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The impact of Sangju Qingjie
Decoction on the pulmonary
microbiota in the prevention and
treatment of chronic obstructive
pulmonary disease
Zheng Liu1†, Ying Huang2†, Chao Hu3 and Xiang Liu1*

1Clinical Pharmacy, Xiangtan Center Hospital, Xiangtan, Hunan, China, 2Pulmonary and Critial Care
Medicine, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong, China,
3Pulmonary and Critial Care Medicine, Xiangtan Center Hospital, Xiangtan, Hunan, China
Objective: Exploring the effect of SJQJD on the pulmonary microbiota of

chronic obstructive pulmonary disease (COPD) rats through 16S ribosomal

RNA (rRNA) sequencing.

Methods: A COPD rat model was constructed through smoking and

lipopolysaccharide (LPS) stimulation, and the efficacy of SJQJD was evaluated

by hematoxylin and eosin (H&E) staining and Enzyme-Linked Immunosorbnent

Assay (ELISA). The alveolar lavage fluid of rats was subjected to 16S rRNA

sequencing. The diversity of lung microbiota composition and community

structure was analyzed and differential microbiota were screened. Additionally,

machine learning algorithms were used for screening biomarkers of each group

of the microbiota.

Results: SJQJD could improve lung structure and inflammatory response in COPD

rats. 16s rRNA sequencing analysis showed that SJQJD could significantly improve

the abundance and diversity of bacterial communities in COPD rats. Through

differential analysis and machine learning methods, potential microbial biomarkers

were identified as Mycoplasmataceae, Bacillaceae, and Lachnospiraceae.

Conclusion: SJQJD could improve tissue morphology and local inflammatory

response in COPD rats, and its effect may be related to improve

pulmonary microbiota.
KEYWORDS

SJQJD, COPD, pulmonary microbiota, biomarker, machine learning
Abbreviations: SJQJD, Sangju Qingjie Decoction; COPD, Chronic Obstructive Pulmonary Disease;

AECOPD, Acute Exacerbation of Chronic Obstructive Pulmonary Diseases; LPS, Lipopolysaccharide;

H&E, Hematoxylin and Eosin; IL-6, Interleukin 6; IL-8, Interleukin 8; MMP-2, Matrix Metallopeptidase 2;

MMP-3, Matrix Metallopeptidase 3; sIgA, secretory Immunoglobulin A; TNF-a, Tumor Necrosis Factor a;

OTUs, Operational Taxonomic Units; LEfSe, Linear discriminant analysis effect size; ELISA, Enzyme-Linked

Immunosorbnent Assay; LDA, Linear Discriminant Analysis; FVC, Forced Vital Capacity; FEV1, Forced

Expiratory Volume in the 1st second; SCFAs, Short-Chain Fatty Acids.
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1 Introduction

COPD is a common respiratory disease in clinical practice, and

its risk factors include advancing age, long-term smoke irritation,

high incidence, and mortality, with continuous airflow restriction

being the main pathological characteristic. Relevant statistics (Fang

et al., 2018) show that there are approximately 100 million patients

with COPD and increasing incidences of COPD in China.

According to the World Health Organization, COPD may

become the third leading cause of mortality worldwide by 2030

(Kim et al., 2021). Acute exacerbation of COPD (AECOPD) refers

to a clinical event characterized by worsening of respiratory

symptoms in patients with COPD, leading to changes in

symptoms beyond the daily variation range and drug treatment

regimens, which is critical for treating COPD disease. This results in

reduced quality of life of patients, accelerated decline of lung

function, and increased mortality rate of hospitalized patients

(Baqdunes et al., 2021; Celli et al., 2021). Presently, there is no

effective treatment for AECOPD; therefore, exploring effective

prevention and treatment of COPD is one of the most urgent

demands of the medical field worldwide.

The respiratory tract constantly exchanges gases with the

environment; hence, it is also a system with bacterial

colonization. Studies on respiratory microbiota remain in the

initial stages. Reportedly, the pulmonary microbiota is closely

related to the host’s autoimmune function and participates in the

regulation of the immune microenvironment (Cao et al., 2023; Wu

et al., 2023). The lungs were presumed to be sterile in healthy

individuals; however, owing to the continuous development of

medical science and technology, 16S rRNA sequencing has

revealed microbial communities detected in the lungs of healthy

individuals (Ramsheh et al., 2021; Yagi et al., 2021). The human

microbiome includes all forms of microorganisms and their

genomes residing within the body of an individual at a specific

time, such as in the gut and other mucosal surfaces including the

skin, mouth, airways, and vagina (Anand and Mande, 2018, Shi

et al., 2021). Ecological imbalance refers to any compositional

changes in the microbiome compared with that of healthy

individuals (Shi et al., 2021). The low diversity of microbial

communities indicates ecological imbalance (Valdes et al., 2018),

whereas high diversity is often associated with health and temporal

stability (Leitao Filho et al., 2019; Vaughan et al., 2019; Shi

et al., 2021).

SJQJD is a medicinal formulation composed of 30 g of mori

cortex, 15 g of chrysanthemi indici flos, 40 g of semen benincasae, 20 g

of trichosanthis pericarpium, 20 g of pheretima, 20 g of fritillariae

cirrhosae bulbus, 50 g of phragmitis rhizoma, 150 g of plantaginis

semen, 20 g of concretio silicea bambusae, and 10 g of glycyrrhizae

radix et rhizoma. SJQJD exerts considerable clinical effects on

patients with COPD presenting phlegm-heat obstructing lung (Yee

et al., 2022); however, the specific mechanism underlying SJQJD-

mediated treatment of COPD remains unclear. Herein, we

constructed a COPD rat model and investigated the effects of

SJQJD on the pulmonary microbiota of COPD rats through 16S

rRNA sequencing. Modern pharmacology indicates that the extract
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of mori cortex has a regulatory effect on oxidative stress (Zhai et al.,

2022), chrysanthemi indici flos, trichosanthis pericarpium, pheretima,

fritillariae cirrhosae bulbus, phragmitis rhizoma all exhibit anti-

inflammatory activity (Park et al., 2016; Liu et al., 2020; Tian et al.,

2020; Li et al., 2022; Liu et al., 2024), plantaginis semen has the

function of regulating lipid metabolism and immune response (Sun

et al., 2019; Ren et al., 2021), glycyrrhizae radix et rhizoma has anti-

inflammatory and detoxifying effects (Li et al., 2019; Jiang et al.,

2022). These physiological processes are involved in various stages of

physiological pathology. However, there is currently limited research

by semen benincaae and concretio silicea bambusae.
2 Methods

2.1 SJQJD preparation

SJQJD is an internal preparation of Zhongshan Traditional

Chinese Medicine Hospital (specific lot number: Guangdong

Medicine Preparation Z20071015). All traditional Chinese medicine

decoction pieces are provided by the Chinese Pharmacy of Zhongshan

Traditional Chinese Medicine Hospital, and identified as qualified

authentic products by Deputy Chief Pharmacist He Jianhong. The

abovementioned 10 herbs were soaked in water for 30 minutes, and

the decoction treatment was performed twice for 1.5 hours. Both

decoctions were combined, filtered, concentrated, and added with 200

g of sugar, 3 g of sodium benzoate, and 0.5 g of hydroxyethyl ester. The

mixture was boiled and brought to a constant volume of 1 L.

Following this, it was allowed to stand for 1 day, and the

supernatant was isolated and packaged to complete the preparation.
2.2 Animal experiments

Experimental grouping: Specific pathogen free grade 10 week

old Wistar male rats (250 ± 20), purchased from Spelford Beijing

Biotechnology Co., Ltd. In total, 30 rats were randomly divided into

the following five groups (n = 6): control, model, model + SJQJD

(high-dose [H]: 1.2 g/mL), model + SJQJD (medium-dose [M]: 0.8

g/mL), and model + SJQJD (low-dose [L]: 0.6 g/mL) groups.

Animal model construction: Both cigarette smoke exposure and

lipopolysaccharide (LPS) intratracheal instillation were used to

establish the COPD model, as follows: (1) LPS intratracheal

instillation: 0.2 mL of LPS solution (1 mg/mL) was instilled into

the airway on the 1st and 14th day of modeling; and (2) smoking:

from day 2 to 28, rats were transferred to a dedicated disinfection

box and exposed to smoke daily (except for day 14), 10 cigarettes

per time for 30 minutes, twice a day in the morning and afternoon.

Medication intervention: The control group was not subjected

to LPS intratracheal instillation and smoking procedures and was

administered 2.5 mL of physiological saline by gavage every day; the

model group was administered 2.5 mL of physiological saline by

gavage every day; the administration groups were orally

administered 2.5 mL of SJQJD (H, M, and L) every day. The

alveolar lavage fluids and lung tissues of rats were retrieved after

administration for subsequent experiments.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1379831
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2024.1379831
2.3 H&E staining experiment

The retrieved lung tissues were fixed with 10% formaldehyde

solution. Following this, the tissues were cut into 2-mm thick tissue

blocks, which were then dehydrated using gradient ethanol, made

transparent using xylene, and embedded in paraffin. Next, the tissue

blocks were cut into 5-mm thick slices, stained with H&E, and sealed

with neutral gum. The morphology of the lung tissues was observed

under a microscope and their photos were captured.
2.4 ELISA testing

The alveolar lavage fluids of rats were centrifuged at 4°C at 1800

r/min for 5 minutes, and the supernatants were collected for

detection. Next, ELISA was performed to detect interleukin (IL)-

6, IL-8, matrix metallopeptidase (MMP)-2, MMP-3, secretory

immunoglobulin (sIg)A, and tumor necrosis factor (TNF)-a in

the supernatant of the alveolar lavage fluid according to the

instructions of the kit (JiangLai, China).
2.5 16S rRNA sequencing and
bioinformatics analyses

The 16s rRNA sequencing was performed by Shenzhen

Weikemeng Technology Group Co., Ltd. using the experimental

alveolar lavage fluid, including DNA extraction, polymerase chain

reaction-mediated amplification, and Illumina high-throughput

sequencing. Bioinformatics analyses were performed using the

Wekemo Bioincloud (https://www.bioincloud.tech). Operational

taxonomic units (OTUs) were clustered with 97% consistency,

and the sequences of OTUs were annotated with species to obtain

the corresponding species information and species-based

abundance distribution. Additionally, a-diversity analysis was

performed utilizing the following evaluation indexes: Chao1 index

for evaluating microbial abundance, and Shannon and Simpson

indexes for evaluating microbial evenness and abundance.

Furthermore, b-diversity was analyzed to compare the diversity
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among different ecosystems, and cluster analysis was performed on

the sample distance matrix to construct a hierarchical visualization

of differences among samples. Linear discriminant analysis effect

size (LEfSe) analysis was performed to test the significance of

differences in species composition and community structure of

the grouped samples, further analyzing the microbiome

composition of the two groups at the phylum and genus levels,

and determining the species abundances with significant

differences. Finally, the characteristic microbial communities of

each group were screened using machine-learning methods.
2.6 Statistic analyses

The GraphPad Prism 9.0 software was used to process data and

visualize the data. The comparison between two groups was

conducted using t-test method, the comparison between three

groups was conducted using one-way ANOVA test method, and

the comparison between three groups that did not follow a normal

distribution was conducted using Kruskal Wallis test. The P-value

of < 0.05 was considered statistically significant.
3 Results

3.1 SJQJD improves the lung tissue
morphology in COPD rats

The tissue morphology of the control group was intact with no

notable inflammatory cell infiltration (Figure 1); however, that of the

COPD model group was disordered, with considerable detectable

inflammatory cell infiltration and epithelial goblet cell proliferation,

indicating the successful establishment of the model. In the SJQJD-H

group of rats, a few inflammatory cells were observed in the lung tissue,

along with an enlargement of the alveolar spaces. The SJQJD-M group

of rats showed reduced aggregation of inflammatory cells in the lung

tissue, with some increase in the alveolar septa and inflammatory cell

infiltration. The SJQJD-L group of rats demonstrated moderate

interstitial inflammatory changes in the lung tissue, along with the

widening of the alveolar septa and inflammatory cell infiltration.
FIGURE 1

SJQJD improved COPD in rats.
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3.2 SJQJD inhibited the release of
inflammatory factors in COPD rats

ELISA was performed to detect the content of inflammatory

factors in the alveolar lavage fluid. The results showed that

compared with the control group, the levels of IL-6 (P < 0.0001),

IL-8 (P < 0.0001), MMP-2 (P < 0.0001), MMP-3 (P < 0.0001), sIgA

(P < 0.0001), and TNF-a (P < 0.0001) in the model group increased

considerably, whereas SJQJD (H, M, and L) suppressed their

increase in a concentration-dependent manner (Figure 2).
3.3 Analysis of the effects of SJQJD on the
pulmonary microbiota

The composition structures of the lung microbiota of each group

of rats were analyzed at the phylum and genus levels through 16S

RNA high-throughput sequencing to explore the effects of SJQJD. At

the phylum level, the composition of Tenericutes notably increased in

the model group and considerably decreased in the control and

SJQJD groups. In contrast, the compositions of Proteobacteria,

Actinobacteria, Unspecified_Bacteria, and Firmicutes considerably

decreased in the model group and markedly increased in the
Frontiers in Cellular and Infection Microbiology 04
control and SJQJD groups (Figures 3A, B). At the genus level,

the composition of Mycoplasmataceae considerably increased in the

model group and markedly decreased in the control and SJQJD

groups. In contrast, the composition of Streptomycetaceae,

Enterobacteriaceae, Microbacteriaceae, and Bacillaceae markedly

decreased in the model group and notably increased in the control

and SJQJD groups (Figures 3C, D).
3.4 Analyses of a- and b-diversities

Compared with the control rats, the a-diversity indexes, namely

Chao1 (P = 0.0397), Shannon (P = 0.0030), and Simpson (P = 0.0021)

indexes, of COPD rats were markedly reduced (Figures 4A–C),

suggesting a decrease in both microbial abundance and diversity

under COPD conditions. SJQJD reversed the decrease in the

aforementioned three indexes, demonstrating its therapeutic effects

on COPD rats. b-diversity distance measurements, performed to

study the structural changes of the pulmonary microbiota among

samples, showed notable differences in the microbial communities of

control and COPD rats (Figure 4D). However, the SJQJD

administration reversed this phenomenon.
B C

D E F

A

FIGURE 2

SJQJD improved pulmonary inflammatory response. The level of (A) IL-6, (B) IL-8, (C) MMP-2, (D) MMP-3, (E) sIgA, and (F) TNF- a in rat alveolar
lavage fluid. The data was displayed as the mean ± SD (n=6). # P < 0.05, ## P < 0.01, ### P < 0.001, #### P < 0.0001, * P < 0.05, ** P < 0.01,
*** P < 0.001, **** P < 0.0001.
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3.5 Analysis of dominant microbial
communities in each group

The bacterial taxa with statistically significant differences

among the groups were identified based on the Linear

Discriminant Analysis (LDA) value, and the results were

visualized by creating a LefSe cladogram (Figure 5A) and a

histogram of LDA values (Figure 5B). Actinobacteria,

Phyllobacteriaceae, and Alphaproteobacteria were the dominant

bacterial taxa in the control group, whereas Mycoplasmatales,

Mycoplasmataceae, Tenericutes, and Mollicutes were the dominant

taxa in the model group. Proteobacteria, Gammaproteobacteria,
Frontiers in Cellular and Infection Microbiology 05
Weeksellaceae, and others were characteristic taxa for the

SJQJD group.
3.6 Analysis of species differences in the
pulmonary microbiota

The differences in bacterial communities among groups were

analyzed at different levels, such as the family level. The results

suggest that compared with the control group, the composition of

families Peptostreptococcaceae, Mycoplasmataceae, Rikenellaceae,

Listeriaceae, and Ruminococcaceae considerably increased in the
B

C D

A

FIGURE 3

Stacking diagram of the relative abundance of microbial communities. (A) The relative abundance of microbial communities at the phylum level in
each sample. (B) The relative abundance of microbial communities at the phylum level in each group. (C) The relative abundance of microbial
communities at the genus level in each sample. (D) The relative abundance of microbial communities at the genus level in each group.
B C DA

FIGURE 4

SJQJD improved the diversity of lung microbiota. (A) Chao1 index. (B) Shannon index. (C) Simpson index. (D) NMDS. * P < 0.05, ** P < 0.01.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1379831
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2024.1379831
model group, whereas that of Chthoniobacteraceae, Streptomycetaceae,

and Enterococcaceae markedly reduced (Figures 6A, B). Compared

with the model group, the composition of families such as

Bacillaceae, Nocardiaceae, and Micrococcaceae notably increased in

the SJQJD group, whereas that of Listeriaceae, Clostridiaceae,

Campylobacteraceae, and Mycoplasmataceae considerably reduced

(Figures 6A, C). Notably, the abundance of the family

Mycoplasmataceae (P = 0.0021) was considerably increased in the

model group, whereas it remained low in both the control and SJQJD

groups, suggesting its potential as a therapeutic marker (Figure 6D).

Although there were no statistically significant differences in

Bacillaceae abundance among the groups, we observed that this

family was almost absent in the model group but exhibited high

abundances in both the control and SJQJD groups, suggesting its

possible protective role in the disease (Figure 6E).
Frontiers in Cellular and Infection Microbiology 06
3.7 Machine-learning method-based
screening of biomarkers

The markers in the microbiota of each group were further

screened through machine learning. The results show that

characteristic microbes of the control group obtained using the

random forest algorithm included Lachnospiraceae, Enterococcaceae,

and Staphylococcaceae, whereas the model group featured

Mycoplasmataceae, Pasteurellaceae, and Aeromonadaceae. The

characteristic microbes of the SJQJD group included Nocardiaceae,

Lachnospiraceae, and Burkholderiaceae (Figures 7A, B; Table 1).

Additionally, the characteristic microbes of the control group

obtained using the support vector machine algorithm included

Rhodobacteraceae, Lachnospiraceae, and Moraxellaceae; those of the

model group included Campylobacteraceae and Moraxellaceae, and
BA

FIGURE 5

Analysis results of the dominant microbial communities in each group. (A) The branch diagram was obtained through LEfSe analysis. (B) LDA effect
size analysis of major biomarker taxonomic groups.
B

C

D

E

A

FIGURE 6

Analysis results of species differences in pulmonary microbiota. (A) Heatmap of differential microbial communities among groups. (B) Volcano
diagram of Model vs. Control. (C) Volcano diagram of SJQJD vs. Model. (D) The abundance of Mycoplasmataceae in three groups. (E) The
abundance of Bacillaceae in the three groups. ** P < 0.01, ns, no significant.
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those of the SJQJD group included Lachnospiraceae, Burkholderiaceae,

and Phyllobacteriaceae (Figures 7C, D; Table 1). By intersecting the

results, we found the family Lachnospiraceae to be a common marker

between the control and SJQJD groups (Figure 7E).
Frontiers in Cellular and Infection Microbiology 07
4 Discussion

COPD is a chronic inflammatory disease characterized by

persistent restriction of the small airways, and it often affects

multiple systems. Studies predict that because of the increasing

number of smokers and population aging, the annual COPD-

associated mortality and number of patients may exceed 5.4 million

(GBD 2017 Causes of Death Collaborators, 2018) by the 2060s. Acute

exacerbation, leading to frequent medical visits, hospitalizations, and

changes in medication regimens, is a major cause of mortality in

patients with COPD (Wu et al., 2014; Vogelmeier et al., 2017; Hua

et al., 2020; Li et al., 2021). Microbial cultures indicate that the lung

microbiota is related to COPD pathogenesis (Shi et al., 2021), and the

advances in metagenomic technologies have further validated this

conclusion (Karakasidis et al., 2023).

SJQJD is a hospital-prepared medication formulation reviewed by

the drug regulatory authority. Clinical studies have shown the good

therapeutic effects of SJQJD when used in combination with Western

medicine to treat phlegm-heat obstructed lung-type community-

acquired pneumonia. Reportedly, the combined treatment of SJQJD

with Western medicine for bronchiectasis can effectively improve the

lung function, forced vital capacity (FVC), forced expiratory volume in

the 1st second (FEV1), and FEV1/FVC levels of the patients, with a

total effective rate of 97.50%, compared with 85.00% in the control

group (P < 0.05) (Dong et al., 2018). Additionally, clinical research on

patients with phlegm-heat congested lung-type AECOPD has shown

(Huang et al., 2021) that after treatment with SJQJD in combination

with Western medicine, the T lymphocyte subgroup cluster of

differentiation (CD)4+ and the CD4+/CD8+ ratio increased,

compared with those before the treatment, and CD8+ reduced,

indicating the significantly better optimization in the combined

treatment group than that in the Western medicine control group

(P < 0.05). This suggested that SJQJD might improve the immune

function of patients, thereby enhancing their resistance. These findings

imply that SJQJDmay exert its therapeutic effect on COPD by altering
B

C D

EA

FIGURE 7

Machine learning screening of microbial biomarkers. (A, B) The results of RF method screening for characteristic microbial communities. (C, D) The
results of SVM method screening for characteristic microbial communities. (E) Intersection results of feature microbial communities selected by
machine learning.
TABLE 1 Machine learning screening of characteristic microbial
communities in each group.

Group RF SVM

Control Lachnospiraceae
Enterococcaceae
Staphylococcaceae
Sphingomonadaceae
Porphyromonadaceae
Weeksellaceae
Pseudoalteromonadaceae
Nocardiaceae
Comamonadaceae
Microbacteriaceae
Flavobacteriaceae
Rhodobacteraceae

Rhodobacteraceae
Lachnospiraceae
Moraxellaceae
Staphylococcaceae
Carnobacteriaceae
Flavobacteriaceae
Enterococcaceae
Erysipelotrichaceae
Ruminococcaceae
Brucellaceae
Bacteroidaceae
Chthoniobacteraceae
Sinobacteraceae
Prevotellaceae

Model Mycoplasmataceae
Pasteurellaceae
Aeromonadaceae
Desulfovibrionaceae
Shewanellaceae

Campylobacteraceae
Moraxellaceae

SJQJD Nocardiaceae
Lachnospiraceae
Burkholderiaceae
Chitinophagaceae
Pseudomonadaceae
Comamonadaceae
Phyllobacteriaceae
Caulobacteraceae
Sphingomonadaceae
Chromatiaceae
Microbacteriaceae
Promicromonosporaceae

Lachnospiraceae
Burkholderiaceae
Phyllobacteriaceae
Aurantimonadaceae
unclassified
Chitinophagaceae
Nocardiaceae
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the lung microenvironment and consequently modulating the

lung microbiota.

Herein, a COPD rat model was constructed through a

combined approach of cigarette smoke exposure and intratracheal

LPS instillation, which is a widely used model for COPD. The

COPD model group showed structural disorder with considerable

inflammatory cell infiltration and epithelial goblet cell proliferation.

However, the SJQJD administration reversed these phenomena,

indicating its interventional effects on COPD. Moreover, SJQJD

improved pulmonary inflammation.

The lung microbiome plays an important role in maintaining

stability within the lungs. The airways of patients with COPD often

harbor Haemophilus influenzae, Streptococcus pneumoniae, and

Moraxella catarrhalis, which in severe cases can be colonized by

Klebsiella pneumoniae, Pseudomonas aeruginosa, and other Gram-

negative bacteria. Various factors affect the composition of the

respiratory microbiota, including the anatomy of the airways,

gender, age, and the immune function of the host (Whiteside

et al., 2021). In healthy individuals, the lung microbiota is

transient and can be regulated by normal lung defense

mechanisms, such as bronchial epithelial cilia movements,

coughing, and the immune function of the host. Under healthy

conditions, the regional growth conditions generally do not support

the extensive proliferation of bacteria, resulting in relatively fewer

bacteria. However, inflammatory responses increase the vascular

permeability of the airways, providing abundant nutrients, such as

amino acids, vitamins, carbon sources, and iron, for bacterial

reproduction. Inflammation damages epithelial cells, exposing the

basement membrane matrix and promoting bacterial adhesion.

Similar to the gut microbiota, dysbiosis of the lung microbiota

promotes the persistent progression of COPD (Bowerman et al.,

2020). Reduced microbial diversity has been associated with COPD

exacerbation events (Sze et al., 2012; Wang et al., 2019; Enaud et al.,

2020; Su et al., 2022). Herein, the results showed that the microbial

abundance and diversity in the COPD model group were

significantly reduced, and SJQJD could considerably reverse this

phenomenon, suggesting its role in improving the lung microbiota.

The family Mycoplasmataceae includes prokaryotic bacteria

such as Mycoplasma and genital Ureaplasma that are pathogenic

to humans (Wood et al., 2021). Reportedly, mycoplasmas are one of

the common pathogens in patients with COPD (14%) (Lieberman

et al., 2001, 2002).Mycoplasmas can evade the host immune system,

induce apoptosis, generate free radicals, and cause oxidative-

reductive imbalance in the cellular glutathione potential through

pro-inflammatory cytokines, thus leading to AECOPD (Sessa et al.,

2009; Papaetis et al., 2010). The family Bacillaceae includes rod-

shaped, endospore-forming, Gram-positive bacteria (Liu et al., 2015).

They are widely found in nature, including both pathogenic and

beneficial strains (Hathout et al., 2000). However, their specific role

in COPD remains unelucidated. Reportedly, the increase of Bacillus

in the mouse lungs can aggravate local inflammatory response,

resulting in more severe pulmonary emphysema (Richmond

et al., 2018), which suggests that Bacillus may be a risk factor for
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COPD. Moreover, a considerably higher population of Bacillaceae

has been reported in the rat lungs treated with particulate matter

2.5, a COPD-inducing factor, compared with that in the control

(Laiman et al., 2023). Furthermore, lower levels of Bacillus have

been detected in the sputum of patients with COPD (Simpson et al.,

2016), indicating that Bacillus may play a protective role in COPD.

The results of this study indicated a low abundance of Bacillaceae in

the COPD model, whereas it was considerably higher in the

control and SJQJD treatment groups, suggesting that Bacillaceae

may have a role in combating COPD. Reportedly, most members of

the Lachnospiraceae family in the gut are associated with decreased

lung function; however, the abundances of some members are

markedly reduced in COPD (Bowerman et al., 2020; Chiu et al.,

2021). To date, only a few studies are on the distribution

and role of Lachnospiraceae in the lungs. Herein, we discovered

Lachnospiraceae to be a marker of the microbiota, with a high

abundance in the control and SJQJD groups and a low abundance in

the model group, suggesting the regulatory role of its members in

COPD in the lungs. Lachnospiraceae members can metabolize

dietary fiber into short-chain fatty acids (SCFAs), and the SCFA

levels are positively correlated with the severity of COPD because of

their participation in the maturation process of immune cells, which

then exert local and systemic anti-inflammatory effects (Jang et al.,

2020; Song et al., 2023). The above evidence suggests that

Lachnospiraceae likely regulate the pulmonary microenvironment

and local immune function through their metabolic products.

Furthermore, our study only presented the above results at the

animal level. The identification of biomarkers still needs further

validation in clinical human specimens. In addition, this article also

has certain limitations, as it only observed changes in lung

microbiota and did not further verify whether these changes will

be involved in the occurrence and development of COPD, as well as

the specific mechanisms involved in the process. These are the

topics that we need to delve deeper into in the future.
5 Conclusion

The findings of this study show that SJQJD can improve COPD in

rats. Pulmonary microbiome analysis combined with machine

learning identified Mycoplasmataceae, Bacillaceae , and

Lachnospiraceae as potential key biomarkers for SJQJD intervention

in COPD; however, more in-depth studies are required to elucidate

their specific mechanisms and clinical significance.
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