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Pharmacy in Košice, Slovakia
Agustı́n Olmedo-Juárez,
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Introduction: As a contagious and chronic disease in the livestock industry,

Paratuberculosis is a significant threat to dairy herds’ genetic and economic

resources. Due to intensive breeding and high production of dairy cattle, the

incidence and prevalence are higher. Developing non-destructive diagnostic

methods for the early detection and identification of healthy animals is

paramount for breeding programs. Conventional methods are almost entirely

destructive, have low accuracy, lack precision, and are time-consuming. Near-

infrared spectroscopy (NIRS) and aquaphotomics can detect changes in biofluids

and thus have the potential to diagnose disease. This study aimed to investigate

the diagnostic ability of NIRS and aquaphotomics for Paratuberculosis in

dairy cattle.

Methods: Blood plasma from dairy cattle was collected in the NIR range (1,300

nm to 1,600 nm) 60 days before and 100 days to 200 days after calving in two

groups, positive and negative, using the same consecutive enzyme-linked

immunosorbent assay test results three times as a reference test.

Results: NIRS and aquaphotomics methods invite 100% accuracy, sensitivity, and

specificity to detect Paratuberculosis using data mining by unsupervised method,

Principal Component Analysis, and supervised methods: Soft Independent

Modeling of Class Analogiest, Linear Discriminant Analysis, Quadratic

Discriminant Analysis, Partial Least Square–Discriminant Analysis, and Support

Vector Machine models.

Discussion: The current study found that monitoring blood plasma with NIR

spectra provides an opportunity to analyze antibody levels indirectly via changes

in water spectral patterns caused by complex physiological changes, such as the

amount of antibodies related to Paratuberculosis by aquagram.
KEYWORDS

Paratuberculosis, Johne’s disease, near-infrared spectroscopy, aquaphotomics, blood
plasma, dairy cattle
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1 Introduction

Mycobacterium avium subspecies Paratuberculosis (MAP) causes

Paratuberculosis or Johne’s disease (JD), a chronic, progressive

intestinal disease. Ruminants are infected with a weakly Gram-

positive acid-fast bacterium that can spread to the entire herd via

horizontal transmission, the fecal-oral route, mainly via fecal

contamination of the udder or pasture, water, food, colostrum, and

aerosol formation, or vertical transmission via MAP from the infected

dam to the embryo by placenta (Lee et al., 2023).

Because MAP has a long incubation period and is transmissible,

JD is critical from a socio-economic and public health standpoint

(OIE, 2012). It is classified into four stages: silent, subclinical, clinical,

and advanced. It can affect calves from the embryonic period to the

first months of birth, but clinical symptomsmay not appear for years.

Other animals are exposed to contamination from infected animals’

feces, the environment, food, and milk during this time. This issue

will accelerate the spread of the disease in the herd so that, for every

animal in the final stage of the disease, there are one to two in the

clinical stage, six to eight in the subclinical stage, and 15 to 25 in the

initial stage of the disease (Whitlock and R, 2010). This point

highlights the importance of paying particular attention to the

Trojan named Johne’s disease to preserve genetic resources.

Because of the more intensive breeding of dairy cattle, the

prevalence and incidence of JD are higher in dairy cattle than in beef

cattle. Moreover, most beef cattle are slaughtered before they

become symptomatic from this disease (Rindi and Garzelli, 2014).

JD is a factor that can reduce productive traits like milk and meat

production. Also, the fertility rate, one of the functional traits,

significantly impacts the herd’s profitability (Arnott et al., 2015).

Paratuberculosis has numerous direct and indirect economic

costs. Direct economic loss effects include both visible and invisible

consequences. The visible consequences of Paratuberculosis infection

include reduced growth rate, lower meat and milk production,

premature culling of dairy cows, higher mortality, and increased

costs due to compensation. The invisible effects include reduced

fertility or infertility, disease control costs, diagnostic test costs,

abortions, infected calves born, susceptibility to other diseases, and

veterinary costs. The indirect economic impacts of this disease

include the cost of disease control, revenue foregone due to

restricted market access, export losses, losses to other sectors in the

supply chain and consumers, impact on animals’ health and welfare,

marketing, and public health–related issues, productivity reduction,

loss of business and market, decrease in market value, and food

insecurity (Miglior et al., 2017; Barratt et al., 2019). The first step in

controlling the spread of infection will be rapid identification of the

infected animals, separation from the herd, and vaccination of herd

members. Additionally, infected animals entering the field will be a

significant risk factor in spreading bacteria (Chaubey et al., 2016).

It is critical to use the proper tests and diagnostic approaches for

MAP infection and spread in the shortest amount of time

(McGregor, 2015). The diagnostic tests for MAP infection are

primarily infection detection tests and tests to identify the host’s

immune response to the bacterium. Two techniques of bacterial

culture and tracking its molecular component by polymerase chain

reaction (PCR) technique are used to diagnose MAP strains
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(Assessment of surveillance and control of Johne’s disease in farm

animals in GB, 2002). The molecular techniques of enzyme-linked

immunosorbent assay (ELISA), complement fixation test, and agar

gel immunodiffusion have been frequently used to assess the host

immune response (Sardaro et al., 2017). Still, the level of accuracy

and sensitivity of each of these techniques is very different. It is

sometimes recommended to use a set of tests, especially in more

advanced stages of the disease. However, it is worth noting that

costs and logistics (Rieger et al., 2021) can influence the choice of

tests. Of course, it should be noted that the mentioned molecular

tests are very effective in early screening and tracking and that

histopathological studies will allow for a definitive and accurate

diagnosis of the disease, particularly its tissue effects. According to

the studies, whereas the ELISA test for the detection of antibodies

directed against MAP is the most cost-effective tool, PCR or fecal

culture (FC) testing is preferred for lowering prevalence, and both

are assumed to be more sensitive for low-shedding animals (Robins

et al., 2015; Smith et al., 2017).

Others state that combining ELISA and PCR and serially

interpreting them would be the most cost-effective (Aly et al., 2012).

As a result, the lack of early and accurate diagnostic tests and MAP’s

inherent resistance to antibiotics and disinfectants has made infection

control extremely difficult, turning JD into a global challenge. Thus,

developing an accurate diagnostic method for distinguishing healthy

animals from infected ones based on the disease agent the antibody

produced and being able to show the animal’s state at each stage of the

disease is a global necessity.

Nowadays, using modern physical methods in disease diagnosis is

more preferred and desirable due to their accuracy, non-invasiveness,

cost and time effectiveness, and fewer side effects than chemical

methods. Recent research studies to diagnose JD based on modern

physical methods include fluorescence imaging (Le Puil et al., 2006);

near-infrared spectroscopy (NIRS) (Norby et al., 2006); flow cytometry

(Allen et al., 2011); Raman spectroscopy (Yakes et al., 2008);

transabdominal ultrasonography (Tooloei et al., 2016); hyperspectral

image analysis and NIRS (Smith, 2016); confocal microscope

(Mathie, 2017); monitoring the change of gene expression pattern in

salivary glands (Sanjay Mallikarjunappa et al., 2019); UV-VIS

spectroscopy and gold nanoparticle (Agrawal et al., 2020); and

immunohistochemistry, immunofluorescence, and immunomagnetic

separation (Karuppusamy et al., 2021). Despite these studies,

developing a non-invasive, accurate, fast, available, and cost-effective

gold method for diagnosing JD and its four stages, particularly in its

early stages, remains a global challenge.

NIRS, as one of the physical and non-invasive methods, without

sample preparation or chemical pollution, with high accuracy and

based on molecular bond vibration measuring, has been widely used

in the last 50 years in agriculture to quantify nutrient composition

for crops and in quality control across the food industry and

pharmaceutical products by establishing the interaction of

electromagnetic waves with biological materials. Water is cited as

one of the disadvantages of NIRS in aqua systems because it could

alter sample spectra, hide absorbance bonds, and shift absorbance

bonds. Another is the inability to detect the amount smaller than

500 ppm in solution. However, in the previous decade, the

application of this method has grown significantly to include
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structural analysis of water. The aquaphotomics approach to

analyzing water and aqueous systems like plasma, serum, urine,

and milk spectra provides a unique opportunity to describe the

complex state of water using its multidimensional NIR spectra

(Munćan et al., 2019).

Aquaphotomics as a novel scientific discipline founded by

Professor Roumiana Tsenkova in 2005, involving the study of

water and aqueous system, using light–water interaction to

extract information about the structure of water, is composed of

many different waters molecular information by using water

absorbance bands, which found to be huge source information on

the subject of the structural and related function properties of

aqueous system. It is a complementary “omics” discipline with the

large-scale, comprehensive studies about water as “collective matter

and energy mirror” of the rest of the aqueous system that has

memory and conciseness to detect perturbation and change the

arrangement to keep the stability of biosystem. Whereas genomics

studies genes, proteomics studies proteins, glycomics studies

carbohydrates, and lipidomics studies lipids, aquaphotomics

explores the roles, relationships, and functions of the water—an

equally important biomolecule and one of nature’s fundamental

building blocks. Water, a natural matrix of any aqueous or

biological system, changes its absorbance pattern every time it

adapts to a physical or chemical change in the system itself or its

environment. Small quantities or structural change of other

molecules present in the aqueous system, so the information is to

extract about not only water structure but also other components

present in water or the state of the system as a whole.

Aquaphotomics changes the treat of water in spectroscopy to

opportunity to achieve much valuable information, and, in this

role, water acts like a sensor and amplifier, especially for low

concentration amounts, and detects them and their changes

(Tsenkova et al., 2018; Muncan and Tsenkova, 2019).

Aquaphotomics utilizes the high sensitivity of water hydrogen

bonds; accordingly, every aqueous system is a dynamic

arrangement of water molecule network hydrogen-bonded to

other constituents and influenced by perturbation like infection.

Any internal or external perturbation of the aqueous system results

in changes of water molecular conformations, which, in turn,

produce changes in the corresponding NIR spectra at their

respective water absorbance bands. In the range of 1,300 nm to

1,600 nm, 12 water absorbance bands more important. Water

spectral pattern as a holistic biomarker, which relates certain

water structures with functionalities of the respective biological

system, thus opens new directions to ward non-destructive quality

monitoring applications and non-invasive biodiagnosis (Tsenkova

et al., 2018; Muncan and Tsenkova, 2019).

Light–water interaction spectroscopic methods produce

complex multidimensional spectral data, which require data

processing and analysis to extract hidden information from water

spectra in aquaphotomics. Preprocessing and chemometrics

methods remove unwanted influences and extract water

absorbance spectral pattern related to the perturbation of interest

by identification of activated water absorbance bands. NIRS, non-
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destructive tool, offers the advantages of in vivo spectral monitoring

of living objects. Aquaphotomics combined with time-resoled NIRS

allows a better understanding of biological functions and

underlying water dynamics (Tsenkova et al., 2018).

NIRS and aquaphotomics models need to chemical methods as

a reference test for calibration and then can predict the samples by

models. In this study, ELISA test selects for reference test, and, for

increasing of accurate, samples select according to the three

consequent results of tests. Applying two chemometrics methods

for the evaluation of one aspect of the experimental study

demonstrates stability of the applied methodology, namely,

consistency in results (Tsenkova et al., 2018). In this way, we

apply preprocessing and five methods: Principal Component

Analysis (PCA) as unsupervised method in the first, and, then,

Soft Independent Modeling of Class Analogies (SIMCA), Linear

Discriminat Analysis (LDA), Quadratic Discriminant Analysis

(QDA), Partial Least Square‐ Discriminant Analysis (PLS-DA),

and Support Vector Machine (SVM) as supervised methods, for

discrimination between healthy and infected dairy cattle by

Paratuberculosis, consistent in our results in the total range of

1,300 nm to 1,600 nm and then in 12 water absorbance bands.

Aquaphotomics was applied for discrimination of healthy and

mastitic animals based on the spectra of urine, blood, and milk of

dairy cows (Tsenkova and Atanassova, 2001; Tsenkova, 2007;

Meilina et al., 2009; Morita et al., 2013), estrus detection in cow

and panda (Kinoshita et al., 2012a, 2015; Iweka et al., 2020),

discrimination of different bacteria strains (Remagni et al., 2013;

Slavchev et al., 2015, 2017; Kovacs et al., 2019), pneumonia in dairy

calves (Santos-Rivera et al., 2021), and detection of type2 diabetic

(Li et al., 2020).

NIRS and aquaphotomics combined with chemometrics based

multivariate analysis (MVA) may be able to identify and

discriminate the biochemical profile of blood plasma associated

with Paratuberculosis infection and to monitor the water molecules

of blood plasma response to perturbation of this infection in dairy

cattle. According to the function of collective mirror, water, all of

the changes in biomolecules or MAP in JD that today measure

separately may be monitored by water absorbance bands accurately.

The objectives of this study were to use blood plasma for

diagnosis of Paratuberculosis by NIRS and supervised methods and

then to use water bonds of blood plasma for biomonitoring and

discovering water spectral changes in blood plasma associated with

diagnosing Paratuberculosis using Aquaphotomics and

chemometrics. The current diagnostic methods for Paratuberculosis

require detecting MAP through FC, PCR test, or measuring an

adequate level of antibodies through ELISA test, but not accurate

in low concentration. Aquaphotomics can detect the low

concentration of antibody or other changes in biomolecules by

infection of Paratuberculosis perturbation.

Our long-term goal is to create a diagnostic strategy for the

detection of dairy cattle in the four stages of JD and then in early

detection of Paratuberculosis by this non-invasive, accurate, and

fast diagnostic method in vivo, thereby contributing to the

sustainability of the genetic resources and the global health.
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2 Methods

2.1 Animals and farms

Holstein dairy cows in the second and third lactation periods were

used in this study. It should be noted that the ELISA test was not

accrued in the early calf due to the special conditions of JD, so the

population of that range of cattle is larger than others. Therefore,

finding positive cattle is easier. The selected cows are considered free of

another disease. The experiment was carried out over one summer.

Two physiologic periods in dairy cattle were chosen, one about 60 days

before drying from one farm and the other 100 days to 200 days after

calving from another in Iran’s Isfahan province.

The cattle to be dried 3 weeks later were chosen randomly

among the cows in the second and third lactation periods on the

first farm (n = 50). In their second or third lactation periods and

about 100 days to 200 days after calving, dairy cows were chosen for

the second herd (n = 50). Dairy cows with similar ELISA testing

results in three consecutive weeks were chosen on the basis of the

history of ELISA testing in the first year. Cows with ELISA test

index of less than 20 and greater than 100 were classified as negative

and positive, respectively (Table 1).
2.2 Blood collection

This research was approved by the SRBIAU–Institution Animal

Science (SRB-11-3997) and complied with the institutional, national,

and international Animal Research: Reporting In Vivo Experiments

guidelines (ARRIVE). The animals studied in this research were not

separated from the herd. The farms had a routine program for

monitoring JD, and the blood samples taken by staff for ELISA tests
Frontiers in Cellular and Infection Microbiology 04
were also used for spectroscopy. Four blood samples were collected for

each cow in the first farm (n = 200) 3 weeks before drying and 1 week

after calving, and 11 animals were selected. In the second farm, blood

sample tubes were collected for cows whose ELISA tests were confirmed

(n = 150), and, then, blood samples were taken three times within 3

weeks from selected cows (n = 33). Blood samples were collected via

caudal venipuncture into two commercial blood collection tubes

containing the anticoagulant Ethylenediaminetetraacetic acid and

immediately placed on ice (n = 383). Two tubes were centrifuged at

4,000 rpm for 20min to separate the plasma, and the plasma was stored

in six 2-mL microtubes at −23°C until NIRS analysis. The second tube

was used for the ELISA test with an IDEXX kit.
2.3 Reference analysis (ELISA test)

Models were created and evaluated for the selected samples by

comparing the estimated and reference values in three results of

consecutive blood plasma. ELISA tests during the 3 weeks were

considered for the reference analysis.

The IDXX kit, as an ELISA kit, has enzyme immunoassay for the

detection of antibodies directed against MAP in bovine individual

serum, plasma, and milk samples. First, coated plates were obtained

and the sample position was recorded. The negative control (NC) was

diluted 1:20 in the dilution buffer N.12 and was dispensed in one well.

The positive control (PC) was diluted 1:20 in the dilution buffer N.12

and was dispensed in two wells. Plasma samples were diluted 1:20 in

the dilution buffer N.12 and, after, contents used a microplate shaker

were homogenized and incubated 15 min to 2 h at 18°C to 26°C;

100 μL from each well transferred to the preplate to appropriate wells

of the coated microplate. After, contents of the wells by microplate

shaker were homogenized, covered, and incubated for 45 min at 18°C

to 26°C. Then, the solution was removed, and each well was washed

with approximately 300 μL of wash solution three to five times. After

that, 100 μL of conjugate was dispensed into each well, covered, and

incubated for 30 min. The solution was removed, and each well was

washed with approximately 300 μL of wash solution three to five

times. Then, 100 μL of TMB substrate N.9 was dispensed into each

well and incubated 10 min 18°C to 26°C away from direct light;

100 μL of stop solution N.3 was dispensed into each well. Optical

densities values of samples and controls at 450 nm were measured

and recorded. For the calculation of controls, Equation 1 was applied,

and, for plasma samples, Equation 2 was applied (IDXX

Paratuberculosis screening 06-07130-27 manual):

Control :  PC�X   =  PC1(450)+PC2(450)
2

Validity criteria: PC
�X

NC  A(450) ≥ 3:00 and PC�X ≥ 0:350
(1)

Interpretation for plasma samples :

Sample=ControlðS=PÞ% = 100 ∗ sample A(450)−NC A(450)
PC �X−NC A(450)

Negative : S=P% < 45%

Suspect : 45% < S=P% < 55%

Positive :  S=P% ≥ 55%

(2)
TABLE 1 The characteristics of negative and positive animal groups of
Paratuberculosis by ELISA test as a reference test.

Contents Herd
Total

number
of cows

Number of cows
according to the
blood plasma
ELISA test

Positive Negative

60 days
before drying

1 11 2 9

100 days to 200
days after
calving

(first week)

2 11 8 3

100 days to 200
days after
calving

(second week)

2 11 8 3

100 days to 200
days after
calving

(third week)

2 11 8 3

Total 2 22 10 12
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In this study, to increase the accurate of reference test, the

animals had the same results of S/P in three consequent test   ≥ 100

and   ≤ 20, considered as positive and negative, respectively.
2.4 NIR spectral signature collection

Blood plasma NIR absorbance spectra were collected using a

spectrophotometer (UV-VIS-NIR 3600, Shimadzu CO. Japan)

equipped with a quartz cuvette having a 1-mm optical path length

(n = 79). The samples were thawed over ice for 15 min and warmed

between hands for approximately 1 min before NIR spectra collection.

NIR spectrum acquired in the range of 1,280 nm to 1,630 nm (interval

= 0.5 nm; single scan; very slow). Before collecting plasma spectra, a

reference spectrum was captured from two empty cuvettes, followed by

one empty cuvette and one containing distilled water. Three

independent spectral signatures were collected per sample, with the

cuvette being repacked with plasma between each replicate.
2.5 Multivariate analysis

The chemometrics-based multivariate analysis (MVA) was

performed on the first overtone region of the near-infrared spectrum

in the vibrational combination band between 1,300 nm and 1,600 nm

using Unscrambler X v.10.5. The mathematical pretreatments of the

linear baseline correction; standard normal variate (SNV) with

detrending polynomial order and a first derivative (symmetric
Frontiers in Cellular and Infection Microbiology 05
Savitzky–Golay smoothing, points = 12); smoothing, normalized,

multiplicative scatter correction (MSC); and spectroscopic

(absorbance to transmittance) are applied to all the databases

described next.

A balanced dataset (n = 301) was created by spectral signatures

for each category (healthy, or negative, infected, or positive) (Table 2).

This dataset contains spectra from all 22 cattle and was used to

perform PCA, SIMCA, discriminant analysis: LDA, QDA, PLS-DA,

and SVM, followed by aquaphotomics analyses. In the supervised

analysis, datasets were created by positive and negative groups to test

mathematical preprocessing and modeling bias against the null

hypothesis (no biological signature can differentiate between

samples from two classes).

The samples were randomly divided into two subsets: a calibration

subset for the internal validation set (75%) and a test subset for the

external validation set (25%). This calibration equation was derived

from various sample sets: each sample set includes a calibration set of

positive (≥ 100) and a calibration set of negative samples (≤ 20).
2.6 Principal component analysis

PCA is an unsupervised MVA and a well-known statistical

method for reducing the dimensionality of datasets, explaining

variation in data by ignoring the data label, assisting in pattern

detecting in spectral behavior, and finding excluded data (Ghasemi

et al., 2013). The PCA was applied to the dataset, and the calibration

sets were created for the discriminant analysis and completed as the

first step to observe spectral features from both the negative and
TABLE 2 The results of supervised methods (SIMCA, LDA-PCA, QDA-PCA, PLS-DA, and SVM) to detect the positive and negative groups of
Paratuberculosis in the range of 1,300 nm to 1,600 nm and 12 water absorbance bands (WAMACs) according the results of ELISA test as a
reference test.

Model Range Contents

Predicted model

Full data:
full validation

Calibration:
full validation

Test:
cross-validation

SIMCA

1,300–1,600 nm

Negative 100 (7/7)

Positive 91 (10/11)

Total accuracy 94.5

Pretreatment Normalize

12 Water
absorbance bands

Negative 100

Positive 91

Total accuracy 94.5

Pretreatment Smoothing

LDA 1,300–1,600 nm

Negative 87.5 (28/32) 88 (22/25) 100 (7/7)

Positive 91 (41/45) 88.2 (30/34) 100 (11/11)

Total accuracy 89.5 88.1 100

PC 20 20 10

Pretreatment – – –

(Continued)
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TABLE 2 Continued

Model Range Contents

Predicted model

Full data:
full validation

Calibration:
full validation

Test:
cross-validation

12 Water
absorbance bands

Negative 97 (31/32) 96 (24/25) 100 (7/7)

Positive 91 (41/45) 88.2 (30/34) 100 (11/11)

Total accuracy 93.5 91.5 100

PC 20 20 20

Pretreatment – – –

QDA

1,300–1,600 nm

Negative 100 (32/32) 100 (25/25) 100 (7/7)

Positive 98 (44/45) 97 (33/34) 100 (11/11)

Total accuracy 98.8 98.3 100

Pretreatment – – –

PC 20 20 20

12 Water
absorbance bands

Negative 100 (32/32) 100 (25/25) 100 (7/7)

Positive 98 (44/45) 97 (33/34) 100 (11/11)

Total accuracy 98.8 98.3 100

Pretreatment MSC MSC MSC

PC 18 20 20

PLS-DA

1,300–1,600 nm

Negative 100 (32/32) 100 (25/25) 100 (7/7)

Positive 98 (44/45) 97 (33/34) 100 (11/11)

Total accuracy 98.8 98.3 100

Pretreatment Normalized Normalized Normalized

R2 - RSME 78% - 0.02 84% - 0.02 81% - 0.02

12 Water
absorbance bands

Negative 94 (30/32) 96 (24/25) 100 (7/7)

Positive 91 (41/45) 94 (32/34) 82 (9/11)

Total accuracy 92% 95% 89%

Pretreatment Baseline Baseline Baseline – MSC - SNV

R2 - RSME 70% - 0.04 71.6% - 0.28 66% - 0.29

SVM

1,300–1,600 nm

Negative 97 (31/32) 96 (24/25) 100

Positive 100 (45/45) 100 (34/34) 100

Total accuracy 99 98 (58/59) 100

Pretreatment 1st derivation 1st derivation 1st derivation

R2 - RMSC 97% - 0.1 96% - 0.1

12 Water
absorbance bands

Negative 100 (32/32) 100 (25/25) 100

Positive 98 (44/45) 97 (33/34) 100

Total accuracy 98.8 98 (58/59) 100

Pretreatment Normalized Normalized Normalized

R2 - RMSC 95% - 0.1 96%-0.1
F
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positive blood plasma samples to determine dataset groupings and

score distributions, identify dominant peaks in the loadings, and

detect outliers using the Hotelling’s T2 influence plot.
2.7 Soft independent modeling of class
analogy analysis

Soft Independent Modeling of Class Analogy (SIMCA) is a

supervised classification technique that builds a PCA model for each

class in a calibration set. Test samples were then fitted to these models.

By comparing the residuals to the maximum, test samples with allowed

residuals are classified (Ghasemi et al., 2013). Blood plasma NIR

spectra analysis was carried out using the SIMCA classification

method. The impact of the difference between the positive and

negative groups on spectral data was investigated. The spectra for

positive and negative groups were revealed by SIMCA calibration.

SIMCA classification for Paratuberculosis diagnosis based on ELISA

test values was performed for the positive and negative groups.
2.8 Discriminant analysis

Discriminant analysis is a supervised and qualitative classification

method that can classify new and unknown samples based on separate

models for each group. It also helps to interpret differences between

groups using LDA, unilinear discriminant analysis like QDA, or PLS-

DA methods. LDA is a common technique considering both within-

group and between-group variance. Decreasing the dimensionality

of data increases the variance between and reduces the variance

within classes, separating them. QDA applies when the variability of

each group does not have the same structure (unequal covariance

matrix), and the shape of the curve separating groups is not

linear (Hastie et al., 2009).

LDA was used in the raw data and transformed spectra in the

range of 1,300 nm to 1,600 nm and then separately for 12 water

absorbance bands. Before applying LDA for classifying spectra into

positive and negative JD classes, the dimensionality of each spectral

dataset was reduced using PCA to overcome the constraint of

requiring more objects (samples) and features (scores or PCs). PCs

that captured more than 99% of the variance in the calibration dataset

were selected for building the PCA-LDA model. LDA identifies

similar spectral features for intra-class grouping and differential

spectral features to separate dairy cattle’s healthy and infected

blood plasma classes. It is reported that the PCA-LDA models

from the confusion matrix evaluate the classification method as a

percent (%) to describe the quality parameters of accuracy, sensitivity,

and specificity.

The PCA-QDAmethod was then used to describe the nonlinear

relationship between groups in raw data and transformed spectra in

the range of 1,300 nm to 1,600 nm and 12 water absorbance

bands separately.

PLS-DA analysis method was used to recognize the effect layers

in discriminant models. All processes in the above were executed for

this method. R2 and RMSC were used to determine the accuracy of

the obtained PLS-DA models.
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2.9 Support vector machine analysis

SVM is a supervised method that finds an optimal hyperplane

or classifier and correctly separates objects into different classes as

much as possible. SVM can effectively avoid over-fitting problems

by leaving the most significant possible fraction of points from the

same group on the same side and maximizing the distance of either

group from the hyperplane and structural risk minimum mistake

instead of the minimum error of the misclassification on the

training set. Due to these advantages, SVM has gained extensive

applications, including binary classification (Hastie et al., 2009).
2.10 Evaluation of classification methods

Quality parameters, such as accuracy, sensitivity, and specificity,

were used to evaluate the classification method’s performance. The

sensitivity test quantifies the model’s ability to correctly identify

true positives of JD described by Equation 3, where TP represents

true positive and FN represents false negative. A high sensitivity

(>90%) is required when using the prediction model to identify

severe but treatable diseases.

The model’s specificity shows its ability to identify healthy

samples correctly. True negative was shown by Equation 4, where

TN represents true negative and FP represents false positive. Also,

the total accuracy is demonstrated by Equation 5.

Sensitivity% = (TP=TP + FN) ∗ 100 (3)

Specificity% = (TN=TN + FP) ∗ 100 (4)

Total accuracy%

= ((TN ∗ (TN=TN + FP)) + (TP ∗ (TP + FN ∗ 100)))=TN

+ FP + TP + FN (5)
2.11 Aquaphotomics

The contribution of water absorbance bands was investigated to

detect the positive and negative blood plasma groups separately in JD.

Therefore, a two-stage analysis is about all wavelengths of blood

plasma samples in the range of 1,300 nm to 1,600 nm (first overtone

of water), and the wavelength of only 12 water absorbance bands in

this range was characterized as follows; C1, 1,336–1,348 (2n3: H2O

asymmetric stretching vibration); C2, 1,360–1,366 [OH−·(H2O)1,2,4:

water solvation shell]; C3, 1,370–1,376 (n1 + n3: H2O symmetrical

stretching vibration and H2O, asymmetric stretching vibration); C4,

1,380–1,388 [OH−·(H2O)1,4: water solvation shell, O2-·(H2O)4:

Hydrated superoxide clusters, 2n1: H2O symmetrical stretching

vibration]; C5, 1,398–1,418 [water confined in a local field of ions

(trapped water), S0: free water, water with free OH−]; C6, 1,421–1,430

(water hydration bond, H–OH bend and O–H … O); C7, 1,432–

1,444 (S1: water molecules with 1 hydrogen bond]; C8, 1,448–1,454

[OH−·(H2O)4,5: water solvation shell]; C9, 1,458–1,468 (S2: water
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molecules with two hydrogen bonds, 2n2 + n3: H2O bending and

asymmetrical stretching vibration); C10, 1,472–1,482 (S3: water

molecules with three hydrogen bonds); C11, 1,482–1,495 (S4: water

molecules with four hydrogen bonds); and C12, 1,506–1,516 (n1: H2O

symmetrical stretching vibration, n2: H2O bending vibration, strongly

bound water)3. Finally, the water bond study results are shown by

aquagram using Equation 6 (Muncan and Tsenkova, 2019).

A0l = (Al − μ l)=sl (6)

where A′l is the normalized absorbance value displayed on the

radar axis; Al is absorbance after scatter correction (multiplicative

scatter correction using the mean of the dataset as a reference spectrum

or standard normal variant transformation); μl is the mean of all

spectral; sl is the standard deviation of all spectral; and l are the

selected wavelengths from Water Matrix Coordinates (WAMACs)

regions corresponding to the activated water absorbance bands

(Muncan and Tsenkova, 2019).
3 Results

3.1 Raw absorbance spectra of the positive
and negative groups of blood plasma

Bovine blood plasma constitutes 55% of total blood volume

(Mathew et al., 2023), with up to 92% water, 3% albumin and

globulin, 4% immunoglobulin, 0.4% coagulants and fibrinogen,

0.5% minerals (sodium, potassium, bicarbonate, chloride, and

calcium), and 0.07% of lipids related to hormone complex

biofluid (Santos-Rivera et al., 2021).

Figure 1 shows blood plasma samples’ raw NIR absorbance

spectra in the analyzed range of 1,300 nm to 1,600 nm. In this

spectral region, these spectra appear identical, with the main feature

being a dominant absorbance band around 1,450 nm attributed to

the first overtone of OH stretching vibration (Vitalis et al., 2023).

Because bovine blood plasma is 92% water, the spectra of blood

plasma are similar to the water spectra (Figure 1A).

Four calculations were usually performed in the initial data

averaging and spectral subtraction evaluation. This was followed by

loading in SIMCA and regression coefficient in PLS-DA analysis to
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enhance the subtle changes at specific water absorbance bonds in

the spectra of blood plasma samples (Tsenkova et al., 2018). The

raw data average of blood plasma for each group is not interested

(Figure 1B). To emphasize the subtle differences, the raw data

average spectra in Figure 2A, and the positive and negative groups’

second derivation were subtracted from the total average of all

spectra (Figure 2B). Another way to enhance the differences is to

calculate the difference spectrum between the average spectra of

positive and negative groups’ second derivation (Figure 2C). This

spectral subtraction enhanced the differences between the two

groups in raw data, and the most considerable difference is in the

regions around 1,300 nm to 1,388 nm, 1,421 nm to 1,495 nm, and

1,506 nm to 1,600 nm. In the second derivation spectral subtraction,

all 12 water bonds are active, and the differences are noticeable.
3.2 PCA: exploratory analysis of Johne’s
disease effects on spectra of blood plasma

The PCA is an unsupervised MVA that can reduce the

dimensionality of datasets, explain variation in the data by

ignoring data labels, detect patterns in spectral behavior, and find

excluded data. PCA results were presented as scores and loadings

plots. Figure 3 depicts the similarities and differences in chemical

complexes containing OH, CH, and NH bonds interacting with NIR

light in transformed spectra of bovine blood plasma in the range of

1,300 nm to 1,600 nm in the PCA score plot. The PCA loadings

revealed the dominant peaks influencing the trends in the score plot

(Figure 3), which were related to the OH in water bonds. According

to the PCA analysis of the raw data, two herds were separated

entirely, and the positive and negative groups were separated as

expected from unsupervised analysis, so the positive and negative

classes were placed above and below the graph, respectively.

PC1 represented the most variation in the data (70%) among

the first three PC loadings, with PC2 and PC3 representing the

second and third most variation (19% and 10%, respectively). Two

outliers were discovered in Hotelling’s T2. Furthermore, these

spectra were removed before averaging and spectral subtraction.

Next, by baseline pretreatment, the first three PC loadings, PC1

(89%), PC2 (10%), and PC3 (1%), explained 100% of the variance.
BA

FIGURE 1

Absorbance NIR spectra dataset. (A) Raw and (B) mean of blood plasma (n = 79).
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3.3 SIMCA analysis for detection of cattle
response to Johne’s disease: discrimination
of positive and negative blood plasma

First, SIMCA was applied to perform a supervised classification

of blood plasma spectra according to the negative and positive

classes in the range of 1,300 nm to 1,600 nm. In raw data, the test

set’s classification accuracy, sensitivity, and specificity were 83.5%,

73%, and 100%, respectively. Total accuracy for SNV, MSC,

baseline, and spectroscopic preprocessing was 89%, sensitivity was

82%, and specificity was 100%. Finally, the data preprocessing

normalization results were the best, with the data having 94.5%

total accuracy, 91% sensitivity, and 100% specificity by the first
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three PCs for the two groups (Table 2). Discriminating powers of

SIMCA data analysis with normalized pretreatment show that the

wavelengths contributed to the successful separation of blood

plasma at positive and negative groups and that all wavelengths

are active in discriminating models in Figure 4.

The absorbance value at the WAMACs (12 water absorbance

bands) was used to calculate the SIMCA model of blood plasma

spectra. The total accuracy in raw data was 89%, with the sensitivity

and specificity of 82% and 100%, respectively. Baseline pretreatment

resulted in a total accuracy of 94.4%, sensitivity of 100%, and

specificity of 85.7%, whereas smoothing pretreatment resulted in a

total accuracy of 94.5%, sensitivity of 91%, specificity of

100% (Table 2).
A B

C

FIGURE 2

Subtraction spectra of the positive and negative groups of blood plasma. (A) Subtraction spectra of raw data of the positive and negative groups of
blood plasma from the total mean spectra in Paratuberculosis. (B) Subtraction spectra of second derivative data from the positive and negative
groups of blood plasma from the total mean spectra in Paratuberculosis. (C) Subtraction spectra of second derivative data of the positive (red) and
negative (blue) groups of blood plasma from each other in Paratuberculosis. 12 water absorbance bands (pink).
A B

FIGURE 3

Principal component analysis of blood plasma. (A) PCA of raw data of blood plasma NIR spectra (1,300 nm to 1,600 nm) from the positive (red) and
negative (blue) groups in Paratuberculosis farm1 (1) and farm2 (2). (B) PCA loading plot for baseline pretreatment samples from the positive and
negative groups containing the first three PCs explaining 100% of the variance. PC1 (blue), PC2 (red), and PC3 (gray).
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3.4 LDA analysis for detecting dairy cattle
response to Johne’s disease of
blood plasma

LDA is the simplest classification method that supervises

dimensionality reduction techniques, classifies data simultaneously,

and focuses on finding a feature subspace that maximizes group

separability. The variables with binary or multiclass labels are the

target of LDA (Ghasemi et al., 2013).

The PCA–LDA was conducted on spectra of blood plasma from

both the positive and negative groups simultaneously. Three PCs

were chosen from a total of 10 PCs, explaining 100% of the variance

in the PCA of the calibration sets for creating the discriminant and

prediction equations in full data, calibration for internal validation,

and testing for external validation.

In internal validation, the specificity and sensitivity of LDA

were 87.5% and 91% for full raw data and were both 88% for

calibration data, respectively. The positive and negative groups

separated with 100% total accuracy, sensitivity, and specificity

when using the prediction model for external validation. In the

range of 12 water bonds, full data and calibration had 93.5% and

91.5% total accuracy, 97% and 96% specificity, and 91% and 88%

sensitivity, respectively. External validation revealed that raw data

had 100% total accuracy, sensitivity, and specificity.

Increased accuracy, sensitivity, and specificity in 12 water

absorbance bands range analysis with the range of 1,300 nm to 1,600

nm in internal validation and similarity in external validation results

demonstrated the importance of water in detecting healthy and

infected groups (Table 2).
3.5 QDA analysis for detection of dairy
cattle response to Johne’s disease of
blood plasma

Another type of discriminant analysis is QDA. When each

group’s variability does not have the same structure (unequal
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covariance matrix) and the curve shape separating groups is not

linear, QDA provides a better classification model.

In internal validation, QDA in the range of 1,300 nm to 1,600

nm for the total wavelength of raw data in the negative and positive

groups was 100% and 98% and that for calibration data was 100%

and 97%, respectively, for specificity and sensitivity. External

validation separates the positive and negative groups based on

100% total accuracy, sensitivity, and specificity.

In internal validation, QDA inWAMACs in blood plasma has 97%

and 98% sensitivity and 100% and 100% specificity for full data and

calibration, respectively. External validation using SNV, MSC, Baseline,

smoothed, and normalized pretreatment yielded 100% total accuracy,

sensitivity, and specificity in Paratuberculosis detection (Table 2).
3.6 PLS-DA analysis for detection of dairy
cattle response to Johne’s disease of
blood plasma

PLS-DA, as a supervised method in discriminant analysis, is a type

of qualitative calibration in which the category group variable is used

for classification rather than continuous measurement, as in

quantitative calibration, using partial least squares regression methods.

Data were systematically divided into internal validation (a full

dataset and calibration set) and external validation (a prediction

set). Table 1 shows the number of samples and method

characteristics in the full data, calibration, and prediction sets.

The relationship between the actual and predicted class was

analyzed by PLS-DA in the 1,300 nm to 1,600 nm region using

absorbance values of blood plasma spectra, according to the results

of the ELISA test as reference values. Internal validation using

normalized preprocessing yielded 100% specificity and 98%

sensitivity for full data and 100% specificity and 97% sensitivity

for calibration. R2 values were 78% and 84%, respectively.

Figure 5 depicts the regression coefficient of the wavelength

variables using the PLS-DA method and normalized preprocessing

with seven PCs. In this diagram, each variable with a high regression
FIGURE 4

Discriminating powers of SIMCA analysis of data with normalized pre-treatment. All of the 12 water absorbance bands are active in discriminating
of models.
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coefficient was included in the model, and the highest regression

coefficients relate to the water absorbance bands.

Internal validation of PLS-DA in 12 water absorbance bands of

1,300 nm to 1,600 nm region using absorbance values at theWAMACS

of blood plasma spectra achieved 94% and 91% sensitivity and

specificity for full data and 96% and 94% sensitivity and specificity

for calibration data, respectively. These figures were 100% and 82% in

external validation, respectively. When these results are compared to

the range of 1,300 nm to 1,600 nm, all the specificity and 82% of the

sensitivity belong to the water absorbance bands and can be recognized

by them (Table 2).
3.7 SVM analysis for detection of cattle
response to Johne’s disease of
blood plasma

SVM has been used to detect Paratuberculosis and health

groups as a powerful supervised method. According to SVM

analysis, the best prediction equation obtained from the first

derivative model, which was the result of internal validation of

full data and calibration, contained 97% and 96% specificity with

100% sensitivity, and the total accuracy, sensitivity, and specificity

for external validation were 100%. In the separation of negative and

positive groups, these models yielded a high coefficient of

determination (R²) of 96% and a low root mean square error of

prediction (RMSEP) of 0.1% (Table 2).

This time, SVM was performed on the basis of aquaphotomics.

In comparison to the data obtained from SVM by 12 water

absorbance bands (WAMACs) with the results obtained from all

wavelengths in the range of 1,300 nm to 1,600 nm, in internal

validation models with normalized pretreatment, full data and

calibration have 98% and 97% sensitivity and 100% specificity.

The coefficient of determination, R² = 96%, and RMSEP = 0.1 were

obtained in separating the negative and positive groups. External
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validation shows that, in the model with normalized pretreatment,

total accuracy in separating positive and negative groups increases

(to 100%).

External validation shows that the model with normalized

pretreatment achieved an increased total accuracy (100%) in

separating positive and negative groups for Paratuberculosis,

demonstrating the high contribution of water bonds in the results

of the SVM models in the range of 1,300 nm to 1,600 nm.

These findings suggested that biochemical changes related to

antibody amount in blood plasma as a result of the dairy cattle

response to MAP infection in JD could be accurately detected and

classified using NIRS and aquaphotomics (Table 2).
3.8 Aquagrams

Finally, the difference in the water structure in the blood plasma of

the negative and positive groups was determined. It can be investigated

using the aquagram of the active water absorbance bands created during

the disturbance, which is JD in this case. The aquagram displays

normalized absorbance values from MSC pretreatment at water

absorbance bands on the axes originating from the center of the

graph to identify the water absorbance bands that responded strongly

to JD. WAMACS absorbance values were used for axes. By comparing

the aquagrams for the positive and negative groups, the relationship

between two groups of infected and healthy individuals with WASP

was estimated.

Based on the results of mean spectrum difference, SIMCA, and

PLS-DA, all WAMACS wavelengths distinguish between the positive

and negative groups and are thus used in drawing the aquagram.

According to the diagram, active water absorbance bands in the

negative class primarily include C1: water with asymmetric stretching

vibration, C2: water solvent shell, and C3: water bonds with

symmetric and asymmetric stretching vibration, C4: hydrated

superoxide clusters and symmetrical stretching vibration, C5:
FIGURE 5

The regression coefficient of wavelengths in the PLS-DA method and normalized pretreatment for distinct positive and negative groups of blood
plasma in Paratuberculosis.
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containing free water, C6: have free OH bonds and hydrated water,

and C7: bonds with a hydrogen bond were increased. However, in the

positive class, these water absorbance bands are significantly reduced

and water absorbance bands C8: water solvation shell, C9: water

molecules with two hydrogen bonds, C10: with three hydrogen

bonds, C11: with four hydrogen bonds, and C12: with stronger

bonds Increased. In other words, the effect of changes in antibody

blood plasma causing JD can be observed in water absorbance bands

spectral patterns (WASPs), where the free water proportion,

hydrated, and having a hydrogen bond in the blood plasma is

significantly reduced. Also, the water molecules are organized in

groups of 3 or 4 with the formation of more and stronger hydrogen

bonds. Furthermore, as the amount of antibodies in JD changed, the

proportion of water molecules with symmetric and asymmetric

stretching vibrations decreased (Figure 6).
4 Discussion

JD changes the amounts of antibodies in dairy cattle’s blood

plasma. An ELISA kit can detect these changes. Due to the

characteristics of JD and the lack of 100% diagnostic accuracy of

this kit, animals with a history of JD were tested for three consecutive

weeks. However, animals with three similar test results and an index

of less than 20 were considered healthy or negative. Animals with an

index greater than 100 were classified as infected or positive. The two

groups were chosen on the basis of the results of three consecutive
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weekly ELISA blood plasma tests in dairy cows: a healthy group with

an index of ≤20 and an infected group with an index of ≥100. The

NIR spectrum profile was used to develop five classification models

based on the antibody index in plasma and the biochemical changes

caused by the disease in the blood plasma, particularly in the structure

of the water molecules that make up the plasma. These models

diagnosed Paratuberculosis and distinguished healthy and infected

samples with 100% total accuracy, sensitivity, and specificity. Finally,

the aquagram was obtained, which shows the changes in the 12 water

absorbance bands in healthy and infected dairy cattle.

The first, for the positive and negative groups, separate datasets

were created. The null hypothesis (no biological signature can

distinguish samples from these two groups) was tested by NIRS

and aquaphotomics approach to the unsupervised and supervised

analysis in two ranges: 1,300 nm to 1,600 nm and only in 12 water

absorbance bands in this range.

NIRS can provide information on the chemical and physical

composition of raw materials such as milk, particularly on portable

instruments that can be used directly on the dairy farm (Evangelista

et al., 2021). Additionally, NIRS is used to detect genetically

modified organisms. Aquaphotomics is a novel field that could be

explored for monitoring them (Sohn et al., 2021).

The physiological and metabolic changes are the foundation for

NIRS profiling to distinguish between healthy and infected animals. It

can be used to detect and monitor infection in dairy cattle. The profile

of NIR spectra reflects the animal’s immune response to JD agent by

applying MVA and the aquaphotomics approach based on the
B C

D E F

A

FIGURE 6

Aquagram of blood plasma dairy cattle with MSC pretreatment for Paratuberculosis, showing evidence different in WASPs of the positive (blue) and
negative (green) groups. (A) Total; (B) Herd1; (C) Herd2; (D) Herd2-Week1; (E) Herd2-Week2; (F) Herd2-Week3.
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biochemical changes that caused the difference between the blood

plasma of healthy and infected animal (Meilina et al., 2009; Kinoshita

et al., 2012b; Ramirez-Morales et al., 2021). In 2012, Mycobacterium

tuberculosis was detected by infrared and near-infrared spectroscopy

(Pesala et al., 2012).

This study analyzed the blood plasma spectra using PCA, LDA,

QDA, PLS-DA, and SVM methods by ELISA test as a reference test

for calibration. This analysis reveals information about biochemical

imbalances caused by diseases that affect the composition of blood

plasma. This effect causes the changes in the structure of the water

in the blood plasma, characterized by the reuse of PCA, LDA, QDA,

PLS-DA, and SVM methods in the range of 12 bonds of water and

can be seen in the aquagram.

The raw data spectrum and the average of the negative and

positive groups followed the water spectral pattern, with a peak at

1,450 nm, confirming the high proportion of water in blood

plasma compounds.

According to the PCA analysis in raw data, the two herds were

separated entirely, and the positive and negative groups were

separated as expected from unsupervised analysis. Accordingly,

the positive and negative classes were at the top and bottom of

the graph, respectively. By baseline pretreatment, the first three PC

loadings, PC1, PC2, and PC3, explained 89%, 10%, and 1% of the

dataset variance, respectively (100%).

The SIMCA method was studied for blood plasma in the range

of 1,300 nm to 1,600 nm using raw data and some pretreatments,

and the normalized preprocessing produced the best results: 94.5%

total accuracy, 91% sensitivity, and 100% specificity by the first

three PCs for two groups.

The SIMCA models calculated using the absorbance value at the

WAMACs (12 water absorbance bands) and smoothing pretreatment

data had a 94.5% total accuracy, a 91% sensitivity, and a 100%

specificity. The similarity of the results in the range of 1,300 nm to

1,600 nm and in 12 water absorbance bands demonstrates the

effective and decisive role of water bonds changes in distinguishing

healthy and infected groups in NIRS.

The PCA and SIMCA models were used to diagnose mastitis in

dairy cattle (Tsenkova and Atanassova, 2001; Kinoshita et al., 2012b;

Ramirez-Morales et al., 2021) by identifying NIR features of

blood plasma.

Internal validation of the LDA model in full raw data and

calibration yielded 89.5% and 88% total accuracy, 87.5% and 88%

specificity, and 91% and 82% sensitivity, respectively. External

validation of positive and negative groups was separated with 100%

total accuracy, sensitivity, and specificity using the prediction model.

Full data and calibration had 93.5% and 91.5% total accuracy, 97%

and 96% specificity, and 91% and 88% sensitivity, respectively, in the

12 water absorbance bands. However, the raw data had 100% total

accuracy, sensitivity, and specificity in external validation. Increased

accuracy and specificity in 12 water absorbance bands analysis

compared to the range of 1,300 nm to 1,600 nm in internal

validation and similarity in sensitivity and external validation

results demonstrate the importance of water in detecting healthy

and infected groups.
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In the QDA model, the results of full data and 12 water

absorbance bands were the same in internal and external

validation. In the internal evaluation, the raw data in the full

range and the preprocessed data with MSC achieved 99% and

98% total accuracy, 98% and 97% sensitivity, and 100% specificity,

respectively. Also, the total accuracy, sensitivity, and specificity were

100% in the external validation, demonstrating the decisive role of

water in separating the two groups.

In 2021, a study with 18 PCs used NIRS and LDA with

aquaphotomics to diagnose Pneumonia in dairy calves with 98.5%

total accuracy, 97.5% sensitivity, and 99.6% specificity (Santos-Rivera

et al., 2021). Another study in 2023 used NIRS, LDA-PCA, PLS

regression, and aquaphotomics to monitor lettuce’s freshness during

cold storage. This study found that WAMACs reflected all information

about the freshness of lettuce during storage. This study also showed

that WASPs can be used as a multidimensional biomarker to monitor

changes during storage (Vitalis et al., 2023).

In the 1,300 nm to 1,600 nm region, PLS-DA in internal validation

by normalized preprocessing for full data achieved 100% specificity and

98% sensitivity, and with the calibration, 100% specificity and 97%

sensitivity. The R2 was 78% and 84%, respectively. Using absorbance

values at theWAMACS of blood plasma spectra, in internal validation,

sensitivity and specificity were achieved at 94% and 91% for full data

and at 96% and 94% for calibration data, respectively. These amounts,

in external validation, were 100% and 82%, respectively. By comparing

these results with the range of 1,300 nm to 1,600 nm, it is clear that all

the specificity and 82% of the sensitivity belong to the water bonds and

it can be recognized by them.

NIRS and aquaphotomics used the PLS model to detect estrus in

dairy cattle (Takemura et al., 2015; Iweka et al., 2020). The water

absorbance bands in panda and orangutan urine spectrumwere used as

a biomarker in estrus detection. Based on the PLS-PCA method, this

study showed that the female panda’s small estrous hormone

concentration was measured and detected using water absorbance

bands in the range of 1,300 nm to 1,600 nm, and the aquagram showed

these changes (Kinoshita et al., 2012b, 2015). Using first derivative

pretreatment and PLS-PCA method with cross-validation models,

another study has managed to detect estrous cycle stages by horse

blood serum through NIRS and aquaphotomics (Agcanas et al., 2017;

Vance et al., 2017).

The best prediction equation was obtained from the first derivative

model for the SVM analysis. This model provided 97% and 96%

specificity with 100% sensitivity in the internal validation of full data

and calibration. The external validation resulted in a total accuracy,

sensitivity, and specificity of 100%. In separating negative and positive

groups, these models have a high coefficient of determination (R2) of

96% and a low error coefficient (RMSEP) of 0.1%. Following that, the

SVM models were used in internal validation models in water

absorbance bands (WAMACs) with normalized pretreatment full

data and calibration with 98% and 97% sensitivity and 100%

specificity with R2 = 96%, RMSEP = 0.1 in the separation of negative

and positive groups. External validation shows that the model with

normalized pretreatment increases total accuracy, with 100% obtained

in separating the positive and negative groups for Paratuberculosis.
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This result indicates a high contribution of water bonds in the results of

the SVM models in the range of 1,300 nm to 1,600 nm.

Early diagnosis of type 2 diabetes based on NIRS and SVM

model with aquaphotomics approach showed 97.22% accuracy, and

the specificity and sensitivity were 95.65% and 100%, respectively,

by the first derivative pretreatment. This study demonstrates that

combining NIRS with aquaphotomics is effective for developing an

accurate and rapid early diabetes diagnosis model (Li et al., 2020).

NIRS was used in 2006 as a new approach to diagnose

Paratuberculosis in dairy cattle. This study used NIRS and the

artificial neural network method, with FC and serum test ELISA as a

reference test. This research used NIRS as an indirect test for

Paratuberculosis infection in cattle. However, it was unclear which

parameters or substances in the serum that the NIRS discriminates

(Norby et al., 2006).

The total accuracy of using NIRS to diagnose JD in dairy cattle

with a 95% confidence margin is 99%, 98%, and 100% in full data,

calibration, and test, respectively. The method’s sensitivity and

specificity were 100%, which is comparable to the sensitivity of

current diagnostic models, such as ELISA test (7%–94%), FC (20%–

74%), and PCR (4%–100%). The best model uses blood plasma

spectra from QDA in the range of 1,300 nm to 1,600 nm or

only WAMACS.

The accuracy and quality of diagnosis utilizing advanced

diagnostic facilities such as aquaphotomics and advanced

diagnostic equipment such as NIRS improves. These facilities

assist farmers in detecting JD in the early stages and providing

appropriate treatment. Figure 7 shows the brief of this study.
Frontiers in Cellular and Infection Microbiology 14
5 Conclusion

In this study, for the first time, the two groups were chosen on

the basis of the results of three consecutive weekly ELISA blood

plasma tests in dairy cows: a healthy group with an index of ≤20 and

an infected group with an index of ≥100. The NIR spectrum profile

was used to develop five classification models based on the antibody

index in plasma and the biochemical changes caused by the disease

in the blood plasma, particularly in the structure of the water

molecules that make up the plasma. These models diagnosed

Paratuberculosis and distinguished healthy and infected samples

with 100% total accuracy, sensitivity, and specificity. Finally, the

aquagram was obtained, which shows the changes in the 12 water

absorbance bands in healthy and infected dairy cattle, as a

multidimensional biomarker. Our findings show that NIRS and

aquaphotomics approach can lead to non-invasive, fast, and

accurate diagnosis of Paratuberculosis in dairy cattle.

In this study, we found that NIRS by supervised methods can be

accurate to diagnosis JD. Completely, we found that aquaphotomics

by using only 12 water absorbance bands of blood plasma can

detected the healthy and infected dairy cattle. In the last,

aquagrams show that WASPs can be used as a multidimensional

biomarker to monitor changes of antibody in blood plasma and the

very simple, fast, and accurate way to detection of healthy and

infected dairy cattle by Paratuberculosis. According to the finding

of this study, we introduced the novel methods to diagnosis of

Paratuberculosis in dairy cattle by means of blood plasma with

NIRS and aquaphotomics. Our long-term goal is to create a
FIGURE 7

The brief of research “A novel diagnostic approach to Paratuberculosis in dairy cattle using near-infrared spectroscopy and aquaphotomics”.
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diagnostic strategy for the detection of dairy cattle in the four stages of

JD by this non-invasive, accurate, and fast diagnostic method in vivo,

thereby contributing to the sustainability of the genetic resources and

the global health.
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