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Introduction: Changes in the human gut microbiome have been linked to

various chronic diseases, including chronic obstructive pulmonary disease

(COPD). While substantial knowledge is available on the genomic features of

fecal communities, little is known about themicrobiome’s transcriptional activity.

Here, we analyzed the metatranscriptomic (MTR) abundance of MetaCyc

pathways, SuperPathways, and protein domain families (PFAM) represented by

the gut microbiome in a cohort of non-small cell lung cancer (NSCLC) patients

with- or without COPD comorbidity.

Methods: Fecal samples of 40 NSCLC patients with- or without COPD

comorbidity were collected at the time of diagnosis. Data was preprocessed

using the Metaphlan3/Humann3 pipeline and BioCyc© to identify metabolic

SuperPathways. LEfSe analysis was conducted on Pathway- and PFAM

abundance data to determine COPD- and non-COPD-related clusters.

Results: Key genera Streptococcus, Escherichia, Gemella, and Lactobacilluswere

significantly more active transcriptionally compared to their metagenomic

presence. LEfSe analysis identified 11 MetaCyc pathways that were significantly

overrepresented in patients with- and without COPD comorbidity. According to

Spearman’s rank correlation, Smoking PY showed a significant negative

correlation with Glycolysis IV, Purine Ribonucleoside Degradation and

Glycogen Biosynthesis I , and a significant positive correlation with

Superpathway of Ac-CoA Biosynthesis and Glyoxylate cycle, whereas forced

expiratory volume in the first second (FEV1) showed a significant negative

correlation with Glycolysis IV and a significant positive correlation with

Glycogen Biosynthesis I. Furthermore, COPD patients showed a significantly

increased MTR abundance in ~60% of SuperPathways, indicating a universally

increased MTR activity in this condition. FEV1 showed a significant correlation

with SuperPathways Carbohydrate degradation, Glycan biosynthesis, and

Glycolysis. Taxonomic analysis suggested a more prominent MTR activity from

multiple Streptococcus species, Enterococcus (E.) faecalis, E. faecium and
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Escherichia (E.) coli than expected from their metagenomic abundance. Multiple

protein domain families (PFAMs) were identified as more associated with COPD,

E. faecium, E.coli, and Streptococcus salivarius, contributing the most to

these PFAMs.

Conclusion:Metatranscriptome analysis identified COPD-related subsets of lung

cancer with potential therapeutic relevance.
KEYWORDS

gut microbiome, metabol ic pathways , PFAMs, COPD, lung funct ion,
metagenome, metatranscriptome
Introduction

Changes in the human gut microbiome have been linked to a

variety of chronic diseases, including obesity, diabetes, inflammatory

bowel disease (IBD), cancer, and cardiovascular disease (Shreiner et al.,

2015). Although there is a substantial body of knowledge on the

metagenomic features of fecal communities (Human Microbiome

Project Consortium, 2012; Le Chatelier et al., 2013), little is known

about the microbiome’s transcriptional activity. The linkage between

the genotype and phenotype of the commensal gut flora might be

explained by understanding their metatranscriptome, which represents

the functional ecology of the human gut microbiome (Franzosa et al.,

2014; Abu-Ali et al., 2018). In a clinical setting, the unequivocal role of

the gut metatranscriptome and its distinction from metagenomics was

already shown in IBD (Schirmer et al., 2018), in metastatic melanoma

(Peters et al., 2019,) and murine inflammation models (Jovel

et al., 2022).

Chronic Obstructive Pulmonary Disease (COPD) represents an

enormous public health burden with an age-standardized incidence

of 1.46% in high-SDI- and 1.02% in middle-to-low-SDI countries.

The estimated prevalence of COPD is almost 10% in the 30-79 year-

old population, being responsible for 3.197 million deaths every

year worldwide (Wang et al., 2022; Li et al., 2023). In lung cancer

patients, COPD comorbidity poses an additional risk, with

significantly decreased overall survival, particularly in the case of

squamous cell carcinoma (Wang et al., 2018; Yi et al., 2018). COPD

may have a role in lung cancer development by increasing oxidative

stress and associated DNA damage, persistent exposure to pro-

inflammatory cytokines, inhibition of DNA repair systems, and

enhanced cellular proliferation (Papi et al., 2004; Barnes and

Adcock, 2011; Durham and Adcock, 2015; Young et al., 2015).

Both COPD and lung cancer were recently associated with

dysbiotic airway microbiota and commonly occur alongside

gastrointestinal (GI) disorders, possibly through the gut-lung axis

(Bingula et al., 2017; Dang and Marsland, 2019; Enaud et al., 2020;

Bulanda and Wypych, 2022; Qu et al., 2022). Comprehensive

metagenomic sequencing of the gut microbiome provided valuable
02
insights into differentially expressing taxa and changes in the

metabolome between healthy and COPD patients (Bowerman et al.,

2020; Li N. et al., 2021), and correlation with respiratory function

(Marfil-Sánchez et al., 2021). Recently, gut dysbiosis was also associated

with the frequency of viral pulmonary infections and declining lung

function in COPD patients (Sencio et al., 2021; Chiu et al., 2022). In

addition, others showed that the lipopolysaccharide component of

commensal bacterium Parabacteroides goldsteinii might have a pivotal

role in COPD pathogenesis (Lai et al., 2022). Despite multiple lines of

evidence of intricate gut-lung crosstalk possibly mediated by the

microbiome, these studies are based on genomic sequencing and

provide no insights into related metatranscriptomics.

In the present study, we compared the Metagenomic (MG) and

Metatranscriptomic (MTR) abundance of bacterial species and genera

using fecal samples of 40 non-small cell lung cancer (NSCLC) patients.

Furthermore, we classified patients according to COPD comorbidity

(COPD vs non-COPD) and revealed emerging metabolic pathways the

gut microbiome represents. We also aimed to analyze the taxonomic

representation of pathways and protein domain families (PFAMs) and

correlate them with essential respiratory function parameters, such as

Smoking, CAT score, or FEV1. This is the first study to compare gut

metatranscriptomic signatures according to COPD status and

respiratory function.
Materials and methods

Study population

A total of 40 patients diagnosed with NSCLC and receiving

standard-of-care therapy approved by the Institutional Oncology

Team were enrolled in our study cohort between 2019 and 2021 at

the County Hospital of Pulmonology, Torokbalint, Hungary. Table 1

shows the clinical parameters of the study cohort, where patients were

classified as non-COPD and COPD. Clinicopathological data

included age, gender, smoking pack year (PY), body mass index

(BMI, kg/m2), and COPD Global Initiative for Chronic Obstructive
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Lung Disease (GOLD) stadium at the time of lung cancer diagnosis.

Patients underwent COPD Assessment Test (CAT) to determine

their CAT score and measurement of Forced Expiratory Volume in 1

second (FEV1) within one week of obtaining fecal samples. All

patients were assessed with Eastern Cooperative Oncology Group

(ECOG) 0-1 performance status at the time of fecal sampling. Before

sampling, all COPD patients received standard-of-care therapy

according to the GOLD guidelines. Patients receiving systemic

antibiotic therapy or having acute exacerbation within three

months of fecal sampling were not included in the study cohort.

Sample processing

Patients were enrolled in the study after signing informed consent

and providing baseline stool samples collected within seven days of

diagnosis. All samples were stored in the -80°C freezer on the same

collection day until sequencing. The fecal samples were processed as

previously described (Dora et al., 2023b), in brief: 300 ml of cool 80%

aqueous methanol was added to homogenizer tubes for every 100 mg

of sample. The sample preparation procedures were carried out on dry

ice with cooled instruments. The Bead Ruptor 24 Elite (OMNI

International) with the Heart program (6 m/s, 30 s) was used to

homogenize the samples. The samples were then vortexed for 10

seconds before being centrifuged for 10minutes at 13,000 rpm and 4°C.

The supernatant was collected in a 96-well filter plate and centrifuged

for 5 minutes at 4°C at 700 g.
Shotgun metagenomic pipeline

We used 100 mg stool samples in ZR Bashing Bead Lysis Tubes

with ZymoBIOMICS 96 MagBead DNA kit for whole DNA

extraction. We used continuous bead beating for 40 minutes and

centrifuged the lysate for 1 min at 10,000 x g. 200 ml supernatant
Frontiers in Cellular and Infection Microbiology 03
was mixed with 25 ml ZymoBIOMICS™ MagBinding Beads, then

shaked for 10 minutes. After placing the tubes on a magnetic rack

and removing the supernatant, 500 ml ZymoBIOMICS™

MagBinding Buffer was added to each sample and mixed for 1

minute. The beads were pelleted and washed two times with 500 ml
of ZymoBIOMICS™ MagWash 1 and 900 ml ZymoBIOMICS™

MagWash 2, respectively, for 1 min. The beads were dried at 55°C

for 10 min. Then eluted in 50 ml RNAse/DNAse free water. The

DNA concentration was measured with a Qubit fluorimeter.

From each sample, 65 ng was used as input for library preparation

by KAPAHyperPlus kit as per the manufacturer instructions, with size

selection for ~200bp peak fragment size (TapeStation 2200, High

Sensitivity D1000 ScreenTape®). The samples were sequenced on the

NextSeq500 platform, 2x150bp, with ~10M read pairs.
Shotgun metatranscriptomic pipeline

Quick RNA Fecal/Soil Microbe Microprep kit (Zymo Research)

was used for RNA extraction, starting with 40 minutes of continuous

bead beating of 100mg stool sample with 1mL of S/F RNA Lysis Buffer

added. After centrifuging for 1 minute, 400 ml of supernatant was
filtered through (3000 x g, 30 seconds) in Zymo-Spin™ IIICG

Column2, mixed with 95% ethanol in a 1:1 ratio, and transferred to

a new Zymo-Spin™ IIICG Column2 for RNA binding. The column

was washed with 400 ml RNA Prep Buffer, then the RNA was eluted in

100 ml Nuclease-free water, and transferred to a prepared Zymo-Spin™

III-HRC Filter to be centrifuged at 8000 x g for 3 minutes. The filtered

RNA was mixed with 200 ml RNA binding buffer and an equal volume

of 95% ethanol. Themixture was loaded on Zymo-Spin™ IC Column2

and washed with RNAwash buffer for DNAse I treatment (5 ml DNAse
I, 35 ml DNA digestion buffer, incubation for 15 minutes) after the

supernatant was discarded. The treated RNA was washed in 400 ml
prep buffer 1x and RNA wash buffer 2x, then eluted in 15 ml RNAse/
DNAse free water. The isolated RNA’s concentration and integrity

were verified with a Qubit fluorometer (Qubit HS RNA kit,

Thermofisher) and Labchip GX Touch, RNA Pico Sensitivity Assay

(Perkin Elmer). For ribosomal depletion of RNA samples, 250 ng input

was used with NEBNext rRNA depletion kit v2 (human/mouse/rat)

and NEBNext rRNA depletion kit (bacteria) hybridization probes

(probes mixed with a ratio of 1:1) following the manufacturer’s

instructions, followed by library preparation using Nextflex Rapid

Directional RNA-Seq kit, following the manufacturer’s instruction,

with 12 min of fragmentation for a target library size of 320-430bp.

KAPA Single indexes for Illumina were used for indexing with

10 PCR cycles in the library preparation procedure. The final library

concentration and size were evaluated with a Qubit fluorometer,

Labchip GX Touch, and DNA NGS 3k assay. The samples were

sequenced on the NextSeq platform, 2x81bp, with ~20M read pairs.
Quality check

The adaptor-trimmed reads were quality-filtered to ensure a

minimum mean Q-score of 30. Quality checks were performed

using fast QC (Andrews, 2010), including removing adapter
TABLE 1 Clinicopathological characteristics of the patient cohort.

Non-COPD
N=16

COPD
N=21

p-value

Age [years (mean)] 62.13 (± 11.6) 60.9 (± 8.1) 0.103

Gender
male
female

8 (50%)
8 (50%)

9 (43%)
12 (57%)

0.746

Smokin PY (mean) 30.2 (± 12.3) 56.6 (± 27.4) 0.012*

Body mass index (BMI)
>30 kg/m2

≤30 kg/m2

N/A

5 (31%)
10 (63%)
1 (6%)

5 (24%)
13 (62%)
3 (14%)

>0.999

COPD Gold stadium
GOLD 1
GOLD 2
GOLD 3
GOLD 4

N/A 2 (10%)
4 (20%)
12 (57%)
3 (13%)

CAT score (mean) 6.8 (± 5.5) 12.1 (± 6.7) 0.049*

FEV1% 91.9 (± 11.5) 61.2 (± 15.3) <0.001***
Statistical significance *P < 0.05; ***P<.001, all p-values were two-sided.
N/A means data not available.
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regions, low-quality reads, and human DNA contaminations. This

process involved passing per sequence quality score, per base N

content, and adapter content assessments as outlined in bwa

(version 0.7.4-r385) (Andrews, 2010). The forward and reverse

reads were concatenated as recommended by the authors for the

analysis with Humann3 (version v3.0.0.alpha.4) (Beghini et al.,

2021) using the CHOCOPhlAn_201901 database, and the EC-

filtered uniref90_201901 database for translated search.

SortMeRNA (Kopylova et al., 2012) was used to remove rRNA

sequences in MTR data.
Pathway analysis of shotgun metagenomic
and metatranscriptomic data

The results consisted of tables with raw read per kilobase (RPK)

values for each record and the path abundance table, with the

calculated raw pathway abundance (expressed as the function of the

abundance of reactions constituting the Pathway, which is

calculated as the sum of over the abundance of genes involved).

Reads not mapped to either feature in the databases were counted

under the label “UNMAPPED.” Similarly, mapped reads that could

not be integrated into any pathways were assigned as

“UNINTEGRATED.” Each Pathway is also stratified by

taxonomy, labeled “unclassified” if no taxonomy can be inferred.

For comparison of samples, the RPK values were normalized to

copies per million (CPM) with the human_renorm_table script;

then, reactions were regrouped with the humann_regroup_table

script. Records not regrouped to the new features appeared as

“UNGROUPED.” For each Pathway, diversity indexes (Shannon

and Simpson) were calculated using the species data with the R

package vegan (https://CRAN.R-project.org/package=vegan).

MetaCyc pathways were included in further analyses if their

populational abundance (in the whole cohort) reached at least 0.1%.

Plus, only pathways present in at least 25% of the whole cohort

population were included, leaving 124 metabolic pathways from a

total of 556. For ease of interpretation and comparison between

samples, pathways were grouped into superclasses according to the

Metacyc hierarchy (SuperPathways, BioCyc©) (Karp et al., 2019),

where a total of 61 SuperPathways were identified. SuperPathways

contributing to at least 1% of total abundance were included in

further analysis (n=17). The normalization of abundance values was

done with central log ratio (clr) transformation in R (https://rdrr.io/

github/thomazbastiaanssen/Volatility/man/clr_lite.html). The

values were transformed in several ways according to the possible

methods of the clr_lite function.
Assessment of PFAMs

The high-quality metatranscriptomic reads were assembled into

contigs using MetaSPAdes (Nurk et al., 2017). After assembly, gene

prediction was conducted on the contigs using Prodigal (Hyatt et al.,

2010), and the predicted gene sequences were translated into protein

sequences for further analysis. The identification of protein domain

families was carried out using the Pfam database, accessed at http://
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pfam.xfam.org/ (Mistry et al., 2021). This involves scanning the

translated protein sequences against the Pfam-A database with

HMMER, a tool available at http://hmmer.org/. The Pfam-A

database comprises a comprehensive collection of protein domain

families represented as profile hidden Markov models (HMMs).

HMMER settings were adjusted to balance sensitivity and

specificity, employing the default settings for initial scans. Pfams

contributed to at least 0.1% of total abundance (n=201), with more-

than-zero abundance present in at least 25% of patients included.
Linear discriminant analysis effect size

Linear discriminant analysis effect size (LEfSe) (Segata et al.,

2011) was conducted on CLR-normalized BioCyc© Pathway and

protein family (Pfam) abundance data to determine Pathway- and

Pfam clusters that exhibit significant differences in occurrence

between patients with and without COPD. LEfSe analysis was

performed using the Galaxy computational tool (http://

huttenhower.sph.harvard.edu/galaxy/) (Galaxy Community, 2022)

to estimate the effect size of each differentially abundant feature,

with a threshold on LDA scores set at 2.0 and alpha values at 0.01.
Statistical analyses

First, the Shapiro-Wilks test was used to determine if data is

normally distributed. Differential abundance testing of Metacyc

Superpathways and diversity comparisons were done using the

Wilcoxon rank-sum test. The associations between the relative

abundances of taxa and clinical parameters were investigated with

Spearman’s rank correlation, P-values less than 0.05 indicate the

significance, and all p-values were two-sided.

Hierarchical cluster analysis was conducted on the dataset using

Python. Key Python libraries, including Pandas (https://

pandas.pydata.org/docs/whatsnew/index.html), Seaborn (https://

seaborn.pydata.org/whatsnew/index.html), Matplotlib (https://

matplotlib.org/stable/project/citing.html), and SciPy (Virtanen

et al., 2020), were utilized for data handling and visualization.

The dataset underwent preprocessing to ensure compatibility with

clustering analysis, transforming abundances to Z-scores. SciPy’s

linkage method was employed for hierarchical clustering with a

complete linkage method. This was followed by dendrogram

generation using SciPy, assisting in visualizing clustering

hierarchy and cluster determination. A heatmap was then created

with Seaborn, integrating the clustering results by reordering data

according to the hierarchical structure.
Results

A total of 40 advanced stage (stage IIIB/IV) NSCLC patients

who underwent fecal metagenomic (MG) and metatranscriptomic

(MTR) sequencing were included in our study. 38 patients had their

metatranscriptomic sequencing data pass the quality check. 2

patients were excluded due to low-quality RNA yields. 16 patients
frontiersin.org
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were categorized as non-COPD, and 21 patients were categorized as

COPD. One patient had no relevant clinical data concerning COPD

comorbidity. Patient clinicopathological data included age, gender,

COPD GOLD stadium, CAT score, FEV1, smoking pack year (PY),

and BMI (Table 1). The median age of the study cohort was 61.3

years [95% CI: 58.2 to 65.1]. The study design is shown

in Figure 1A.
Metagenomic vs metatranscriptomic
abundance in the context of taxonomy

First, we aimed to assess the MTR and corresponding MG

signatures of major bacterial taxa at the species and genus level in

the whole cohort, irrespective of COPD status, to reveal taxonomic

units with coherent and contrasting MG and MTR abundances.

Bacterial phylum distribution according toMG andMTR is shown in

Figure 1B. Statistically, Bacteroidetes abundance is significantly higher

at theMG level (compared toMTR, p<0.001), whereas Proteobacteria

and Verrucomicrobia are significantly stronger represented at the

MTR level (compared to MG, p<0.001). There was a trend towards
Frontiers in Cellular and Infection Microbiology 05
increased MTR abundance in the case of Actinobacteria (p=0.057)

and Euryarcheota (p=0.075), but statistically not significant due to

high standard deviations (Figure 1C).

Among genera, a series of bacteria showed significantly higher

MG representation than MTR, including Ruminococcus (p<0.001),

Blautia (p<0.001), Roseburia (p<0.001), Faecalibacterium (p<0.001),

Bacteroides (p<0.001), Alistipes (p<0.001), Bifidobacterium (p<0.001),

Eubacterium (p<0.001), Fusicatenibacter (p<0.001) and Anaerostipes

(p=0.003), indicating that these genera are not as transcriptionally

active, as their DNA abundance suggests (Figure 1D). In contrast,

Collinsella, Streptococcus, Escherichia, Enterococcus, Gemella,

Methanobrevibacter, and Lactobacillus showed a higher MTR

abundance than expected based on their MG abundance, with

statistically significant differences in the case of Streptococcus

(p=0.031), Escherichia (p<0.001), Gemella (p<0.001) and

Lactobacillus (p<0.001) (Figure 1D, orange dashed line). Figure 1E

shows the same analysis in a scatter chart, where clusters represent

genera with very high MG, but low MTR (cluster 1, blue), high MG,

but low MTR (cluster 2, orange), both low MG and MTR (cluster 3,

red), low MG, but high MTR (cluster 4, light blue), and low MG, but

very high MTR (cluster 5, green).
FIGURE 1

MG vs MTR according to phyla and genera. Study design and research workflow is shown in panel (A) 100% stacked bar chart shows
Metatranscriptomic (MTR) and Metagenomic (MG) signatures at phylum level evaluated in 40 patients (grey bar: did not pass QC), (B). Bacteroidetes
showed significantly higher MG than MTR abundance (p<0.001), while Proteobacteria and Verrucomicrobia were more represented at the MTR level
(p<0.001). Actinobacteria and Euryarcheota indicated increased MTR abundance, though not statistically significant (C). At the genus level,
Ruminococcus, Blautia, Roseburia, Faecalibacterium, Bacteroides, Alistipes, Bifidobacterium, Eubacterium, Fusicatenibacter (p<0.001 for all) and
Anaerostipes (p=0.003) had higher MG than MTR abundance, suggesting lower transcriptomic activity (D). Conversely, genera like Collinsella,
Streptococcus, Enterococcus, Gemella, Methanobrevibacter, Escherichia, and Lactobacillus exhibited higher MTR than MG abundance, with
Streptococcus (S), Escherichia, Gemella, and Lactobacillus being statistically significant (p<0.031 for S., p<0.001 for others) (D, orange dashed line).
XY chart analysis (E) clustered genera based on their MG and MTR abundances into five distinct groups, varying from very high MG but low MTR
(cluster 1, blue) to low MG but very high MTR (cluster 5, green). Statistical significance *P < 0.05; **P < 0.01, ***P<.001, all p-values were two-sided.
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Metabolic pathways overrepresented in
COPD and non-COPD patients

First, we performed Linear Discriminant Analysis Effect Size

(LEfSe) to determine pathways having the most remarkable effect

size discriminating COPD vs. Non-COPD patients regarding their

metatranscriptomic abundance (key pathways). A total of 11

pathways showed statistically significant (FDR<0.05) and

considerable (Log10LDAcoeff>2) discriminating power between the

COPD and non-COPD populations. 7 of these pathways showed

greater effect size towards the COPD-phenotype and 4 pathways

towards the non-COPD phenotype (Figure 2A). Metabolic
Frontiers in Cellular and Infection Microbiology 06
pathways (MetaCyc©) Glycolysis IV, Superpathway of Acetyl-CoA

biosynthesis, Purine ribonucleosides biodegradation, GDP-mannose

biosynthesis, L-valine biosynthesis, Purine nucleobases degradation

and Glyoxylate cycle were overrepresented in patients with COPD

comorbidi ty , whereas metabol ic pathways Adenosine

ribonucleotides de novo biosynthesis, Pyruvate fermentation to

isobutanol, Glycolysis III (from glucose) and Glycogen biosynthesis

I (from ADP-D-glucose) were overrepresented in patients without

COPD comorbidity.

To determine whether these key pathways represent a

considerable abundance in the microbial metabolism of the gut,

we assessed their contribution to the total metagenomic (MG) and
FIGURE 2

LEfSe analysis and contribution of key pathways to the metatranscriptome. Linear Discriminant Analysis Effect Size (LEfSe) identified 11 key metabolic
pathways significantly discriminating between COPD and non-COPD patients based on MTR abundance (FDR<0.05, Log10LDAcoeff>2). Log10LDAcoeff
values are displayed on horizontal bars showing pathways (A). Of these, 7 pathways, including Glycolysis IV (LDAcoeff=2.97), Superpathway of
Acetyl-CoA biosynthesis (LDA=2.42), Purine ribonucleosides degradation (LDAcoeff=2.35), GDP-mannose biosynthesis (LDAcoeff=2.23), L-valine
biosynthesis (LDAcoeff=2.12), Purine nucleobases degradation (LDAcoeff=2.11), and Glyoxylate cycle (LDAcoeff=2.03) were overrepresented in COPD
patients, while 4 pathways, such as Adenosine ribonucleotides de novo biosynthesis [LDAcoeff=(2.07)], Pyruvate fermentation to isobutanol
[LDAcoeff=(2.16)], Glycolysis II [LDAcoeff=(2.18)], and Glycogen biosynthesis I [LDAcoeff=(2.34)] were prevalent in non-COPD patients (A). Further
analysis revealed that in the microbial metabolism of the gut, Glycolysis IV and III exhibited the highest (4.75% and 3.16%, respectively), while GDP-
mannose biosynthesis (0.31%) and Glycogen biosynthesis I (0.15%) was the lowest MTR abundance among the key pathways (B, C).
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metatranscriptomic (MTR) abundance in percentage and their

position among the most abundant pathways (Figures 2B, C).

Regarding their MTR abundance, Glycolysis IV and Glycolysis III

showed the highest abundance from key pathways. At the same

time, GDP-mannose biosynthesis, Purine nucleobases degradation,

Glyoxylate cycle, and Glycogen biosynthesis I (from ADP-D-glucose)

were the least abundant key pathways all with a contribution below

1%. Supplementary Figure 1 shows all key pathways in metabolic

diagrams. Supplementary Figure 2 shows MTR vs MG abundance

of critical pathways and their corresponding correlation coefficients

according to Spearman’s.
Multiple bacterial taxa contribute to key
pathways associated with COPD status

Next, we assessed the taxonomic contribution of key COPD

pathways, where the MTR and MG abundances of relevant bacterial

species are displayed. Only taxa with at least 0.1% of total MTR

abundance and with at least 1% of total MG abundance are shown

(Figures 3A, B). Contributing species not reaching the minimum

threshold were omitted from the stacked charts. Regarding the

taxonomical composition of MTR pathways, Escherichia coli

dominates in most pathways. Exceptions include COPD-specific

pathways Glycolysis IV and L-valine biosynthesis, where

Streptococcus species, including S. salivarius and S. vestibularis

dominate. Regarding non-COPD specific pathways Pyruvate

fermentation to isobutanol and Glycogen biosynthesis I ,

Eubacterium_sp_An11 and Roseburia hominis were the strongest

contributors, respectively (Figure 3A).

Regarding their MG abundance, taxonomical contributions

were more diverse for key pathways (compared to their MTR

abundance). While E.coli remained a significant contributor in

the majority of pathways, other species such as Klebsiella

pneumoniae , Roseburia faec i s , Ruminococcus bromii ,

Faecalibacterium prausnitzii, Streptococcus pasteurianus, Blautia

wexlare, B. obeum, and Bifidobacterium adolescentis also occurred

as contributing species, whereas they were not present as important

MTR contributors (Figure 3B). There were no identifiable

taxonomic contributors in the case of Purine nucleobases

degradation I Pathway.

Shannon diversity index was calculated to assess pathway

diversity in every patient, that refers to the alpha-diversity of

bacterial species contributing to each Pathway. Diversity indices for

key pathways and for all pathways were calculated in COPD and non-

COPD patients. In the case of key pathways, generally, MG pathway

diversity was significantly higher than corresponding MTR pathway

diversity, which is also reflected in the taxonomic composition

(Figures 3C, D). Altogether, there were no significant differences in

Shannon diversity index between COPD- and non-COPD patients,

neither when including only key pathways nor all the analyzed

pathways (both MG and MTR, Figures 3E–F). Supplementary

Figure 3 shows taxonomic break-down of key pathways with 0.01%

(MTR, Supplementary Figure 3A) and 0.1% (MG, Supplementary

Figure 3B) cut-offs regarding species contribution.
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COPD-related clinical parameters show
linear correlation with key
pathway-abundance

We used the available clinical parameters of patients to correlate

them with the abundance of key pathways, including FEV1%, CAT

score, smoking PY and BMI. Spearman’s correlation coefficients

were calculated between the MTR abundance of key pathways and

value of clinical parameters (Figure 4). From COPD-specific

pathways, Glycolysis IV showed a significant negative correlation

with FEV1 (rs=-0.51) and smoking PY (rs=-0.54), and a significant

positive correlation with CAT score (rs=0.53). In contrast, the

Superpathway of acetyl-CoA biosynthesis showed a significant

negative correlation with FEV1 (rs=-0.44) and a significant

positive correlation with smoking PY (rs=0.51). Pathway Purine

ribonucleosides degradation was negatively correlated with smoking

PY (rs=-0.43) and pathway GDP-mannose biosynthesis was

positively correlated with CAT score (rs=0.46). The Glyoxylate

cycle pathway showed significant correlation with smoking PY

(rs=0.47). Regarding non-COPD specific pathways, only Glycogen

biosynthesis I showed significant correlations, including a significant

positive correlation with FEV1 (rs=0.48), and significant negative

correlations with CAT score (rs=-0.45) and smoking PY (rs=-0.5).

No Pathway showed any kind of significant correlation with

BMI (Figure 4).
Metabolic SuperPathways

We classified metabolic pathways to SuperPathway categories

according to the iteration of the BioCyc platform and evaluated

SuperPathway composition clustered in all patients (Figure 5A).

Hierarchical cluster analysis with complete linkage was used to

assess the grouping of patients according to their SuperPathway

composition, where two major clusters emerged: cluster A, with an

A1 and A2 subcluster harbouring low abundance for most

SuperPathways (cluster A1), or a range from low- to moderate

abundances in distinct SuperPathway clusters (axis Y); and cluster

B, with a generally high abundance for the majority of identified

SuperPathways. While in cluster A1 only 16.6% of patients are with

COPD-comorbidity, in cluster B, 83.3% of patients are diagnosed

with COPD. Cluster A1 represents an intermediate group with

more balanced distribution between the two patient groups (66.7%

COPD, 33.3% non-COPD). One patient with COPD was an outlier

regarding its SuperPathway composition and did not belong to any

of the identified clusters.

After the removal of low-abundance SuperPathways (below 1%

to total contribution), 17 major SuperPathways remained

(Figure 5B), of whom we evaluated the taxonomic composition in

COPD and non-COPD patients using MTR and MG abundances

(Figure 5C). Regarding MTR, Streptococcus salivarius was more

abundant by orders of magnitude in COPD patients compared to

non-COPD patients (40.3% vs 0.3%). In contrast, the E.coli was

more represented in patients without COPD comorbidity (91.1% vs

55%). Enterococcus (E) faecalis and E. faecium occurred only in
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COPD patients above the 1% threshold (1% and 1.9%). However,

Roseburia hominis RNA was only relevant in non-COPD patients

(7.6%). Regarding MG, the taxonomic distribution was more

diverse in both patient groups. Major differences include

Streptococcus pasteurianus (8.9% vs below threshold), E. coli

(34.4% vs 8.6%) and Klebsiella pneumoniae (33.6% vs below

threshold) being more abundant in COPD patients (compared to

non-COPD); whereas Ruminococcus bromii (14% vs 3%),
Frontiers in Cellular and Infection Microbiology 08
Roseburia faecis (30% vs 3.5%) and Bifidobacterium adolescentis

(9.8% vs below threshold) being more abundant in patient

without COPD.

Next, we explored the MTR abundance of the 17 major

SuperPathways in COPD vs non-COPD patients (Figure 5D),

where multiple SuperPathways including Glycolysis, Amino acid

biosynthesis, Fatty acid and lipid biosynthesis, Carbohydrate

biosynthesis, Nucleoside and nucleotide degradation, Cofactor
FIGURE 3

Taxonomic break-down of key pathways and pathway diversity. When assessing the taxonomic contribution of key pathways in COPD, taxa with
≥0.1% of total MTR and ≥1% of total MG abundance were analyzed (A, B). Escherichia coli was predominant in most MTR pathways, except for
Glycolysis IV and L-valine biosynthesis, where Streptococcus species (S. salivarius, S. vestibularis) were dominant. For non-COPD pathways like
Pyruvate fermentation to isobutanol and Glycogen biosynthesis I, Eubacterium_sp_An11 and Roseburia hominis were key contributors (A). MG
abundance showed greater diversity with species including Klebsiella pneumoniae, Roseburia faecis, and Bifidobacterium adolescentis contributing
significantly, despite their limited role in MTR pathways (B). Purine nucleobases degradation I pathway had no identified taxonomic contributors at
MTR level. Shannon diversity indices reflecting alpha-diversity of species in each Pathway is shown on horizontal bar charts (C, D). A generally higher
diversity is indicated in MG than in MTR pathways both in COPD [p<0.001, total (E) and key pathways (F)] and in non-COPD patients [p<0.001, total
(E) and key pathways (F)]. However, there was no significant difference in the Shannon diversity index between COPD and non-COPD patients
across all analyzed pathways (E, F). NS, not significant. Statistical significance ***P<.001, all p-values were two-sided.
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carrier and vitamin biosynthesis, C1 compound utilization and

assimilation, Carboxylate degradation, Pentose phosphate pathway

and Acetyl-CoA biosynthesis showed significantly increased

abundance in COPD patients (compared to non-COPD

patients, Figure 5D).

Moreover, we evaluated the taxonomic composition of

SuperPathways that showed differential abundance in COPD

patients, based on the same methodology as in the case of key

pathways. Regarding the taxonomical composition of MTR

pathways, E. coli dominates multiple SuperPathways, such as

Acetyl-CoA biosynthesis , C1 compound utilization and

assimilation, Fatty acid and lipid biosynthesis, Nucleoside and

nucleotide degradation and Pentose phosphate pathway. However

Carbohydrate biosynthesis is dominated by Roseburia hominis,

Carbohydrate degradation is dominated by Enterococcus faecalis

and Glycolysis is dominated by Streptococcus salivarius. Among

other species Enterococcus faecium and Streptococci, including S.

vestibularis also contribute notably to major COPD-related

SuperPathways (Figure 5E). In the case of MG abundances,

Klebsiella pneumoniae and E. coli dominate approximately equally

most of the SuperPatways, but Roseburia faecis, Streptococcus

pasteurianus, Ruminococcus bromii, Faecalobacterium prausnitzii

and Blautia obeum and wexlare are also important contributors

(Figure 5E). Analysing separately the contribution of species to MG

and MTR abundance revealed striking divergences. E. coli seems to

represent a much stronger transcriptomic activity than its MG

abundance indicates, whereas K. pneumoniae features strong

metagenomic presence in most of the pathways, but with virtually

no transcriptomic activity. Supplementary Figure 4 shows

taxonomic break-down of top SuperPathways with 0.01% (MTR,
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Supplementary Figure 4A) and 0.1% (MG, Supplementary

Figure 4B) cut-offs regarding species contribution.

Next, we performed Spearman’s correlation with the same

clinical parameters as in the case of key pathways. The value of

FEV1 showed significant correlation with SuperPatways

Carbohydrate degradation (rs=-0.431), Glycan biosynthesis (rs=-

0.49) and Glycolysis (rs=-0.33). Linear regression confirmed the

significant interrelation in the case of Carbohydrate degradation

(p=0.004) and Glycan biosynthesis (p=0.003) but not in the case of

Glycolysis (p=0.0096). CAT score, Smoking PY and BMI showed no

significant association with any of the SuperPathways.
Protein domain families

LEfSe analysis was performed to determine key protein domain

families (PFAMs) exhibiting the greatest effect size discriminating

COPD vs. Non-COPD patients regarding their metatranscriptomic

abundance. A total of 21 PFAMs showed statistically significant

discriminating power (FDR<0.05), setting the cutoff for

Log10LDAcoeff ≥ 3. 15 of these PFAMs showed greater effect size

towards the COPD-phenotype, including CtsR N-terminal HTH

domain, Peptidase propeptide and YPEB domain, Conserved

hypothetical protein 698, Winged helix DNA-binding domain, and

SOR/SNZ family among the top 5; and 6 PFAMs towards the non-

COPD phenotype, including Uroporphyrinogen decarboxylase,

Reverse transcriptase, Citrate synthase, Fructose-6-phosphate

aldolase and Urease gamma subunit among the top 5 (Figure 6A).

Taxonomic breakdown reveals a strong contribution from

Enterococcus faecium (10 PFAMs), E.coli (8 PFAMs),
FIGURE 4

Correlation of COPD-related clinical parameters with the abundances of key pathways. Clinical parameters of patients, including FEV1%, CAT score,
smoking pack-years (PY), and BMI, were correlated with the MTR abundance of key pathways using Spearman’s coefficients. COPD-specific pathway
Glycolysis IV had significant negative correlations with FEV1 (rs=-0.51, p=0.009) and smoking PY (rs=-0.54, p=0.003), and a positive correlation with
CAT score (rs=0.53, p=0.007). Superpathway of acetyl-CoA biosynthesis showed a negative correlation with FEV1 (rs=-0.44, p=0.028) and positive
with smoking PY (rs=0.51, p=0.006). Purine ribonucleosides degradation and GDP-mannose biosynthesis were negatively correlated with smoking
PY (rs=-0.43, p=0.024) and positively with CAT score (rs=0.46, p=0.024), respectively. Glyoxylate cycle was positively correlated with smoking PY
(rs=0.47, p=0.011). Among non-COPD pathways, only Glycogen biosynthesis I showed significant positive correlation with FEV1 (rs=0.48, p=0.015)
and negative correlations with CAT score (rs=-0.45, p=0.026) and smoking PY (rs=-0.5, p=0.007). No pathway demonstrated significant correlation
with BMI. Statistical significance *P < 0.05; **P < 0.01, all p-values were two-sided.
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Streptococcus (S) salivarius and S. salivarius CAG79 (6 PFAMs in

total), and Faecalobacterium prausnitzi (4 PFAMs) at the MTR level

in COPD-related PFAMs. In contrast, in the 6 non-COPD-related

PFAMs, species such as Blautia wexlerae (Reverse transcriptase) and

Ruminococcus torques (PFAM Uroporphyrinogen decarboxylase)

dominate apart from E. coli (3 PFAMs). Supplementary Figure 5

shows PFAM MTR taxonomic contributions with 1% cutoff and

MG taxonomic contributions with 1% and 5% cut-offs.
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Discussion

Changes in the human gut microbiome have been linked to a

variety of chronic diseases, including obesity, IBD, type 2 diabetes,

cancer, cardiovascular disease, and COPD (Shreiner et al., 2015;

Bowerman et al., 2020). A substantial amount of research has

shown the metagenomic potential of fecal communities, including

predicting anti-PD1 immunotherapy efficacy and toxicity (Human
FIGURE 5

MetaCyc SuperPathways and their taxonomic composition in COPD. Metabolic pathways in patients were classified into SuperPathways, analyzed via
hierarchical cluster analysis, revealing two clusters: Cluster A (subclusters A1 with low and A2 with low-to-moderate SuperPathway abundances) and
Cluster B (high abundance in most SuperPathways). 83.3% of cluster B’s patients were diagnosed with COPD, compared to 16.6% in Cluster A1. One
COPD patient was an outlier (A). After removing SuperPathways below 1% of total contribution, 17 remained. Panel (B) shows their proportional
distribution in all patients (B). MTR and MG abundances in these pathways showed Streptococcus salivarius significantly more abundant in COPD
patients (40.3% vs 0.3%) and E. coli in non-COPD patients (91.1% vs 55%) for MTR; diverse MG distribution with species like Streptococcus
pasteurianus and Klebsiella pneumoniae more abundant in COPD (C). 10 from the 17 major SuperPathways in COPD vs non-COPD patients had
notably higher abundance in pathways such as Glycolysis (p=0.034), Amino Acid biosynthesis (p=0.035), Fatty Acid and Lipid biosynthesis (p=0.036),
Carbohydrate biosynthesis (p=0.008), Cofactor Carrier and Vitamin Biosynthesis (p=0.048), Nucleoside and Nucleotide degradation (p=0.03), C1
Compound Utilization and Assimilation (p=0.016), Carboxylate degradation (p=0.04), Pentose Phosphate Pathway (p=0.04), and Acetyl-CoA
biosynthesis (p=0.047) in COPD patients (D). Taxonomic analysis showed E coli dominating many pathways, while others like Carbohydrate
biosynthesis were led by Roseburia hominis, when analyzing MTR E. Enterococcus (E.) faecium notably contributed to 7 of the 10 SuperPathways,
whereas E faecalis dominated SuperPathway Carbohydrate degradation. MG abundances presented a balanced contribution from various species E.
A comparison of MG and MTR abundances highlighted E coli’s higher transcriptomic activity, contrasting K. pneumoniae’s strong metagenomic
presence with minimal transcriptomic activity. Only taxa contributing to at least 0.1% of total MTR abundance, and 1% of total MG abundance are
displayed in panels (B, C, E). Statistical significance *P < 0.05; **P < 0.01, all p-values were two-sided.
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Microbiome Project Consortium, 2012; Le Chatelier et al., 2013;

Limeta et al., 2020; Dora et al., 2023b; Dora et al., 2023a), but less is

known about the microbiome’s transcriptional activity. The

metatranscriptome represents a connection between the

metagenome and community phenotype, and understanding its

functional ecology requires the characterization of contributing

metabolic pathways. Here, in our study, we revealed that specific

bacterial phyla are present with a higher MTR abundance in the gut,

than expected based on their MG abundance, including

Actinobacteria, Proteobacteria, Verrucomicrobia and the Archaea

Euryarchaeota. In contrast, Bacteroidetes seem to contribute lower

to the gut’s MTR activity, than its Metagenomic abundance suggests.

Among others, Collinsella, Streptococcus, Escherichia, Enterococcus

are the most transcriptionally active genera, reflected in Pathways and

Superpathways’ taxonomic representation.

When analysing data on COPD comorbidity, we find that

patients with COPD exhibit a transcriptionally more active gut
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microbiome with increased abundance detected in most major

metabolic pathways. Furthermore, the taxonomic diversity of

metatranscriptomic pathways is considerably lower compared to

metagenomic pathways with lesser species showing real-life

transcriptomic activity despite the presence of their DNA in

analysed samples. In contrast, species such as S. salivarius, S.

vestibularis, E. faecalis and E. faecium were shown to be

transcriptionally active, with low metagenomic abundance present

in key COPD-related pathways. Finally we showed that certain

pathways significantly correlate with physiological parameters

frequently evaluated in COPD patients, including smoking pack

year, CAT-score and FEV1.

Among key pathways, two different forms of Glycolysis show

differential abundance according to COPD-comorbidity. Glycolysis

IV, overabundant in COPD-patients and metatranscriptionally

represented mainly by Streptococci, uses sucrose as a direct

source, whereas non-COPD associated metabolic pathway
FIGURE 6

Protein domain families associated with COPD according to the gut metatranscriptome. Linear Discriminant Analysis Effect Size (LEfSe) identified 21
key PFAMs significantly discriminating between COPD and non-COPD patients based on MTR abundance (FDR<0.05, Log10LDAcoeff>3).

Log10LDAcoeff values are displayed on horizontal bars showing PFAMs. Of the analyzed PFAMs, 15 showed a more significant effect size toward the
COPD phenotype, while 6 PFAMs were more associated with the non-COPD phenotype (A). Taxonomic analysis at the MTR level showed
Enterococcus faecium dominating in 10 COPD-related PFAMs, E.coli in 8, and Streptococcus salivarius (including S. salivarius CAG79) in 6, while
Faecalobacterium prausnitzi appeared in 4. For the non-COPD-related PFAMs, Blautia wexlerae and Ruminococcus torques were prominent, along
with E. coli contributing to 3 PFAMs. Only taxa contributing to at least 5% of total MTR abundance are displayed in panel (B).
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Glycolysis III starts with glucose and represented by more bacterial

taxa, including E. coli and E. faecalis, Megasphaera stantonii and S.

salivarius. This might implicate a divergence in the anaerobic

energy-homeostasis of commensal gut bacteria in the case of

chronic lung inflammation (Bhayani et al., 2022). Interestingly,

key pathway Glycolysis IV, apart from being positively- and

negatively associated with CAT score and FEV1, respectively, it

showed a moderate negative correlation with Smoking PY. This

finding might seem controversial unbeknownst about 30% of

COPD patients are non-smokers according to the multicenter

canCOLD epidemiological study (Tan et al., 2015). Thus,

Streptococci-driven glycolysis might indicate the existence of a

smoking-independent pathophysiological link through the gut-

lung axis. Of note, these results based on pure correlation are

utmost hypothetical and need rigorous experimental validation.

Superpathway of Ac-CoA Synthesis and Glyoxylate cycle, in

contrast, showed significant positive correlation with pack year,

implicating them in the pathogenesis of smoking-associated COPD.

Unlike the citric acid cycle which is geared towards energy

production, the glyoxylate cycle specializes in the biosynthesis of

carbohydrates from fatty acids. This adaptation allows organisms to

convert acetyl-CoA, derived from fatty acids’ breakdown into

glucose. In the complex environment of the gut, where nutrients

fluctuate, the glyoxylate cycle provides bacteria with a flexible

metabolic pathway to utilize fats and oils, potentially derived

from the diet, to synthesize glucose. This supports bacterial

growth and survival and influences the gut’s overall health and

function by impacting the microbial composition and metabolic

outputs (Proffitt et al., 2022). Recent study demonstrated the

glyoxylate cycle’s key role in maintaining metabolic balance and

stress resistance using a viable, but nonculturable bacteria (VBNC)

model (Qi et al., 2023). Glycogen Biosynthesis I (from ADP-D-

glucose) was the only Pathway that showed consistently a positive

correlation with lung function (CAT score and FEV1) and negative

correlation with smoking. Intracellular glycogen accumulation in

several gut commensals acts as a niche adaptation trait, aiding in the

colonization and adaptation to the gastrointestinal tract, and

enhancing survival in the competitive and dynamic gut ecosystem

(Esteban-Torres et al., 2023).

Comprehensive gut microbiome analysis identified multiple

Streptococcus species, including S.Salivarius and S. parasanguinis

to be overrepresented in COPD patients and to correlate with

reduced lung function (Bowerman et al., 2020). Furthermore, the

latter taxa contribute to a COPD-associated metabolic network that

is associated by pulmonary inflammation (Bowerman et al., 2020).

Others reported Prevotellaceae as a significantly more abundant

family in mild COPD patients (compared to healthy), and showed a

trend for Ruminococcaceae and Enterococcaceae being

overrepresented in GOLD III-IV COPD compared to healthy

controls (Li N. et al., 2021). Altogether both studies recapitulated

the fact that gut microbiome is not altered considerably at a

taxonomic level, but rather changes in its functionality and

metabolomics (Bowerman et al., 2020; Li N. et al., 2021).

Regarding metatranscriptomics, our current study showed that

mu l t ip l e S t r ep tococcus spec i e s domina te pa thways

overrepresented in COPD, especially Glycolysis IV. Interestingly,
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our data suggests that E. coli is a major contributor at a

metatranscriptomic level to all relevant pathways regardless of

COPD, but not at a metagenomic level. The Carbohydrate

Biosynthesis superpathway was dominated by Roseburia hominis

metatranscriptionally. Roseburia species are known for their

butyrate-producing capability, a short-chain fatty acid essential

for colonic health and possessing anti-inflammatory properties

(Louis and Flint, 2009).

Enterococcus faecalis and faecium occur as an important

contributor both in key metabolic pathways and major

superpathways at a metatranscriptomic level, but its abundance is

not noticeable if we observe the metagenom, the difference is even

more dominant in COPD patients. This suggests a discrepancy

between the abundance and the transcriptomic activity of these

bacteria in the gut . Concerning metabolic pathways,

metatranscriptomic diversity is significantly lower than

metagenomic diversity, implicating a form of convergence, where

only a fraction of species are active regarding their gene expression.

When observing metabolism at a macro level, a general increase in

transcriptomic activity occurs in COPD, with most of the

SuperPathways being overexpressed. Also, in COPD patients, the

taxonomic representation of major SuperPathways changes

abruptly, where Streptococci (S.), including S. salivarius

contributes to ~41% of total pathway abundance compared to

~1% in non-COPD patients. Previously, both Bowerman et al

(Bowerman et al., 2020) and Li et al (Li N. et al., 2021), described

a significant increase in Streptococci regarding their metagenomic-

and metabolite abundance in COPD, but no data was presented at

the transcriptomic level. Also, the metagenomic presence of E. coli

is more dominant in COPD patients, that is in line with Bowerman

et al (Bowerman et al., 2020), but not transcriptionally, where E.coli

represents a relatively smaller fraction of abundance due to the

dominance of Streptococci. In contrast, Roseburia faecis and

Ruminococcus bromii showed an increased presence in patients

without COPD comorbidity, corresponding to earlier findings in

the field (Bowerman et al., 2020; Li N. et al., 2021). Interestingly,

Klebsiella pneumoniae was overrepresented in COPD patients at

the metagenomic level. However, Klebsiella species appear to be

transcriptionally silent, not contributing significantly to any

superpathway or patient group. Plus, Bifidobacterium adolescentis

genome showed increased abundance in non-COPD patients, but

showed no significant presence in the metatranscriptome. Neither

Klebsiella pneumoniae nor Bifidobacterium adolescentis in the gut

was described earlier in connection with COPD.

Protein domain families (PFAMs) are families of protein

domains or conserved protein sequences. Identifying Pfams in the

metagenomic or metatranscriptomic data is done by employing

Hidden Markov Models (HMMs) to search for known protein

domains within the sequence data. Here, we showed that multiple

PFAMs were associated with COPD, including CtsR N-terminal

HTH domain, Peptidase propeptide and YPEB domain, or Winged

helix DNA-binding domain; and multiple PFAMs are

overrepresented in patients without COPD comorbidity such as

Uroporphyrinogen decarboxylase, Reverse transcriptase, or Citrate

synthase. The CtsR regulon includes the clpC, clpP, and clpE genes,

which are negatively regulated by the CtsR of L. monocytogenes, a
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member of the family comprising several Firmicute transcriptional

repressors of class III stress genes (CtsR) implicating a role in heat-

shock protein-mediated anti-stress response (Nair et al., 2000).

Peptidase propeptide and YPEB domain likely has a protease

inhibitory function (Yeats et al., 2004), whereas non-COPD-

associated Uroporphyrinogen decarboxylase (UROD), a branch

point enzyme in the biosynthesis of tetrapyrroles, catalyzes the

decarboxylation of four acetate groups of uroporphyrinogen III,

resulting in coproporphyrinogen III playing an essential role in the

biosynthesis of heme and chlorophyll, a protein family already

characterized in yeasts and Bacillus subtilis (Garey et al., 1992;

Hansson and Hederstedt, 1992). Regarding Citrate synthase in

bacteria, its role was identified in metabolism and bacterial cell

cycle control, independent of its metabolic activity (Bergé et al.,

2020). The taxonomic composition of key PFAMs garnered from

MTR data corresponds with our findings from the metabolic

pathway analysis, where Streptococci, E. coli, and Enterococcus

faecium were the strongest contributors in COPD, and

Ruminococcus torques and Blautia welfare in non-COPD. It is

important to acknowledge microbial communities’ inherent

dynamism and context-specific nature, highlighting that specific

PFAMs may not consistently correspond to particular functions or

taxa across varied environments. Consequently, the interpretations

presented here primarily serve as a foundation for hypothesis

generat ion, necessitating rigorous validation through

experimentation in diverse settings.

An important confounder in microbiome research, cigarette

smoking is known to reduce microbiome diversity across the body,

particularly in the respiratory and GI tracts, as evidenced by studies

such as Gui et al (Gui et al., 2021). and Shapiro et al (Shapiro et al.,

2022). In COPD and lung cancer patients, studies show that

smoking alters gut bacterial abundance, decreasing Firmicutes

and Proteobacteria, while increasing Prevotella, Bacteroides, and

Bacteroidetes (Ding et al., 2021; Chen et al., 2024). Shanahan et al.

found higher Streptococcus and Veillonella spp. in smokers

(Shanahan et al., 2018). However, few studies have compared the

gut microbiotas of smoking vs. non-smoking COPD patients, and

functional metagenomic studies are scarce. Bowerman et al

(Bowerman et al., 2020). found no difference between these

groups and due to the low number of non-smoking COPD

patients in our cohort, we cannot draw solid consequences of the

functional microbiome in non-smoker COPD.

Case-control studies with the recruitment of healthy, usually

young participants have the setback of non-uniformity regarding

age and performance status that can significantly influence the

baseline microbiome (Badal et al., 2020; Ghosh et al., 2022). Our

cohort includes a group of patients from the same geographic

region, with similar health status and age distribution and with a

comparable burden of chronic conditions that can act as

confounders. Our study has limitations. The size of the

population cohort is modest, and we cannot tell whether the

alteration of bacterial transcriptomic activity in the gut is the

cause or a consequence of chronic inflammation in the lung. Our

study did not classify patients according to COPD treatment, so we

cannot assess inhaled or systemic steroid therapy’s influence on the
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gut metatranscriptome. Metatranscriptomic analyses have the

downside of increased degradability of RNA compared to DNA,

which can be managed by precise quality control. Furthermore, it is

important to acknowledge that transcriptome data alone may not

fully capture the metabolic changes occurring in the host and often

shows poor correlation with both proteomic and metabolomic

profiles (Taniguchi et al., 2010; Ma et al., 2019; Li L. et al., 2021).

F u t u r e r e s e a r c h s h o u l d i n t e g r a t e m e t a g e n om i c ,

metatranscriptomic, and metabolomic data to provide a more

comprehensive understanding of microbial community

physiology and its impact on lung cancer pathology (Cavill et al.,

2016). Also, a potential bias exists in public databases favoring E.

coli over other Gram-negative bacteria, which may have influenced

our pathway analyses. However, E. coli’s metabolic versatility and

the inclusion of well-described taxa such as Bacteroides, Prevotella,

and Ruminococcus in current databases suggest that our findings

may still accurately reflect biological reality. Future research should

validate these findings with a more diverse range of bacterial species

to mitigate this bias. The administration of probiotics and

prebiotics, like Bifidobacterium strains, has shown efficacy in

restoring gut and lung microbiomes in diseases linked to the gut-

lung axis, such as COVID-19, asthma, and COPD (Budden et al.,

2017; Li et al., 2024). Dietary interventions, including foods rich in

fiber, are also useful therapeutic strategies for diseases similar to

COPD, due to the short-chain fatty acids produced by beneficial

bacteria (Vaughan et al., 2019; Ding et al., 2021). Targeting

overrepresented Streptococcus species and boosting beneficial

taxa like Roseburia hominis may reduce COPD-related

inflammation. Existing microbiome-targeted therapeutics for

dysbiosis in IBD and metabolic diseases might offer a basis for

developing microbiome-based COPD interventions.
Conclusion

Our metatranscriptomic analysis elucidates distinct

transcriptional activity within the gut microbiome of NSCLC

patients, shedding light on its potential therapeutic implications in

COPD comorbidity. Altogether, our findings confirmed the previously

reported increased metagenomic abundance of intestinal Streptococci

and E. coli in COPD at the transcriptomic level. Furthermore, we

demonstrated the association of multiple metabolic pathways and

protein domain families with COPD presence, suggesting a

multifaceted microbiome involvement in the disease’s pathology.

These findings underscore the importance of incorporating

metatranscriptomic perspectives to unravel the intricate microbial

interactions and their influence on chronic diseases, paving the way

for novel microbiome-targeted therapeutic strategies in COPD.
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