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Seasonal human coronavirus
NL63 epidemics in children
in Guilin, China, reveal the
emergence of a new
subgenotype of HCoV-NL63
Renhe Zhu1, Rundong Cao1, Lulu Wang1, Yue Gong1,
Qian Cheng1, Hu Long2, Dong Xia1, Qinqin Song1, Zhiqiang Xia1,
Mi Liu1, HaiJun Du1, Juan Song1, Jun Han1* and Chen Gao1*

1National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National
Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention,
Beijing, China, 2Epidemic Prevention and Control Department, Guilin Center for Disease Control and
Prevention, Guilin, China
Introduction: Seasonal human coronavirus NL63 (HCoV-NL63) is a frequently

encountered virus linked to mild upper respiratory infections. However, its

potential to cause more severe or widespread disease remains an area of

concern. This study aimed to investigate a rare localized epidemic of HCoV-

NL63-induced respiratory infections among pediatric patients in Guilin, China,

and to understand the viral subtype distribution and genetic characteristics.

Methods: In this study, 83 pediatric patients hospitalized with acute respiratory

infections and positive for HCoV-NL63 were enrolled. Molecular analysis was

conducted to identify the viral subgenotypes and to assess genetic variations in

the receptor-binding domain of the spiking protein.

Results: Among the 83 HCoV-NL63-positive children, three subgenotypes were

identified: C4, C3, and B. Notably, 21 cases exhibited a previously unreported

subtype, C4. Analysis of the C4 subtype revealed a unique amino acid mutation

(I507L) in the receptor-binding domain of the spiking protein, which was also

observed in the previously reported C3 genotype. This mutation may suggest

potential increases in viral transmissibility and pathogenicity.

Discussion: The findings of this study highlight the rapid mutation dynamics of

HCoV-NL63 and its potential for increased virulence and epidemic transmission.

The presence of a unique mutation in the C4 subtype, shared with the C3

genotype, raises concerns about the virus’s evolving nature and its potential

public health implications. This research contributes valuable insights into the

understanding of HCoV-NL63’s epidemiology and pathogenesis, which is crucial

for effective disease prevention and control strategies. Future studies are needed

to further investigate the biological significance of the observed mutation and its

potential impact on the virus’s transmissibility and pathogenicity.
KEYWORDS

human coronavirus NL63, new subgenotype, molecular epidemiology, clinical
characteristics, whole-genome sequencing
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2024.1378804/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1378804/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1378804/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1378804/full
https://www.frontiersin.org/articles/10.3389/fcimb.2024.1378804/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2024.1378804&domain=pdf&date_stamp=2024-04-26
mailto:gaochen@ivdc.chinacdc.cn
mailto:hanjun_sci@163.com
https://doi.org/10.3389/fcimb.2024.1378804
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2024.1378804
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Zhu et al. 10.3389/fcimb.2024.1378804
1 Introduction

Acute Respiratory Infection (ARI) poses a significant public

health challenge, leading to substantial morbidity and mortality on

a global scale (Collaborators GDaI, 2020). Notably, acute lower

respiratory infections (ALRI), encompassing pneumonia and

bronchiolitis stemming from bacterial and viral sources, stand out

as a primary cause of hospitalization and nosocomial deaths among

young children, particularly in low- and middle-income countries

(Collaborators GI, 2019). In the Chinese context, prevalent viruses

in children hospitalized with ARI include respiratory syncytial

virus, influenza virus, rhinovirus, human metapneumovirus,

adenovirus, parainfluenza virus, bocavirus, and human seasonal

coronavirus (Li et al., 2021).

Human seasonal coronavirus NL63 (HCoV-NL63) holds a

prominent place among respiratory tract infections. Initially

identified in Amsterdam, the Netherlands, in 2004, HCoV-NL63

belongs to the Coronaviridae family and is characterized by its

enveloped, single-stranded, positively stranded RNA virus,

encompassing 27,553 nucleotides (van der Hoek et al., 2004).

Since the emergence of SARS-CoV-2 in late 2019, seven human

coronaviruses (HCoVs) have been identified. Remarkably, HCoV-

NL63 shares the same cellular receptor, ACE2, for cell entry with

SARS-CoV and SARS-CoV-2, distinguishing it from the other three

seasonal coronaviruses (HCoV-229E, HCoV-OC43, and HCoV-

HKU1) (Lin et al., 2011; Lim et al., 2016). The spike glycoprotein (S)

emerges as the primary antigenic protein, housing S1 and S2

domains responsible for viral binding to human angiotensin-

converting enzyme 2 (ACE2) and membrane fusion, respectively.

Notably, the S1 domain stands out as the most variable gene in the

entire HCoV-NL63 genome, serving as a target in molecular

epidemiological analyses (Lin et al., 2011).While HCoV-NL63

typically causes mild, self-limiting upper respiratory tract

infections across all age groups, it occasionally leads to more

severe lower respiratory tract infections, such as pneumonia and

bronchiolitis, particularly in susceptible individuals like young

children, the elderly, and immunosuppressed patients (Konca

et al., 2017; Mayer et al., 2016; Oosterhof et al., 2010; van der

Hoek, 2007).

Given the absence of a well-established molecular

epidemiological surveillance system for HCoV-NL63 and limited

research on its genotypic distribution and genetic characterization,

our study aimed to contribute valuable sequence information and

in-depth analysis of the molecular evolutionary features of HCoV-

NL63, such as nucleotide homology, phylogeny, potential

recombination events, N-glycosylation sites, major amino acid

substitution sites, etc (Shao et al., 2022). In this study,

Nasopharyngeal swabs from children hospitalized with acute

respiratory infections were collected and subjected to viral

profiling and whole-genome sequence amplification. Subsequent

genomic phylogenetic and evolutionary analyses revealed the

emergence of a new HCoV-NL63 genotype (type C4) in Guilin,

China. This discovery sheds light on the evolutionary trajectory and

potential epidemic risks associated with seasonal coronaviruses,

offering novel insights for molecular epidemiological studies and

control strategies for human coronavirus NL63.
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2 Materials and methods

2.1 Clinical specimens

Nasopharyngeal swab samples from pediatric cases were

collected between September 2021 and October 2022 at sentinel

hospitals in Guilin, Guangxi Zhuang Autonomous Region. A total

of 638 throat swab samples were obtained from children

hospitalized for acute respiratory infections (ARI). Following

collection, the throat swabs were immediately stored at -80°C and

transported in dry ice throughout the cold chain to the laboratory of

the Virus Resource Center at the Chinese Center for Disease

Control and Prevention for further testing.

Clinical diagnostic criteria for pediatric ARI followed the

“Sentinel Monitoring Plan for Severe Acute Respiratory Infection

Cases in Hospitals (2011 edition)” issued by the Ministry of Health

of the People’s Republic of China (Supplementary S1) (China

MoHotPsRo, 2011).

Considering the subtropical monsoon climate of Guilin, clinical

data for the children were grouped by season as follows: March to

May (spring), June to August (summer), September to November

(autumn), and December to February of the following year (winter).
2.2 Nucleic acids extraction and
virus detection

Nucleic acids extraction and virus detection were performed

using the GeneRotex96 fully automated nucleic acid extractor

(Xi’an Tianlong Technology Co., Ltd.) and the corresponding

nucleic acid extraction kit (ZTLJB-Y64T), following the

manufacturer’s instructions. The extracted nucleic acids from

nasal and pharyngeal swab specimens were subjected to detection

for 15 common respiratory viruses using real-time quantitative

polymerase chain reaction (qPCR) with the Applied Biosystems

QuantStudio 5 instrument. The detected viruses included human

rhinovirus (HRV), respiratory syncytial virus (RSV), human

metapneumovirus (hMPV), influenza viruses A and B (FluA and

FluB), parainfluenza virus types 1-3 (PIV1-3), and human

coronaviruses (OC43, NL63, 229E, and HKU1), adenovirus

(AdV), human bocavirus (HBoV), and human parvovirus B19

(HPV B19). Primers and probes for these 15 respiratory

pathogens were designed in-house, synthesized, and validated by

Shanghai Bioengineering Co., Ltd. The GoldStar Probe Mixture kit

was used for DNA virus detection, and the GoldStar Probe One Step

RT-qPCR Kit was used for RNA virus detection.
2.3 S1 domain gene amplification

Positive samples with a Ct value ≤30 from real-time RT-PCR

nucleic acid detection of human coronavirus HCoV-NL63 were

selected. The TAKARA PrimeScript™ One Step RT-PCR kit Ver. 2

was used for reverse transcription-polymerase chain reaction (RT-

PCR) to amplify the nucleotide sequence of the S1 domain. The

primer sequences are detailed in Table 1. The reaction program
frontiersin.org
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TABLE 1 RT-PCR primer sequences for amplifying the full-length genome and partial Spike gene of HCoV-NL63.

Primer Sequence (5’-3’) Target (nt) Size

1F AATGCTAATCTCTCTATGTTACAATTA 20504 1686

1R GGTGGCTTCAAGTGGAAAATTAC 22189

2F CGCGTTAAGAGTGGTTCACCAGGTG 22059 1623

2R CAAAGCTGCAAGCCGTCCAGTAATT 23681

3F TTCAATTCAAGCCGATCAACAAGTT 23624 1600

3R GTCATCAATTAATCGAAGGAACATC 25223

4F CAACTATACGAAGATGTTCCTTCG 25153 1697

4R CAAAGCACTGAATAACATTTTCCTC 26849

5F AACCTCGTTGGAAGCGTGTTC 26800 537

5R CTGGCCTACCATTGTGTGTAAG 27553

6F TGAGGATGTTTGTGTTTGTTTTGAC 18864 1710

6R GTCAGGAACACCTAATTGTAACATA 20573

7F CTTATGCACACACTTTCTTGTCG 17234 2001

7R ATTTTTCAACACCTTTATCACCCTTA 18915

8F ATTCAGCAACTGGTTCCTTAGATGT 15479 1808

8R GTTATCGCCACAAACATGAGCACTT 17286

9F TAATGTCCTCCCTACTATGACAC 14005 1651

9R AAAAGCATAAGAAGACTTAACACTCTC 15600

10F GACCGTACAACTATTCAAAGTGTTG 12398 1659

10R GTTCTTTACCACTAATAGCATACTT 14056

11F GGGCTATGGCTAATGGTTATACAAG 9801 1435

11R TTTGCGATATTCATGGCACGCTTCA 11235

12F GGTCTTGATGGCCTTATTGATTC 11090 1601

12R TTGCTCGTGTTCCATAACCGAC 12467

13F CAACCACTGTAACTAGCTTTCATGG 7758 2103

13R CTGCCAAAATAGAATAGCACTCAAC 9860

14F GTCTTCAAAGGGTCAAAAGGGT 5424 2394

14R CGAACACAGTGTAAAGGTGCTT 7817

15F CAATCTGATAATAATTGTTGGATTAGTA 3424 2043

15R AGATAATGCCTCTTCAGCATCAC 5466

16F GCAGATGTTCCAGATGCTTTTCAAT 1637 1864

16R GCAACTGTACAAGTGTGGTACTAAT 3500

17F CAGCAATTATGTTCTTCAGGACTTT 565 1118

17R GTGTAAATGTGCGATAAACTGATTG 1682

18F TGGTGTTCCGTCACTGCTTATT 1 856

18R AGAAGATAAGTAACCATCCCATGC 1056

S1-F AGCTGGTAACACTATTCATGCTAAT 20256 2612

S1-R GTAGCACAATCAACAACTATTGGAGT 22843
F
rontiers in Cellular and Infection Mi
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1F/R-18F/R whole genome amplification; S1F/R for partial S genes amplification.
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included incubation at 50°C for 30 min, initial denaturation at 94°C

for 2 min, followed by 35 cycles of denaturation at 94°C for 30 s,

annealing at 50°C for 1 min, extension at 72°C for 2 min, and a final

extension at 72°C for 10 min. The amplified fragments were sent to

Qingke Biosciences Co., Ltd. for Sanger sequencing.
2.4 HCov-NL63 whole
genome amplification

The HCoV-NL63 isolate from the Netherlands (HCoV-

NL63_Amsterdam 1, GenBank accession number: NC_005831)

served as the reference strain. Eighteen primer pairs covering

overlapping regions were designed using the Blast-Primer web

tool. RT-PCR was employed to amplify specific segments with

overlapping regions, encompassing all protein-coding genes

except the 5’ untranslated regions (UTR) and 3’ UTR. Primer

pairs and amplification details are provided in Table 1. Samples

with Ct values ≤25 from human coronavirus HCoV-NL63 real-time

RT-PCR were selected, and the TAKARA PrimeScriptTM One

Step RT-PCR kit Ver. 2 was used for RT-PCR amplification.

The amplified segments were subjected to Sanger sequencing by

Qingke Biosciences Co., Ltd.
2.5 Reorganization analysis

SimPlot 3.5.1.4 software was used for intraspecific whole-

genome recombination analysis of the 13 HCoV-NL63 sequences

obtained in this study against the reference sequence (Lole et al.,

1999). A sliding window size of 400 bp with a step size of 40 bp

was employed.
2.6 Phylogenetic analysis

As of October 11, 2023, all HCoV-NL63 S gene sequences were

retrieved from NCBI to establish a dataset. Strain sequences with

incomplete, excessively ambiguous bases, and unclear sampling

years or countries were excluded. For identical sequences from the

same region and year, only one was retained. The nucleic acid

sequence alignment was performed using MAFFT software

(Katoh et al., 2019). To confirm the completeness of the time

signal of the HCoV-NL63 complete S gene database, IQ-TREE was

used to build a maximum likelihood phylogenetic tree (ML-

TREE). The phylogenetic tree utilized a non-molecular clock

with 1000 repetitions of the best-fitting model. TempEst v1.5.3

was used to visualize a root-to-tip regression plot based on

regression analysis.

Time-scaled phylogenetic tree inference for the complete

HCoV-NL63 S gene sequence dataset with a time signal was

performed using the Bayesian Markov Chain Monte Carlo

(MCMC) method in BEAST v.1.10.4.3. The optimal nucleotide

substitution model recommended by ModelFinder was selected
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based on Bayesian scores. The evolutionary model comprised

TN93+Empirical+I+four gamma categories. The molecular clock

model selected a log-normal distribution of uncorrelated relaxed

clock (UCLN) based on previous references, and the tree prior

model chose Bayesian SkyGrid. The time to the most recent

common ancestor (tMRCA) was set at twice the height of the

tree, with other parameters using default settings from BEAUti. The

MCMC chain length was set to 200,000,000, with sampling every

20,000 steps. The XML file created in BEAUti v1.10.4 was run in

BEAST, and the generated log file was loaded into Tracer v1.10.4 to

confirm that all parameter estimates had effective sample sizes (ESS)

exceeding 200, indicating sufficient convergence. The

TreeAnnotator program in the BEAST package was used to

construct the maximum clade credibility tree (MCC-tree) with a

10% burn-in, and FigTree v1.10.4 was employed to visualize the

MCC-tree.

For the full-length coding sequence of HCoV-NL63, ORF1ab,

and S1 domain, a neighbor-joining phylogenetic tree was

constructed using MEGA v7.0 (Kumar et al., 2016) software with

1000 bootstrap repetitions and the Kimura2‐parameter nucleotide

substitution model.
2.7 Amino acid variant sites analysis

Amino acid variation characteristics were analyzed based on the

Spike protein amino acid sequence of the representative strain of

HCoV-NL63. Amsterdam I strain (GenBank accession number: NC

005831) and HCoV-NL strain (GenBank accession number:

AY518894) were chosen as reference strains for A and B

genotypes, respectively.
2.8 Statistical analysis

Data organization and statistical analysis were conducted using

Excel 2021 and SPSS 26.0 software. Differences in rates (or

composition ratios) between groups were compared using the c2

test or Fisher’s exact probability method. A two-sided test was

applied with a significance level of a=0.05 (P<0.05).
3 Results

3.1 Clinical data of HCoV-NL63
infected patients

From 2021 to 2022, a total of 638 children hospitalized in Guilin,

Guangxi Zhuang Autonomous Region, due to acute respiratory

infections, were tested for HCoV-NL63. Among them, 83 cases

tested positive for HCoV-NL63 (Table 2). Although the detection

rate of seasonal coronaviruses in Guilin for the same period in previous

years is lacking, the detection rate of 13.01% (83/638) is significantly
frontiersin.org
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higher than the national average detection level of four common

seasonal HCoVs from 2009 to 2019 (Li et al., 2021). Considering the

sharp increase in cases from July to September and the composition

ratio of single infections, it suggests a localized outbreak of HCoV-

NL63 in Guilin in 2022, which is relatively uncommon.

Most patients with HCoV-NL63 infection presented with upper

respiratory tract infections, while 5 cases had pneumonia, 6 cases had

bronchitis, and 2 cases had acute gastroenteritis. The age of the

children ranged from 2 months to 12 years, and there was no

statistically significant difference in detection rates between age

groups and gender groups. Infections showed clear seasonality,

with the peak of positive cases in August (Supplementary S2). The

clinical information of HCoV-NL63-infected children is summarized

in Table 2. The clinical manifestations included cough, fever, nasal

congestion, shortness of breath, wheezing, abnormal lung breath

sounds, and diarrhea. No significant statistical difference was

observed in clinical presentation and diagnosis among different

types of HCoV-NL63, including C3, C4, and B types (see

Supplementary S3). Most children exhibited mild, self-limiting

upper respiratory tract infections, with a small number

experiencing gastrointestinal symptoms, consistent with previous

reports (Kiyuka et al., 2018; Wen et al., 2022; Huang et al., 2017).
Frontiers in Cellular and Infection Microbiology 05
3.2 Co-infections

In addition to HCoV-NL63, samples from positive patients

were tested for 14 other common respiratory viruses

(Supplementary S4). Table 3 presents the detection results of the

four seasonal coronaviruses. Among the 83 patients, 45 cases

(54.22%) had HCoV-NL63 as a single infection, while 38 cases

(45.78%) had co-infections with other viruses such as RSV, HBoV,

and HRV (Table 3). Clinical characteristics, including age, gender,

co-infection, and clinical symptoms, showed no significant

differences among different genotypic infections. These data

indicate that HCoV-NL63 primarily causes upper respiratory

tract infections, and the prevalent strain in Guilin in this study is

consistent with pathogenicity reported in previous studies (Zeng

et al., 2018; Ye et al., 2023). However, the significantly increased

infectivity suggests that the detected HCoV-NL63 epidemic strain

may be a human respiratory pathogen with greater pathogenic

potential than previously believed.
TABLE 3 Clinical data of children with acute respiratory infections
caused by HCoV-NL63.

Clinical information c2
value

P
value

Gender 0.002 0.966

Male 49 59.04%

Female 34 40.96%

Age 0.317 0.854

< 2 years 38 45.78

2-5 years 28 33.73

> 5 years 17 20.48

Diagnosis

Pneumonia 5 6.02%

Acute bronchitis 6 7.23%

Acute upper respiratory
tract infection

70 84.34%

Gastroenteritis 2 2.41%

Co-infection

RSV 15 18.07%

ADV 7 8.43%

HBOV 6 7.23%

HRV 3 3.61%

ADV+RSV 3 3.61%

HBOV+FLUA 1 1.20%

HRV+FLUA 2 2.41%

ADV+RSV+FLUB 1 1.20%

Single infection 45 54.22%
fron
TABLE 2 Positive rate and proportion of four seasonal coronaviruses in
ARI cases.

Virus
Positive
cases

Positive
rate (%)

Proportion
(%)

Single infection 284 44.51 77.81

NL63 45 7.05 12.32

OC43 6 0.94 1.64

229E 0 0 0

HKU1 0 0 0

Double infections 70 10.97 19.18

NL63+RSV 15 2.35 4.11

NL63+AdV 7 1.1 1.92

NL63+HBOV 6 0.94 1.64

NL63+HRV 3 0.47 0.82

OC43+HRV 1 0.16 0.27

OC43+FluB 1 0.16 0.27

OC43+HBOV 1 0.16 0.27

Multiple
infections

12 1.88 3.29

NL63+AdV+RSV 3 0.47 0.82

NL63
+HBOV+FluA

1 0.16 0.27

NL63+HRV+FluA 2 0.31 0.55

NL63+AdV
+RSV+FluB

1 0.16 0.27
The bold values represents the number and percentage of patients infected with HCoV-NL63
in this study.
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3.3 Topology of the evolutionary tree
reveals the emergence of new HCoV-NL63
genotypic subtypes

A total of 35 S1 domain genes and 13 HCoV-NL63 full-length

genomes were obtained. To understand the genetic relationships

between the prevalent HCoV-NL63 strain detected in this study and

other HCoV-NL63 strains in GenBank, phylogenetic analyses were

conducted based on the Spike gene, S1 domain gene, ORF1ab, and

full genome sequences.

In the ARI hospitalized children’s cases in Guilin, both B and C

genotypes of HCoV-NL63 were co-circulating, with C being the

predominant genotype. Among the 35 HCoV-NL63 S1 domain

sequences in this study, they clearly evolved into an independent

cluster within the C subtype in the phylogenetic tree. This cluster

occupied a relatively distinct position in the phylogenetic tree,

different from known C1-C3 genotypic subtypes, and formed a

unique lineage, tentatively named as C4 (Figure 1). The

evolutionary tree showed that the HCoV-NL63 S1 domain gene

sequences detected in Guilin exhibited both temporal and spatial

clustering, confirming their common ancestry and continuous

circulation. Additionally, 12 epidemic strains from Japan, the

United States, and other parts of China belonged to the same

lineage, indicating that this new lineage may have already spread

widely worldwide. The discovery of the new lineage C4 suggests

potential risks associated with the rapid mutation of HCoV-NL63,
Frontiers in Cellular and Infection Microbiology 06
leading to an epidemic of acute respiratory infections. Notably, C4

shared a common origin with the C3 genotypic subtype.

For further evidence supporting this new lineage, phylogenetic

analyses were conducted based on the full genome, ORF1ab, and

Spike genes, showing similar topologies among the eight genotypic

subtypes (Figures 2A–C). Systematic phylogenetic analysis further

confirmed the emergence of the new lineage C4 of HCoV-NL63 in

Guilin, China, suggesting its potential association with the increased

cases of acute respiratory infections in 2022. Moreover, some

epidemic strains obtained in this study belonged to the new

genotypic subtype C3, discovered in 2018, as well as the B

genotype. The shared ancestry between the new genotypic subtypes

C4 and C3 in the evolutionary structure indicates a common origin.

The discovery of the new genotypic subtype C4 suggests that HCoV-

NL63 is undergoing continuous mutation, which could potentially

contribute to the ongoing outbreak in Guilin.
3.4 Phylogenetic analysis of temporal
signal analysis and time scale estimation

The Bayesian Evolutionary Analysis by Sampling Trees

(BEAST) program is extensively utilized for exploring the

spatiotemporal and evolutionary dynamics of viral pathogens

through time-stamped nucleotide sequence datasets. Under the

non-strict molecular clock model, the Bayesian MCC tree based
FIGURE 1

Phylogenetic analyses based on partial spike genes of HCoV-NL63 identified in this study. 38 HCoV-NL63 spike gene partial sequences detected in
this study were used for phylogenetic analysis by MEGA 7.0 software using Neighbor-joining method and confirmed the presence of new
subgenotype of HCoV-NL63. Bootstrap values greater than 65% were considered statistically significant for grouping. The sequence number in the
tree with a circular symbol is the sequence obtained in this study.
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on the HCoV-NL63 S gene sequence dataset is shown in Figure 3.

The estimated evolution rate (4.37×10-4 substitutions per site per

year) and TMRCA date (1978.674) results reveal ESS values

exceeding 200, consistent with the results of the time signal
Frontiers in Cellular and Infection Microbiology 07
analysis (Supplementary Figure 2). The MCC tree illustrates that

the obtained 13 HCoV-NL63 strains belong to genotypic subtypes

C3, C4, and B. They exhibit a certain temporal and spatial

clustering, with subtype C4 being closely related to epidemic
A B

C

FIGURE 2

Phylogenetic analysis based on complete genome, S and ORF1ab genes of HCoV-NL63. All available HCoV-NL63 complete genomes from GenBank
were collected and used for the evolutional analysis using MEGA 7.0 with 1000 bootstrap replications, Bootstrap values greater than 70% were
considered statistically significant for grouping. (A). Five complete genomes derived from this study were in red. Nucleotide sequence alignments
were created using MAFFT. Corresponding spike (B) and orf1ab (C) genes were used for the genotype identification. The sequence number in the
tree with a circular symbol is the sequence obtained in this study.
FIGURE 3

Time-resolved phylogenetic analysis of spike gene of HCoV-NL63 strains. The node label represents the posterior probability. The C4, C3, and B
sub-genotype strains detected in the Guilin area are indicated in green, purple, and gray. BEAST software was used to estimate the nearest common
ancestor (tMRCA) of the new subgenotype circulating in the Guilin area based on the nucleotide sequence of the Spike gene. Analyses were
conducted under the best-fit nucleotide substitution model (TN93+F+I+G4) and using a relaxed (uncorrelated lognormal) molecular clock model.
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strains from Japan and the United States. This further confirms the

results of the phylogenetic analysis based on the S1 domain,

indicating the emergence of a new lineage of HCoV-NL63.

According to the MCC time-calibrated tree estimation,

although C3 and C4 share a common ancestor, they diverged

around 2015, indicating different evolutionary paths. Overall, the

results of phylogenetic analysis suggest that, in recent years (2021-

2022), genotypic subtypes C3, C4, and B dominate among all

prevalent HCoV-NL63 strains in the Guilin region. This pattern

aligns with the predominant circulation of genotypic subtypes C

and B of HCoV-NL63 in China.
3.5 Reorganization analysis

The 13 aligned sequences of HCoV-NL63 were imported into

SimPlot software for subsequent recombination analysis. The

results of the recombination analysis for HCoV-NL63, as shown

in Figure 4, indicate no clear potential recombination regions in

ORF1ab, S to N. Combining phylogenetic and recombination

analyses, it can be suggested that the new genotypic subtype C4

of HCoV-NL63 may result from gene mutations rather than

homologous gene recombination. No apparent intraspecific

recombination signals were detected, suggesting that the new

genotypic subtype C4 of HCoV-NL63 may have originated from

gene mutations rather than intraspecific gene recombination.
3.6 Amino acid mutations

The spike protein plays a crucial role in the entry and

pathogenic mechanisms of coronaviruses. Specific mutations in

the amino acid residues of the spike protein, particularly in the

receptor-binding domain (RBD) responsible for specific binding to

the ACE2 receptor protein, may alter the interaction levels between

HCoV-NL63 and host cells, thereby affecting the virus’s virulence or

transmission within the population. To further describe the

antigenic features of the prevalent HCoV-NL63 strains detected
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in this study and understand the reasons for the localized outbreak

in Guilin, a single amino acid polymorphism analysis (SAP) was

conducted on the spike protein sequences, as shown in Figure 5.

The SAP analysis identified 65 polymorphic sites in the spike

protein, highlighting genotypic-specific SAPs and confirming the

rationale behind the new genotypic subtype classification (A1, A2,

A3, B, C1, C2, C3, and C4). The amino acid mutation analysis

revealed that the C4 subtype in the spike protein had a unique

mutation, S574L, at the 574th amino acid residue in the receptor-

binding domain (RBD), which is also detected in other C4 subtype

epidemic strains in the N-terminal domain (NTD) of the spike

protein. Furthermore, a specific mutation, I507L, associated with

increased infection capability, was observed in the RBD of the

central region of the spike protein in the C4 subtype, belonging to

the C3 genotypic subtype. This mutation might be related to the

increased number of acute respiratory infections caused by HCoV-

NL63 in Guilin in 2022. These findings confirm the validity of the

new genotypic subtype classification (A1, A2, A3, B, C1, C2, C3, and

C4) and suggest an increased pathogenic risk of HCoV-NL63

with evolution.
4 Discussion

Until now, three highly pathogenic human coronaviruses have

been identified: SARS-CoV, MERS-CoV, and SARS-CoV-2.

Coronaviruses have caused two large-scale public health crises in

the past 20 years. As of 2021, the global COVID-19 pandemic

caused by Severe Acute Respiratory Syndrome Coronavirus 2

(SARS-CoV-2) has resulted in approximately 6.9 million deaths,

posing unprecedented challenges to global health (Drosten et al.,

2003; Zaki et al., 2012; World Health Organization (2023)). As

mentioned earlier, SARS-CoV, SARS-CoV-2, and HCoV-NL63

share the same receptor, angiotensin-converting enzyme (ACE)-2,

when entering host cells. However, the consequences of virus

invasion differ significantly. While SARS-CoV and SARS-CoV-2

can cause severe respiratory distress, HCoV-NL63 typically leads to

mild respiratory tract infections limited to the upper respiratory
FIGURE 4

Recombination analyses of HCoV-NL63.Similarity plot and bootscan analysis were performed intraspecies. No obvious recombination events were
detected in new subgenotype C4 using Simplot software analysis.
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tract in most individuals. This may be attributed to the lower

affinity of NL63 spike protein for the receptor compared to SARS-

CoV-2. Consequently, outbreaks of respiratory infections caused by

HCoV-NL63 in children are rarely reported (Nyaguthii et al., 2021;

Hand et al., 2018).

In this study, focusing on pediatric patients hospitalized in

Guilin, Guangxi Zhuang Autonomous Region, due to acute

respiratory infections in 2021-2022, we obtained a total of 13

nearly full-length HCoV-NL63 genome sequences and 25 S1

domain gene sequences. Molecular characteristics, including

phylogenetic analysis, time signals, potential recombination

events, and amino acid mutations, were described. Compared to

national HCoV infection levels in the past 10 years, the number of

HCoV-NL63 infection cases in Guilin significantly increased in

2021-2022, indicating a rare small-scale outbreak of acute

respiratory infections caused by HCoV-NL63 in Guilin, China.

Additionally, phylogenetic and recombination analyses suggested

an association between this outbreak and three HCoV-NL63

subtypes (C3, C4, and B), with the identification of a new genetic

subtype, C4. C4, homologous to C3, exhibited distinct evolutionary

trends, and genetic variations may help the virus adapt to external

environments to maintain prevalence in populations.

The spike protein plays a crucial role in coronavirus invasion of

host cells and the resulting host disease process. Mutations in the

amino acid residues of the spike protein, particularly in the

receptor-binding domain (RBD) responsible for specific binding

to the ACE2 receptor protein, may alter the interaction levels

between HCoV-NL63 and host cells, affecting the virus’s virulence

or transmission (Lin et al., 2011; Wu et al., 2009). The study
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identified specific mutations, such as I507L, in the RBD, which

have been confirmed to enhance viral entry (Wang et al., 2020).

This may be a contributing factor to the increased infectivity of the

HCoV-NL63 C4 genetic subtype in the Guilin region. Furthermore,

mutations in the N-terminal domain (NTD) of the spike protein,

particularly at N111 and N119, were observed in C4, involving

amino acid substitutions R110T and N111H. According to previous

reports, the N-linked glycosylation sites at aa positions N111 and

N119 made direct polar contacts, and they were linked to aa

substitution sites R110I and A120S (Shao et al., 2022). While the

importance of these mutations in the NTD region for SARS-CoV-2

has been reported (Cui et al., 2022), further evidence is needed to

determine potential changes in spike protein antigenicity resulting

from mutations in the N-glycosylation sites of the C4 genetic

subtype. In summary, subtype-specific mutations in the spike

protein further confirm the rationale behind the new subtype

classification (A1, A2, A3, B, C1, C2, C3, and C4). It is important

to emphasize that the emergence of the new subgenotype C4 is a

natural consequence of virus evolution. Sustained genetic variation

aids the virus in adapting to its external environment, thereby

maintaining its prevalence in the population-a common and

expected phenomenon among RNA viruses. The conclusions

drawn in this study are based on limited datasets from specific

geographic regions and time periods. Thus, it is premature to draw

comprehensive conclusions regarding the global significance of C4

gene subtypes or their associated mutations.

HCoV-NL63 is generally highly susceptible to the human

population, with most individuals experiencing their first

infection in childhood and neutralizing antibodies against HCoV-
FIGURE 5

Single amino acid polymorphism analysis of HCoV-NL63 spike protein. All available HCoV-NL63 complete genomes were aligned, and
corresponding spike proteins were retrieved and used for single amino acid polymorphism analysis. One unique mutation N111H was identified
in yellow.
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NL63 are common in adult serum (Hofmann et al., 2005), but this

protective immunity is not durable (Amoretti et al., 2002), leading

to recurrent infections. Additionally, like other coronaviruses,

HCoV-NL63 may be a zoonotic pathogen originating from bats

(Huynh et al., 2012). Interspecies genetic recombination resulting

from different HCoV strains carried by bats is one reason for the

seasonal/recurrent infection pattern of HCoV-NL63 (Tao et al.,

2017). Further research is necessary to elucidate the significance of

the unique amino acid N111H mutation in the C4 subtype NTD as

observed in this study.

While pathogenic changes are inevitable with the virus’s

continuous spread and evolution, considering that HCoV-NL63

and SARS-CoV-2 share the same cell receptor, and given the

severe consequences of the global spread of SARS-CoV-2, the

potential risks of increased virulence or epidemic spread due to

ongoing mutations of HCoV-NL63 are significantly elevated.

Therefore, regular epidemiological and phylogenetic studies and

the prompt establishment of a comprehensive HCoV-NL63

molecular epidemiological surveillance system are of particular

practical importance.
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