations. For example,

the identity of the donor could be derivable, and private medical

information could be traceable, such as possible health risks and

genetic mutations (Irving and Clarke, 2019).

Development of a FAIR database for human microbiome data

begins with establishment of unique identifiers. An object’s unique

identifier in a microbiome dataset could be a pseudonymized

identifier of a participant or a sample collection location, so that

longitudinal data can be traced in the metadata fields. These unique

identifiers are essential and can therefore not be redacted. Figure 1

summarizes the FAIR requirements for microbiome data and

practical difficulties associated with implementing such a system

with complete data transparency. A general question when

comparing the suggestions for data transparency, as proposed by

the FAIR principles, and the current GDPR privacy and data

legislation, is whether the two can coexist in a world where reuse

and transparency of scientific data is fully optimized, and the

privacy of donors is guaranteed. This means that the GDPR must

be satisfied prior to implementing FAIR principles. Here, we report
FIGURE 1

A summary of FAIR principles with respect to microbiome data. The end-dotted connections to microbiome data indicate the FAIR requirements
and the flathead connections indicate the practical considerations inhibiting FAIR deployment.
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on development and use of computational and data management

tools for striking a balance on implementing the various FAIR

principles without violating the privacy regulations.
2 Methods and Protocols

This section presents the protocols and tools we have designed

for use in the development of FAIR-complaint database for human

microbiome data. The protocols, codes and algorithms are available

through GitHub at https://github.com/SheratonMV/FAIRDatabase.
2.1 Database development

To successfully apply the FAIR principles to a database, the type

of database used is crucial. Microbiome data collection and storage

is a continuous process. This necessitates the database to be real-

time, so the data could be synchronized at all times. Any new

additions or changes done at sample collection level or processing

level would therefore immediately be reflected in the database, thus

ensuring accurate data for all users at all times. Next, to be FAIR-

compliant the database system itself should be open source. We rely

on Supabase, an open-source, real-time, relational database, which

suits our microbiome data well.

Since we handle sensitive (identifiable) information, the

database was deployed locally as to handle data in accordance

with GDPR guidelines. Additionally, we created a user interface to

access the database and upload new data. The database is built with

Python programming language (v3.10) and the corresponding

supabase_py (v0.02) module (Supabase Inc, ). Supabase offers

different authentication options for database access. For our

microbiome database, users can register with an email address

and password and later login with same credentials and

additional security measures such as two factor authorization or

Single Sign-On (SSO). The login and registration are handled by

Supabase functions, which are linked to dedicated authentication

for the tables within the database. After signing up, the user does

not get access to all functionalities (e.g. uploading is not possible for

a standard user, and data collected by an uploader may not be

available for other uploaders), and access rights can be modified by

the database moderator. Such restriction ensures that raw data entry

is carried out only at the sample collection point and prohibits data

corruption or manipulation by an intermediate user or the

uploader themself.

Unfortunately, Supabase currently neither offers table creation

outside of their own SQL-editor nor direct SQL querying. To enable

users to upload data in the database, the Python script for the user

interface had to be linked to a local SQL editor, which can

communicate with the database via SQL scripts directly. For this

connection, the open source Psycopg2 (version 2.9.6) package was

used (Varrazzo, ). This package offers direct connection to the

database and can execute SQL queries. The file uploaded is checked

for the right format, and then stored into the database. If the format

does not comply with FAIR principles, the file is first converted to
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complaint formats for data and metadata. Currently, the table

creation is limited by a soft lock on the Supabase database,

to1664 columns per table. In our database, 500 columns will be

set as a limit to an uploaded table. The remaining available columns

could later be used to add foreign keys to establish relationship

between various tables. If the table consists of more columns, the

table will be split up in multiple tables. The uploaded tables can be

previewed via the user interface. This preview shows the first 15

rows and 10 columns to give the user a visual idea of what the table

contains, as well as an overview of the metadata of the table

contents. The entire table or associated datasets can be

downloaded in CSV format, in accordance with the accessibility

principle. To find, filter and carry out privacy metric calculations on

the data, based on fields (column names) or metadata, the user can

also query the database on certain columns (i.e. DNA sequences)

and find corresponding datasets with the specified (pseudo- or

anonymized) data.
2.2 Data pipeline

Figure 2 shows the complete ten-step data pipeline, starting

from the sample collection from the donors and ending at the end-

user. The donor dataset containing microbiome data

(metagenomics shotgun data) is first filtered to remove all

identifiable human (DNA) data using host contamination

removal tool such as HoCoRT (Rumbavicius et al., 2023). The

samples are then pseudo- or anonymized, depending on the data

handling requirements, followed by removal of non-unique and

low-quality reads (Rumbavicius et al., 2023). This process is

described in Figure 2 at Step 3. Once this is complete, the data is

imported from the environment of the provider (shown as the top

rounded square) into our system (shown as the bottom rounded

square). Upon entering our environment, and prior to data

insertion into the database, a second round of quality control is

performed. Here, as seen in Step 6, the data is filtered, with the aim

of preventing any sensitive reads accidentally entering our database

including checks with the data privacy module. It is also pseudo- or

anonymized for a second time, so that, in the case of a leak at our

provider, there is no connection to our version of the data, or vice

versa. Step 6 is crucial to guaranteeing compliance with GDPR data

regulations. Once this step has been completed, the data is inserted

into the database, where it is stored and integrated with existing

data entries, based on the unique subject identifier, which will be

used as the primary key (step 7).

Once the data has been entered into the database, it can be

queried by the database users, subject to permissions received based

on their authorization level. Once signed in, a user can query and

view data, as shown in Step 8 and 9 of Figure 2. Users have varying

abilities to retrieve and view data based on their authorization levels,

with specific examples being demonstrated in steps 9 and 10 using

authorization levels A and B respectively. Thus, in the developed

pipeline, microbiome data could be anonymized at three stages, 1.

Filtering and removing donor’s personal data (association) from the

sequencing data with standardized keys at data provider site 2.
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Removal of human DNA data from metagenomics shotgun data

using host contamination removal tool. And 3. Secondary

anonymization or pseudonymization at the FAIR database

environment (site).
2.3 Large language model deployment

Utilizing Supabase’s inbuilt postgres vector database and AI

toolkit (Supabase Inc, ), we developed an interface to interact with

the database relying on a large language model (LLM). The current

implementation relies on scaffolding an edge function to forward

query to ChatGPT’s API access. The LLM vendor or software can be

switched by changing the API. Thus, the LLM could be locally

hosted and queried from the database, in the future, provided

sufficient computing resources are available.
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2.4 Throughput results

The database developed in this work was tested for its

throughput capabilities. To carry out the tests, we generated CSV

files containing values with various number of rows and columns.

The synthetic data was generated to closely resemble the count

matrices in microbiome data. The data upload results show that

uploading a file to the database is mostly a linear relation with

regards to the number of rows and columns (Figure 3).

As observed in Figure 3B, the time to upload a file roughly

doubles with doubling of the column size, for total number of

columns less than 10,000. However, for tables containing more than

10,000 columns, the upload time fluctuates depending on what the

total size is. As stated above, in Supabase, there is maximum of 1664

columns per table. For practical purposes, for Postgres tables, such

as in Supabase, a maximum of 2 (Huttenhower et al., 2023)
FIGURE 2

Human microbiome data collection workflow and data transfer pipeline from the donors to end users. The raw data at step 2 includes human
shotgun data, metadata and host-associated data such as age, ethnicity, health status.
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(approximately 4 billion) rows could be stored in a table. Tables

with more than 1664 columns were split into multiple sub-tables.

These sub-tables can then be queried as single large table by

establishing a common key, in our case sample donor id, for

establishing the relation between the tables. For this reason, the

column splitting limit per table was set to 500 for sub-table creation

and leaving space for columns to be added later to the table. We did

not observe significant upload time deviations based on rows and

columns count combinations, for instance 3000 rows and 4000

columns table upload speed took almost equal time as 4000 rows

and 3000 columns table upload, approximately 73 seconds.

Figures 4A, B show the speed of retrieving data from the tables.

To estimate this retrieval performance, a table and its related tables

were looked up in the database and all rows corresponding to the

tables were retrieved with an SQL query and later downloaded as
Frontiers in Cellular and Infection Microbiology 06
csv file. The retrieval times show an approximately linear trend

between the number of rows or columns queried and time

for retrieval.
3 Discussions

In this article, we designed and built a FAIR-compliant database

for storage of microbiome data. The FAIR principles were applied

to the database platform itself as well as the data. Due to privacy-

centric sensitivities associated with microbiome data, it is not

possible to implement the FAIR principles in a strict manner, as

that would require total transparency of data. As this database could

include human data (DNA) and metadata, unfiltered publication of

this data will both violate the privacy of the sample donors, and
B

A

FIGURE 3

Table upload speeds for varying number of columns and rows, (A) for different fixed number of rows and (B) for different fixed number of columns.
The colors refer to the fixed number of columns and rows respectively.
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breach GDPR. The database was built using the open source

Supabase platform. If authorized, users of the database can access,

upload and download datasets. As shown in the results section, the

linear scaling relation for data transfer speeds suggests that the

database is capable of handling large volumes of data efficiently

and proportionally to the underlying computing resources

(computational power and storage). Two or more different data

entries which were taken from the same donor by the same entity,

can be either linked in relational datasets, or appended to one

another. At the moment, due to Supabase functionality limits,

appending data would first require the manual addition of the

new columns to the existing table, before the data can be inserted.

The main requirement for this functionality is for the providing

entity to standardize its anonymization key (Abouelmehdi et al.,

2018), thus giving each individual donor a unique identifier. This

identifier can then be used across multiple sampling instances and

multiple datasets, throughout time, to identify and group data
Frontiers in Cellular and Infection Microbiology 07
entries per individual sample. The probability of a single sample

having multiple measurements in our database is minimized. The

only way this could be bypassed is if at a later date, the database

would receive datasets from multiple uploading entities providing

data from a single donor, then the donor would have had samples

taken at more than one of those entities as duplicates. In that case,

the donor would get a different unique identifier at each entity,

leading to them not matching when all the data is combined in

the database.

It can be concluded that the implementation of the FAIR

principles in microbiome data research is possible to some extent,

however, not completely. Other obstacles that we encountered were

on the extent of the database implementation protocols as modules

and the side effects that accompany it. Implementing these

compliance principles can take a lot of time and thus can be

expensive in terms of personnel hours. This comes hand in hand

with technical expertise required to handle microbiome data, as the
B

A

FIGURE 4

Table retrieval speeds for varying number of columns and rows, (A) for different fixed number of rows and (B) for different fixed number of columns.
The colors refer to the fixed number of columns and rows respectively.
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principles require all (meta)data to be standardized with Controlled

Vocabulary Terms (CVT) from appropriate MIxS standards

(Yilmaz et al., 2011) (minimum information about any (x)

sequence), formatted and managed with regards to access and

privacy. These obstacles have meant that the FAIR principles

could not be fully implemented in their original essence, however,

the remaining guidelines were still of great influence on the design

of database. To overcome the above discussed constraints, we have

provided three major modules in this work to adhere to the

mandatory privacy principles and facilitate FAIR compliance.
3.1 FAIR data format compliance module

Microbiome shotgun data file formats, such as sequence files,

FASTA or FASTQ, or count data, being plain-text format files, are

not inherently FAIR compliant by themselves. It is therefore

necessary to make them FAIR compliant by converting to

universal Column Separated Values (CSV) format. The converter

module converts such files into FAIR-complaint ‘.csv’ files

containing appropriate data tables and a separate metadata ‘.txt’

files. During the data upload process, the database automatically

scans the file types uploaded and raises appropriate error messages

if the upload file is not strictly FAIR adherent. By creating

comprehensive metadata about (or from) the dataset and strictly

following the CSV format for data structure, both the metadata and

data were made interoperable. This system allows the researchers to

effortlessly input new data and revise current records in real-time

and enables seamless querying, downloading, exhibition, and

merging of the datasets with other standardized external sources.
3.2 Data privacy module

The data privacy module in our database functions in two

distinct manners, (i) generation of privacy metrics and (ii)

integration pipeline for federated learning. In cases of datasets

containing social or demographic data of the microbiome data

donors, the privacy module can be deployed to calculate privacy

metrics, such as the entropy measure (to calculate the information

predictability of data) or L-diversity score (Machanavajjhala et al.,

2007). This way uploaded data that is personally identifiable can be

easily identified. This can be later rectified by methods such as k-

anonymity (Mayer et al., 2023) and e- differential privacy (Dong

et al., 2022). In our privacy module, we have provided an

implementation of k-anonymity measure on the data. Additional

functions can be easily added to this module at the data filtering

step, if needed.

There may arise situations where access to sensitive data may be

necessary for completion of research objective. In such cases,

federated learning could potentially mitigate the missing data

situation. In federated learning, no sensitive data or metadata is

shared with an end-user but rather all the computations required by

the third-party or end user are carried out locally, this process is

visually represented in Figure 5A. Only the results from this analysis

will be shared with the end-user. A couple of steps are required to
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implement such a system to ensure that the results shared with the

end-user are devoid of any unintended data leak. First, the output

structure should be known beforehand, even before running any

sensitive data analysis. Second, ensure that sensitive data cannot be

reconstructed from the results. One way to pre-generate output

against an end-user shared algorithm or program is to use synthetic

microbiome data (Hittmeir et al., 2022). This enables an initial

mock-run of the analysis to check against output structure and the

results or graphs generated. Some outlier data points such as

minority demographics could still be traceable in the generated

results. To alleviate any further issues arising from identifiable data

being present from the processed outputs, it is necessary to analyze

the results before issuing them to the end-user. This can either be

done by filtering the input with our privacy metric calculation

module and/or by investigating only with algorithms compliant

with privacy preserving analysis techniques (Gürsoy et al., 2022). To

ensure data security, we provide a modular pipeline that enables the

application of delegated learning techniques without revealing the

confidential information to the user. Our system integrates this

process directly into the database.
3.3 Accessibility enrichment module

Making scientific research findings accessible and

understandable to the general public is a crucial component of

FAIR data availability. Large language models can play a key role in

facilitating this process by transforming complex scientific

information into more relatable formats. These models can assist

in creating educational materials, generating reports for

policymakers, or answering questions from journalists and the

media, ultimately improving knowledge dissemination on various

levels within society. To ensure such accessibility at all levels of

research, in this study, we have deployed a LLM (ChatGPT-based)

via Supabase edge functions (Cao et al., 2020) to interpret data or

findings (Figure 5B). Such an LLM, even if trained only against

published literature from a study would enable broader knowledge

dissemination to people of all strata, for instance could help answer

a high school student’s question. This approach ensures FAIR is not

restricted to scientific researcher, but could be widely used by non-

researchers alike.

It is necessary to acknowledge the current lack of direct

incentives to promote FAIR among researchers. Huttenhower

et al. (2023) have provided some excellent pointers to incentivize

FAIRification of data. Some include financial incentives such as

prioritizing research proposals with FAIR compliance and

penalizing others could promote FAIR culture among researchers.

Even though they propose full deposition for publications, it may

not be straight forward in countries where data privacy laws stifle

FAIR principles. Workarounds such as the ones described in this

manuscript should be considered to promote egalitarian scientific

research irrespective of legal privacy considerations. Finally, the

current study is limited to dealing with common datatypes and

descriptors found in microbiome data. In presence of additional

datatypes or descriptors, it may be necessary to implement

additional privacy preservation metrics to ensure the data is non-
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identifiable. This is also true for validating outputs generated from

Federated learning approaches. Here, the outputs could vary vastly

based on the algorithms used. Even if the outputs themselves do not

make the data identifiable, combining them could render it

identifiable. Therefore, necessary algorithm screening techniques

will need to be developed and implemented.
4 Conclusions

Our considerations and resulting procedures open opportunities

for future thinking and research on conflicts between FAIR and

privacy laws (GDPR). One concept that could use exploration, is the

sharing of anonymization keys between healthcare data providers.

This would mean that data from two different entities on the same

patient could be merged, possibly creating new connections, trends

and scientific findings. Naturally, this also brings along new concerns

for privacy and data security, however, seeing as patient data is

already being shared between the world’s healthcare providers, it

could be a logical step to share patient’s anonymized aliases as well. A

second field of interest is how the research in this manuscript relates

to the rest of the world. In Europe, on which this work is based,
Frontiers in Cellular and Infection Microbiology 09
GDPR strictly govern data privacy and data use. In other parts of the

world, rules and regulations are different, meaning that if this

research had been conducted somewhere else, it could have led to

different procedures. The need for a harmonized global view on data

sharing in healthcare research is underscored by the upcoming efforts

in this field in Asia and Africa. Sharing healthcare data beyond

national and continental borders will greatly advance global

healthcare research, especially in the new territory of microbiome

and genomic data research. An exploration of these global

cooperative efforts, including the digital and legal infrastructure

needed to support them, could be a catalyst for new scientific

advancements and findings. In future, collaborations between

healthcare professionals, computational modelers, data scientists

and AI experts can be crucial in maximizing the potential of data

and technology in healthcare. Therefore, it is important to promote

interdisciplinary education and training programs that bring together

healthcare professionals, data scientists, and AI experts. The user

friendly nature of the framework developed in this manuscript should

help overcome technical difficulties associated with using FAIR

microbiome data. However, it is still crucial to ensure that future

physicians are better prepared to leverage these tools in delivering

patient care.
B

A

FIGURE 5

(A) Pipeline of federated learning from two different databases that are not connected with each other. (B) Deployment of Large Language Model
with Supabase via edge functions.
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