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Background: Multiple studies have suggested a possible connection between

the gut microbiota and the development of lymphoma, though the exact nature

of this relationship remains unclear. This study aimed to explore whether a causal

association exists between gut microbiota and lymphoma.

Methods: A bidirectional two-sample Mendelian randomization (MR) approach

was conducted to investigate potential causal effects between gut microbiota

and various lymphoma subtypes. The primary method employed for MR analysis

was inverse variance weighted (IVW), supplemented by additional methods

including MR-Egger, weighted median, and weighted mode approaches. The

Cochrane Q test, MR-PRESSO global test and MR-Egger intercept test were

performed to assess pleiotropy and heterogeneity. Furthermore, a reverse MR

analysis was performed to explore potential reverse causal effect.

Results: The primary MR analysis identified 36 causal relationships between

genetic liabilities in gut microbiota and different lymphoma subtypes. Neither

the MR-PRESSO test nor the MR-Egger regression detected any pleiotropy, and

Cochran’s Q test indicated no significant heterogeneity.

Conclusions: Our MR analysis revealed substantial causal associations between

gut microbiota and lymphoma, offering new insights into lymphoma prevention

and management microbiota.
KEYWORDS

gut microbiota, Hodgkin lymphoma, non-Hodgkin lymphoma, Mendelian
randomization, causal association
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Introduction

Lymphoma, a type of neoplasma characterized by significant

heterogeneity, is commonly classified as Hodgkin lymphoma (HL)

and non-Hodgkin lymphoma (NHL). These cancers are known for

their varying degrees of immune evasion (Swerdlow et al., 2016).

Over the past decade, changes in population growth and age

structure have contributed to a continued increase in lymphoma

incidence (Huang et al., 2022; Zhang et al., 2023). Despite

significant advancements in treatments in recent years, the

pathogenesis mechanisms of lymphoma remain incompletely

elucidated. Currently, the lack of effective treatment options for

refractory or drug-resistant lymphomas remains a persistent

challenge (Brice et al., 2021; Bishop et al., 2022; Sehgal et al.,

2022; Luan et al., 2024). Therefore, it is imperative to unravel the

key mechanisms that govern tumor behavior and to develop

clinically relevant biomarkers and therapeutic targets. These

efforts aim to reduce the incidence of lymphoma and improve

prognostic outcomes for patients.

Recently, the emerging paradigm of the microbiota-gut-

lymphoma axis has been employed to explore potential

correlations between the abundance of gut microbiota and a

predisposition to lymphoma (Shi and Zhang, 2021; Upadhyay

Banskota et al., 2023). Often described as our “second genome”,

the gut microbiota plays a crucial role in shaping our immune

response, educating it, and providing protection against pathogen

overgrowth (Lynch and Pedersen, 2016). Its influence has been

noted in conditions such as NHL and acute lymphoblastic leukemia

(Rajagopala et al., 2016; Diefenbach et al., 2021; Shi et al., 2023). A

classifier, developed using gut metagenomes for the natural killer/T-

cell lymphoma cohort, achieved an accuracy of 0.813 area under the

receiver operating characteristic curve (AUROC) in cross-

validation (Shi et al., 2023). However, these studies primarily rely

on analyzing the abundance and fluctuations of gut microbiota in

patients’ fecal samples, and conducting experiments that involve

transplanting microbiota into germ-free mice. Despite these

advances, the precise correlation between gut microbiota and
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lymphoma remains indeterminate, underscoring the need for

further research to thoroughly explore this relationship.

Mendelian randomization (MR) is a robust method that utilizes

comprehensive data from genome-wide association study (GWAS)

to investigate genetic associations. The main benefit of adopting this

strategy lies in its capacity to effectively minimize the impact of

confounders, including environmental variables, on the outcome.

MR analysis involves using single nucleotide polymorphisms

(SNPs), derived from independent GWAS, as instrumental

variables (IVs). These SNPs are integrated with relevant health

outcome data, facilitating the estimation of causal relationships

within a unified framework. Additionally, this method enables the

distinction between causal and non-causal associations using cross-

sectional data (Burgess et al., 2015).

By employing a bidirectional two-sample MR analysis, we

sought to investigate the causal association between gut

microbiota and lymphoma, with the objective of providing novel

ins ight s in to approaches for lymphoma prevent ion

and management.
Materials and methods

Study design

Relevant GWAS summary data were employed to probe the

plausible causal correlation between gut microbiota and malignant

lymphoma, facilitated by a bidirectional two-sample MR analysis

(Visscher et al., 2012). Initially, our study focus on determining

whether gut microbiota exhibits a preventive or promotive role in

lymphoma development. Moreover, we performed a reverse MR

analysis to examine whether lymphoma might causally affect gut

microbiota. The workflow of this study is underpinned by three

fundamental IVs assumptions that support the primary MR

analysis, as illustrated in Figure 1. To ensure the robustness of the

findings, three hypotheses must be satisfied in the two-sample MR

(Bowden et al., 2015): (1) Relevance, demonstrating a significant
FIGURE 1

Study design of the bidirectional MR study of the correlation between gut microbiota and lymphoma. MR, Mendelian randomization; SNPs, single
nucleotide polymorphisms.
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association between genetic variations and exposure; (2)

Independence, ensuring no relationship between genetic variants

and confounding factors; and (3) Exclusion, stipulating that the

genetic variants influence the outcome solely through exposure,

without involving any other pathways. Genetic variants that fulfill

these three hypotheses can be utilized as IVs.
Data selection

Gut microbiota GWAS
Information was obtained from an exhaustive microbiome

GWAS conducted by the MiBioGen consortium (Kurilshikov

et al., 2021). This multi-ethnic GWAS comprised 18,340

individuals from 24 study cohorts. The analysis demonstrated a

connection between autosomal human genetic variants and gut

microbiota, taking into account variables such as age, gender, study-

specific factors, and genetic principal components, utilizing profiles

obtained through 16S ribosomal RNA gene sequencing. Our

analysis encompassed a total of 196 taxa, consisting of 119

genera, 32 families, 20 orders, 16 classes and 9 phyla, excluding

those unable to be definitively classified or named. Detailed

information was shown in Supplementary Table S1.

Lymphoma GWAS
We retrieved data on lymphomas from the FinnGen database

(https://www.finngen.fi/en). The GWAS for HL comprised 780

cases and 299952 controls. For NHL, the GWAS data covered

various subtypes: diffuse large B-cell lymphoma (DLBCL) with 1010

cases and 287137 controls, follicular lymphoma (FL) with 1081

cases and 299952 controls, mature T/NK-cell lymphomas with 335

cases and 299952 controls, and other and unspecified types of NHL

with 1088 cases and 299952 controls. This comprehensive

categorization provides more accurate and extensive data on

genetic variances, aiding our exploration of causal associations

between gut microbiota and different malignant lymphoma

pathological subtypes within our MR investigation. Detailed

information can be found in Supplementary Table S1.

Selection of eligible IVs
To guarantee the accuracy and authenticity of our findings on

the possible association between gut microbiota and lymphoma

susceptibility, we employed a range of quality control measures to

identify optimal independent IVs. First, SNPs selected to serve as

IVs were required to exhibit a significant correlation with the gut

microbiota. To explore potential causal associations, we adopted a

locus-wide significance threshold at p = 1 × 10-5, consistent with

thresholds frequently used in previous analyses (Liu et al., 2022;

Lopera-Maya et al., 2022). Additionally, in reverse MR analysis, we

employed a lenient genome-wide significance threshold at p = 5 ×

10-6 to identify SNPs correlated with lymphoma (Su et al., 2023; Xie

et al., 2023). Second, to mitigate potential biases due to strong

linkage disequilibrium (LD), we conducted an LD analysis with a

threshold set at r² < 0.001 and a clumping distance of 10,000 kb,
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employing the 1000 Genomes Project European samples as a

reference panel (Purcell et al., 2007). Third, to minimize any

potential confounders, each SNP was assessed in the

PhenoScanner website (Kamat et al., 2019). Fourth, GWAS

summary data for the chosen SNPs were retrieved from the

outcome dataset, and SNPs strongly associated with the outcome

(p < 5 × 10-5) were excluded. Fifth, to evaluate the potential

influence of horizontal pleiotropy, we performed MR-Egger

regression tests and MR-PRESSO analyses. Simultaneously, we

excluded palindromic SNPs to avoid potential biases related to

strand orientation or allele coding, and removed ambiguous and

duplicated SNPs. Finally, IVs were omitted if the F-statistic fell

below 10, calculated utilizing the subsequent equation: F = R2(n – k

– 1)/k(1 – R2). Here R2 denotes the proportion of variance

accounted for by all SNPs, n stands for the total sample size, and

k denotes the number of SNPs.
Mendelian randomization analyses

To investigate causality, the inverse variance weighted (IVW)

method was employed as the principal approach to synthesize effect

estimates (Burgess et al., 2013). Supplemental calculations were

conducted utilizing various methods, among them MR-Egger,

weighted mode, and weighted median, each accounting for

varying assumptions regarding potential pleiotropy (Bowden

et al., 2015, 2016). The consistency of results from these

complementary methods with the IVW estimates enhances the

credibility of our findings. For significance evaluation, a Bonferroni

correction was applied, setting the significance thresholds for each

taxonomic level by dividing 0.05 by the total number of

independent bacterial taxa present at each level: phylum

(p < 5.6 × 10–3), class (p < 3.1 × 10–3), order (p < 2.5 × 10–3), family

(p < 1.6 × 10–3), and genus (p < 4.2 × 10–4). Additionally, p-values

that fell between the established significance threshold and 0.05

were interpreted as suggestive of a potential causal relationship.

We calculated the heterogeneity statistic Q to assess effect

estimates. Outlier SNPs were identified using the MR pleiotropy

residual sum and outlier (MR-PRESSO) method (Verbanck et al.,

2018). Furthermore, we implemented the leave-one-out technique

to evaluate the potential influence of a single instrument on our

MR findings.

We performed all analyses using the statistical software R

(version 4.2.2), employing the TwoSampleMR (version 0.5.6) and

MR-PRESSO (version 1.0) packages.
Ethical approval

The summary datasets are freely accessible through OPEN

GWAS. We utilized data from participating studies that had

received ethical clearance from committees overseeing human

experimentation standards. This eliminated the need for

additional ethical approval for this study.
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Results

Instrumental variables selection

In our analysis, we initially identified appropriate IVs based on

predefined criteria. Details about the SNPs utilized in the two-

sample MR analysis can be found in Supplementary Table S2-S6.

After data harmonization, we determined that more than one SNP

was associated with each bacterial taxon and lymphoma subtype.

Furthermore, the F-statistics for all selected SNPs exceeded 10,

alleviating concerns about the strength of the IVs.
MR analysis

The causal effects of gut microbiota
on lymphoma

Four MR methods were employed to investigate the causal

associations between specific bacterial taxa and various lymphoma

subtypes, as illustrated in Supplementary Table S7-S11.

The IVW analysis indicated that four gut microbiota taxa had

causal effects on DLBCL, as illustrated in Figure 2. We found that

the genus Ruminococcaceae UCG002 (odds ratio (OR): 1.43, 95%

confidence interval (CI): 1.01–2.01, p = 0.043) and the genus

Coprobacter (OR: 1.41, 95% CI: 1.01–1.96, p = 0.044) were

positively correlated with the risk of DLBCL. On the contrary, the

genus Alistipes (OR: 0.57, 95% CI: 0.33–0.98, p = 0.043) and the

genus Turicibacter (OR: 0.60, 95% CI: 0.38–0.96, p = 0.034) were

negatively correlated with DLBCL risk. Both weighted median and

weighted mode analyses demonstrated consistent trends in ORs.

Visual representations of the causal relationships between

significant bacteria and DLBCL are demonstrated in scatter plots

(Supplementary Figure S1).

The IVW analysis indicated that eight gut microbiota taxa had

causal effects on FL, as illustrated in Figure 3. We found that the

order Bacillales (OR: 1.32, 95% CI: 1.02–1.73, p = 0.038), the family

Bacteroidales S24 7group (OR: 1.50, 95% CI: 1.03–2.20, p = 0.036),

the family Family XIII (OR: 1.99, 95% CI: 1.03–3.83, p = 0.040), the

genus Eubacterium ventriosum group (OR: 1.53, 95% CI: 1.02–2.29,

p = 0.040) and the genus Ruminiclostridium9 (OR: 1.83, 95% CI:

1.00–3.32, p = 0.048) were positively correlated with the risk of FL,

while the family Peptostreptococcaceae (OR: 0.63, 95% CI: 0.43–

0.93, p = 0.019), the genus Haemophilus (OR: 0.70, 95% CI: 0.49–

0.99, p = 0.049) and the genus Ruminococcaceae NK4A214 group
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(OR: 0.55, 95% CI: 0.32–0.93, p = 0.025) showed a negative

correlation with FL risk. Both the weighted median and weighted

mode demonstrated consistent trends in ORs. Visual

representations of the causal relationships between significant

bacteria and FL are demonstrated in scatter plots (Supplementary

Figure S1).

The IVW analysis indicated that eleven gut microbiota taxa

had causal effects on mature T/NK-cell lymphomas, as illustrated

in Figure 4. We found that the genus Ruminococcaceae UCG004

(OR: 2.06, 95% CI: 1.05–4.04, p = 0.035) was positively correlated

with the risk of mature T/NK-cell lymphomas. Conversely, several

taxa showed negative correlations with the risk, including the

family Methanobacteriaceae (OR: 0.51, 95% CI: 0.32–0.84, p =

0.007) and the genus Methanobrevibacter (OR: 0.50, 95% CI:

0.27–0.92, p = 0.026), the family Lactobacillaceae (OR: 0.51, 95%

CI: 0.28–0.94, p = 0.031) and the genus Lactobacillus (OR: 0.51,

95% CI: 0.28–0.91, p = 0.023), the family Verrucomicrobiaceae

(OR: 0.44, 95% CI: 0.20–0.98, p = 0.044) and the genus

Akkermansia (OR: 0.45, 95% CI: 0.20–0.98, p = 0.044), the

genus Bifidobacterium (OR: 0.51, 95% CI: 0.26–0.99, p = 0.047),

the genus Eubacterium oxidoreducens group (OR: 0.44, 95% CI:

0.21–0.92, p = 0.030), the genus Ruminococcaceae UCG014 (OR:

0.41, 95% CI: 0.28–0.96, p = 0.040) and the genus Lachnospiraceae

UCG001 (OR: 0.38, 95% CI: 0.20–0.69, p = 0.002). Both the

weighted median and weighted mode demonstrated consistent

trends in ORs. Visual representations of the causal relationships
FIGURE 3

MR results of causal effects between gut microbiota and FL. MR,
Mendelian randomization; FL, follicular lymphoma; nsnp, number of
single nucleotide polymorphism; OR, odds ratio; CI,
confidence interval.
FIGURE 2

MR results of causal effects between gut microbiota and DLBCL. MR,
Mendelian randomization; DLBCL, diffuse large B-cell lymphoma;
nsnp, number of single nucleotide polymorphism; OR, odds ratio;
CI, confidence interval.
FIGURE 4

MR results of causal effects between gut microbiota and mature T/NK-
cell lymphomas. MR, Mendelian randomization; nsnp, number of single
nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
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between significant bacteria and mature T/NK-cell lymphomas

are demonstrated in scatter plots (Supplementary Figure S1).

The IVW analysis indicated that seven gut microbiota taxa had

causal effects on other and unspecified types of NHL, as illustrated

in Figure 5. We found that the order Clostridiales (OR: 1.71, 95%

CI: 1.07–2.76, p = 0.026), the family Defluviitaleaceae (OR: 1.47,

95% CI: 1.03–2.11, p = 0.034), the genus Flavonifractor (OR: 1.82,

95% CI: 1.02–3.25, p = 0.042) and the genus Phascolarctobacterium

(OR: 1.64, 95% CI: 1.00–2.69, p = 0.048) showed a positive

correlation with the risk of other and unspecified types of NHL.

Conversely, the phylum Lentisphaerae (OR: 0.72, 95% CI: 0.53–

0.98, p = 0.038), the order Bacillales (OR: 0.75, 95% CI: 0.58–0.97,

risk of lymphoma, while the phylum p = 0.027), and the genus

Slackia (OR: 0.60, 95% CI: 0.39–0.92, p = 0.018) were negatively

correlated with the risk. Both the weighted median and

weighted mode demonstrated consistent trends in ORs. Visual

representations of the causal relationships between significant

bacteria and other and unspecified types of NHL are

demonstrated in scatter plots (Supplementary Figure S1).

The IVW analysis indicated that six gut microbiota taxa had

causal effects on HL, as illustrated in Figure 6. We found that the

family Bifidobacteriaceae (OR: 1.85, 95% CI: 1.08–3.16, p = 0.025)

and the genus Eubacterium ventriosum group (OR: 1.68, 95% CI:

1.00–2.80, p = 0.049) were positively correlated with the risk of HL,

while the family Desulfovibrionaceae (OR: 0.53, 95% CI: 0.29–0.99,

p = 0.045), the family Lactobacillaceae (OR: 0.65, 95% CI: 0.44–0.97,

p = 0.035), the genus Candidatus Soleaferrea (OR: 0.58, 95% CI:

0.40–0.86, p = 0.007) and the genus Coprobacter (OR: 0.63, 95% CI:

0.42–0.96, p = 0.031) showed a negative correlation with HL risk.

Both the weighted median and weighted mode demonstrated

consistent trends in ORs. Visual representations of the causal

relationships between significant bacteria and HL are

demonstrated in scatter plots (Supplementary Figure S1).

In the sensitivity analyses, we assessed horizontal pleiotropy

and heterogeneity, as detailed in Supplementary Table S12-S13

and Supplementary Figure S2. The MR-PRESSO test revealed no

signs of horizontal pleiotropy among these SNPs, as indicated by a

p-value exceeding 0.05 in the global test. Additionally, according to

Cochran’s Q statistics, we detected no pleiotropy due to cross-

instrument effects, with the Cochran’s Q for IVW being exceeding

0.05. The MR-Egger analysis confirmed the absence of directional

pleiotropy, with its p-value intercept also being greater than 0.05.
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Moreover, the leave-one-out analysis demonstrated the robustness

and stability of the results. The sensitivity analyses of gut

microbiota, which demonstrated significant causal relationships

with lymphoma subtypes, are presented in Table 1.

The causal effects of lymphoma on
gut microbiota

We performed reverse MR analyses to explore potential causal

associations between lymphoma subtypes and forward significant

bacteria. Considering the limited identification of lymphoma

associated SNPs identified employing the strict threshold at p < 5

× 10-8, we adopted a more lenient threshold to mitigate potential

inaccuracies arising from an insufficient number of SNPs. Except

for a reverse causal relationship between the other and unspecified

types of NHL and the phylum Lentisphaerae, which was excluded to

guarantee the robustness of our results, we generally found no

statistically significant associations using the IVW method, as

detailed in Supplementary Table S14-S16.
Discussion

To our knowledge, this study is believed to be the first MR

analysis to investigate the possible causal link between gut microbiota

and lymphoma, representing a pre-lymphoma longitudinal study of

the microbiota. We investigated the potential involvement of 196

distinct microbial taxa in the etiology of malignant lymphoma,

utilizing the most comprehensive microbiome GWAS summary

data available. Our results indicate causal associations between

changes in the abundance of certain microbial groups and the

development of lymphoma.

Emerging studies suggested that gut microbiota could regulate

the formation of lymphoma through various mechanisms,

including aberrant activation of the immune system, generation

of both pro-inflammatory and anti-inflammatory responses, and

modulation of metabolic processes (Shi and Zhang, 2021). In our

study, the genus Phascolarctobacterium was associated with an

increased risk of lymphoma, while the phylum Lentisphaerae, the

family Desulfovibrionaceae and the genus Haemophilus within the

phylum Proteobacteria, along with the family Methanobrevibacter

and the genus Methanobrevibacter within the phylum

Euryarchaeotaare, were found to be protective factors against

lymphoma. Interestingly, the microbiota within the phylum
FIGURE 5

MR results of causal effects between gut microbiota and other and
unspecified types of NHL. MR, Mendelian randomization; NHL, non-
Hodgkin lymphoma; nsnp, number of single nucleotide polymorphism;
OR, odds ratio; CI, confidence interval.
FIGURE 6

MR results of causal effects between gut microbiota and HL. MR,
Mendelian randomization; HL, Hodgkin lymphoma; nsnp, number of
single nucleotide polymorphism; OR, odds ratio; CI,
confidence interval.
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TABLE 1 Sensitivity analysis of the causal association between gut microbiota and lymphoma.

Subtype Microbiota

Cochran
Q test

MR-
PRESSO

MR-Egger

p_value p_value Intercept p_value

Diffuse large B-cell lymphoma Genus
Ruminococcaceae UCG002

0.941 0.970 -0.012 0.731

Genus Coprobacter 0.413 0.450 -0.031 0.686

Genus Alistipes 0.854 0.870 -0.110 0.197

Genus Turicibacter 0.241 0.299 -0.016 0.889

Follicular lymphoma Order Bacillales 0.362 0.398 0.047 0.612

Family Bacteroidales S24 7group 0.673 0.696 -0.016 0.847

Family XIII 0.382 0.415 0.014 0.885

Family Peptostreptococcaceae 0.678 0.689 0.036 0.334

Genus Eubacterium
ventriosum group

0.946 0.946 0.029 0.677

Genus Ruminiclostridium9 0.703 0.727 0.068 0.495

Genus Haemophilus 0.472 0.467 -0.011 0.823

Genus Ruminococcaceae
NK4A214 group

0.105 0.131 -0.030 0.659

Mature T/NK-cell lymphomas Family Verrucomicrobiaceae 0.310 0.312 0.108 0.334

Family Methanobacteriaceae 0.943 0.955 -0.011 0.945

Family Lactobacillaceae 0.832 0.806 0.010 0.922

Genus Bifidobacterium 0.818 0.828 -0.069 0.320

Genus Lactobacillus 0.903 0.891 0.009 0.923

Genus Methanobrevibacter 0.773 0.796 0.079 0.455

Genus Akkermansia 0.309 0.322 0.107 0.340

Genus Eubacterium
oxidoreducens group

0.606 0.651 -0.187 0.304

Genus
Ruminococcaceae UCG014

0.280 0.372 0.063 0.489

Genus Lachnospiraceae UCG001 0.477 0.521 -0.050 0.696

Genus
Ruminococcaceae UCG004

0.824 0.834 0.080 0.632

Other and unspecified types of non-
Hodgkin lymphoma

Phylum Lentisphaerae 0.330 0.378 -0.065 0.492

Family Defluviitaleaceae 0.844 0.691 0.073 0.282

Order Bacillales 0.478 0.538 -0.011 0.899

Order Clostridiales 0.366 0.419 0.045 0.348

Genus Flavonifractor 0.927 0.933 -0.056 0.606

Genus Phascolarctobacterium 0.924 0.934 0.101 0.373

Genus Slackia 0.624 0.704 -0.189 0.251

Hodgkin lymphoma Family Bifidobacteriaceae 0.262 0.322 0.065 0.337

Family Desulfovibrionaceae 0.994 0.995 0.004 0.963

Family Lactobacillaceae 0.928 0.928 0.002 0.973

(Continued)
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Firmicutes, Bacteroidetes, Actinobacteria and Verrucomicrobia can

act as either risk or protective factors depending on the lymphoma

subtypes. This phenomenon may be attributed to distinct

pathogenic mechanisms among different tumor subtypes,

heterogeneous immune responses of tumor ce l l s to

microorganisms across subtypes, and the influence of the tumor

microenvironment, necessitating further validation through animal

experiments and clinical trials.

In this study, the order Clostridiales within the class Clostridia

was identified as a risk factor for lymphoma, although its suborder’s

microbiota partly promotes tumorigenesis and partly inhibits tumor

formation. Research studies have shown that the class Clostridia

promotes the differentiation of CD4+Foxp3+Tregs cells, which

subsequently induce the production of IgA+ B-cells in the intestinal

tract (Atarashi et al., 2011). These B-cells can decrease the absorption

of antigens derived from the microbiota in mucosal tissues and

reduce the activation of systemic T-cell activation (Cong et al.,

2009). Meanwhile, butyric acid, a metabolite of the class Clostridia

(Vital et al., 2014), helps inhibit the activation of the NF-kB signaling

pathway (Inan et al., 2000). These mechanisms collectively contribute

to maintaining immune homeostasis, suppressing deleterious

inflammation, and thereby inhibiting tumor formation.

Importantly, inflammatory lymphomas are characterized by

significant immune cell infiltration, particularly of T cells, frequent

mutations that lead to persistent activation of the NF-kB pathway,

and a heightened sensitivity to immune checkpoint blockade therapy

(Kline et al., 2020). Consistent with these studies, family

Peptostreptococcaceae, genus Eubacterium oxidoreducens group,

Ruminococcaceae UCG014 and Ruminococcaceae NK4A214

group, Lachnospiraceae UCG001, Slackia, and Turicibacter were

found to inhibit tumorigenesis.

Recently, numerous studies have focused on investigating the

correlation between gut microbiota along with its metabolites and

lymphoma. Gut microbiota, often referred to as the “new virtual

metabolic organ”, regulates various metabolic pathways in the host

(Evans et al., 2013). Some microbial metabolites can promote or

inhibit carcinogenesis. For instance, most short-chain fatty acids

(SCFAs), produced by the fermentation of dietary fibers by the two

main phyla, Firmicutes and Bacteroidetes, are considered to have

anticancer effects. SCFAs act as ligands for G protein-coupled

receptors found throughout the gastrointestinal tract and on

immune cells, and have been implicated in regulating inflammation

and cancer progression (Zhang and Davies, 2016). Additionally,

butyrate, a histone deacetylase inhibitor, initiates apoptosis and

prevents tumor cell proliferation through the Warburg effect,
Frontiers in Cellular and Infection Microbiology 07
enhancing histone 3 acetylation and the expression of target genes

such as Fas, P21, P27, etc (Vander Heiden et al., 2009; Wei et al.,

2016). Lu et al. found that a decrease in Fusobacterium rectum led to

butyrate deficiency in patients with lymphoma, failed to inhibit

lymphomagenesis by suppressing the TNF-induced TLR4/MyD88/

NF-kB axis (Lu et al., 2022). Interestingly, butyrate can also promote

tumor formation by facilitating the extra-thymic production of Treg

cells (Arpaia et al., 2013). Consistent with previous observational and

animal studies, our study showed that group Eubacterium

oxidoreducens, Ruminococcaceae UCG014, Ruminococcaceae

NK4A214 group, and Lachnospiraceae UCG001 within the phylum

Firmicutes, and the genus Alistipes and Coprobacter within the

phylum Bacteroidetes function as protective factors for lymphoma.

We also found genus Eubacterium ventriosum Group, Flavonifractor,

Ruminococcaceae UCG002, Ruminococcaceae UCG004, and

Ruminiclostridium 9 within the phylum Firmicutes to be risk

factors for different types of lymphoma, suggesting that different

genera of family Eubacteriaceae, Ruminococcaceae, and

Lachnospiraceae may have distinct mechanisms of action in

different lymphoma types.

Akkermansia muciniphila, a representative species of the

phylum Verrucomicrobia in the human intestine, along with

genus Lactobacillus and genus Alistipes, are considered important

probiotic microorganisms in the human gut (Cani et al., 2022).

These probiotics are thought to enhance antitumor activity by

improving host metabolism, modulating the immune response

and increasing efficacy of immune checkpoint inhibitors in

patients with FL (Routy et al., 2018; Merryman et al., 2023).

Certain strains of genus Lactobacillus and Bifidobacterium can

inhibit the growth of Helicobacter pylori by releasing bacteriocins

or organic acids, and may reduce its attachment to gastric epithelial

cells, thereby lowering the risk of gastric adenocarcinoma and

lymphoma (Gotteland et al., 2006). Furthermore, castalagin,

which is enriched in bacteria associated with effective

immunotherapeutic responses (e.g., family Ruminococcaceae and

genus Alistipes), improves the ratio of CD8+ cells to FOXP3+CD4+

cells in the tumor microenvironment (Messaoudene et al., 2022).

Above all, our research contributes new perspectives on the

potential causality between gut microbiota and lymphoma, which

have not previously been reported. One major strength of this study

lies in its utilization of a MR approach, which helps minimize

confounding factors and biases commonly observed in

observational studies, thereby enhancing the credibility of the

results. Although the MR approach offers several benefits over

traditional epidemiological research, interpreting the results
TABLE 1 Continued

Subtype Microbiota

Cochran
Q test

MR-
PRESSO

MR-Egger

p_value p_value Intercept p_value

Genus Eubacterium
ventriosum group

0.288 0.285 0.060 0.511

Genus Candidatus Soleaferrea 0.759 0.772 0.008 0.966

Genus Coprobacter 0.282 0.311 0.020 0.833
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requires considerable caution. This caution is necessary due to

potential variability in methodologies used across different cohorts

within the MiBioGen consortium, as well as the dynamic and

complex nature of the gut microbiota within its ecosystem.

Consequently, further epidemiological studies and clinical trials are

essential to more definitively determine the causal relationship

between gut microbiota and lymphoma. Additionally, the

resolution at the genus level provided by 16S sequencing is limited;

therefore, alternative approaches, such as shotgun metagenomics,

metatranscriptomics, proteomic analysis, and metabolomic profiling

are recommended. These methods will enable better harmonization

of GWAS data and lead to a more comprehensive understanding of

the microbiome’s involvement in lymphoma.

In conclusion, our study provides evidence for potential

associations between alterations in the composition of gut

microbiota and different subtypes of lymphoma. We discovered

that several microbial taxa have causal effects on lymphoma,

offering valuable insights into prophylactic and therapeutic targets

against lymphoma. These findings suggest that microbial prophylaxis

or interventions such as probiotic administration, fecal microbiota

transplantation, or dietary modifications warrant further exploration.
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