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Among the Acinetobacter genus, Acinetobacter pittii stands out as an important

opportunistic infection causative agent commonly found in hospital settings,

which poses a serious threat to human health. Recently, the high prevalence of

carbapenem-resistant A. pittii isolates has created significant therapeutic

challenges for clinicians. Bacteriophages and their derived enzymes are

promising therapeutic alternatives or adjuncts to antibiotics effective against

multidrug-resistant bacterial infections. However, studies investigating the

depolymerases specific to A. pittii strains are scarce. In this study, we identified

and characterized a capsule depolymerase, Dpo27, encoded by the

bacteriophage IME-Ap7, which targets A. pittii. A total of 23 clinical isolates of

Acinetobacter spp. were identified as A. pittii (21.91%, 23/105), and seven A. pittii

strains with various K locus (KL) types (KL14, KL32, KL38, KL111, KL163, KL207, and

KL220) were used as host bacteria for phage screening. The lytic phage IME-Ap7

was isolated using A. pittii 7 (KL220) as an indicator bacterium and was observed

for depolymerase activity. A putative tail fiber gene encoding a polysaccharide-

degrading enzyme (Dpo27) was identified and expressed. The results of the

modified single-spot assay showed that both A. pittii 7 and 1492 were sensitive to

Dpo27, which was assigned the KL220 type. After incubation with Dpo27, A. pittii

strain was susceptible to killing by human serum;moreover, the protein displayed

no hemolytic activity against erythrocytes. Furthermore, the protein exhibited

sustained activity across a wide pH range (5.0–10.0) and at temperatures

between 20 and 50°C. In summary, the identified capsule depolymerase

Dpo27 holds promise as an alternative treatment for combating KL220-type A.

pittii infections.
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Introduction

Acinetobacter spp. are a diverse group of strictly aerobic,

catalase-positive, oxidase-negative, non-fermenting, Gram-

negative coccobacilli (Sharma et al., 2019). This genus contains

both pathogenic and non-pathogenic species that are typically

found in soil, water, sewage, and food (Gomes et al., 2023).

Although more than 63 officially designated species of the

Acinetobacter genus have been identified, most are non-

pathogenic organisms (Wong et al., 2017). However, certain

Acinetobacter species, such as Acinetobacter baumannii ,

Acinetobacter nosocomialis, and Acinetobacter pittii, which are

members of the Acinetobacter calcoaceticus–Acinetobacter

baumannii complex (ACB complex), are pathogenic and are

considered significant threats to human health (Almasaudi, 2018).

Compared to A. baumannii, few studies have focused on A.

nosocomialis and A. pittii in recent decades owing to their lower

prevalence and resistance rates. However, they have garnered

increasing research attention recently owing to a rise in antibiotic

resistance and changes in resistance mechanisms, particularly in A.

pittii strains (Singkham-In and Chatsuwan, 2018; Chen et al., 2019;

Zhang et al., 2020; Yang et al., 2021; Ding et al., 2022; Tian et al.,

2022). Additionally, a recent multicenter investigation in Japan

indicated that A. pittii is the most significant species responsible for

invasive Acinetobacter infections (Kiyasu et al., 2020). Reports of

mortality rates associated with multidrug-resistant (MDR) A. pittii

infections have also been on the rise in US hospitals (Fitzpatrick

et al., 2015). Currently, carbapenems are the cornerstone of

antimicrobial treatment for MDR A. pittii infections (Bassetti

et al., 2021). However, resistance rates of A. pittii isolates to

carbapenems have increased from 4.5% in 2010 to 25.8% in 2014

(Chen et al., 2019). Therefore, the development of alternative

antimicrobial strategies is crucial to combat carbapenem-resistant

A. pittii infections.

Capsular polysaccharides (CPS) on the bacterial surface play a

vital role in the pathogenicity of the ACB complex by enhancing

bacterial colonization, biofilm formation, and survival in

mammalian tissues (Russo et al., 2010). The virulence of some

bacteria decreases when CPS are removed from their surfaces

(Knecht et al., 2019). Moreover, the capsules of many pathogenic

bacteria reduce or inhibit complement-mediated killing (Boyce and

Adler, 2000). CPS structures (CPS types) are largely determined by

various polymorphisms of the chromosomal K locus (KL) in

Acinetobacter spp. genomes (Wyres et al., 2020). To date, over

240 different gene clusters have been identified as being involved in

capsule biosynthesis, each assigned a corresponding KL number

(Wyres et al., 2020; Cahill et al., 2022; Kenyon and Hall, 2022).

Therefore, it is imperative to identify the species and K (or KL)

types of Acinetobacter spp.

Bacteriophages and their derived enzymes are promising

therapeutic alternatives or adjuncts to antibiotics for effectively

treating MDR bacterial infections (Wu et al., 2021; Blasco et al.,

2022; Rao et al., 2022). Our previous studies have also indicated that

phage-derived depolymerases could effectively degrade the CPS of

A. baumannii in vivo and in vitro, thereby exposing non-

encapsulated bacteria to immune attacks (Liu et al., 2019a, b).
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However, depolymerases are highly specific to host bacteria

depending on the composition of the bacterial capsules (Oliveira

et al., 2017). In most cases, individual strains produce only one CPS

type (Timoshina et al., 2023a). While most phages encode only one

or two depolymerases in a corresponding gene, some phages encode

multiple depolymerases (Pan et al., 2017). Currently, depolymerases

specific to K1, K2, K3, K3-v1, K9, K14, K16, K19, K26, K27, K30,

K32, K37, K38, K44, K45, K47, K48, K49, K86, K87, K89, K91, K93,

K116, K127, and K128 capsular types of Acinetobacter strains have

been identified (Oliveira et al., 2017; Oliveira et al., 2019a;

Domingues et al., 2021; Popova et al., 2021; Shchurova et al.,

2021; Timoshina et al., 2023a, b). However, only few studies on

depolymerases specific to A. pittii isolates have been reported to

date. Thus, screening phages and exploring the activity of their

depolymerases against certain capsular types of A. pittiimay lead to

effective alternative treatments. In this study, we successfully

identified a capsular polysaccharide depolymerase from a lytic

phage specific to KL220-type A. pittii and demonstrated that

depolymerase Dpo27 was capable of re-sensitizing bacteria to

serum. To the best of our knowledge, this is the first report of a

depolymerase specific to KL220-type A. pittii.
Materials and methods

Isolate collection, species identification,
and antimicrobial susceptibility testing

A total of 105 clinical isolates of Acinetobacter spp. were

collected from five hospitals in mainland China between January

2012 and December 2018 (Supplementary Table 1). All strains were

isolated from sputum samples of patients and cultured at 37°C in

lysogeny broth (LB) media. To confirm the species level of these

Acinetobacter isolates, a 305-bp partial rpoB gene was amplified,

sequenced, and analyzed as described in Gundi et al. (2009).

Furthermore, the antimicrobial susceptibility of A. pittii was

determined using a Vitek 2.0 compact system (BioMérieux

Clinical Diagnostics, Paris, France). Minimum inhibitory

concentrations (MICs) were determined according to the

breakpoints recommended by the Clinical and Laboratory

Standards Institute. No humans or animals were involved in this

study; therefore, ethical approval was not required.
KL (or K) types and multilocus sequence
typing of A. pittii

Nucleic acids of the obtained A. pittii strains were extracted

using a High-Pure Polymerase Chain Reaction (PCR) Template

Preparation Kit (Roche Diagnostics, Mannheim, Germany)

according to the manufacturer’s instructions and sequenced on an

Illumina HiSeq platform (Illumina, San Diego, CA, USA). The

obtained raw reads were assembled de novo using the Unicycler

v0.4.8 pipeline (Wick et al., 2017). The CPS (KL or K types) of A.

pittii was identified using the online tool Kaptive v2.0.0, which was

updated in 2021 (Wyres et al., 2020). Multilocus sequence typing
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(MLST) was performed via the public databases for molecular

typing and microbial genome diversity (https://pubmlst.org) using

seven housekeeping genes (cpn60, fusA, gltA, pyrG, recA, rplB, and

rpoB) (Diancourt et al., 2010).
Bacteriophage isolation and identification

Phage IME-Ap7 was isolated following the procedure described

by Liu et al. (2019b). Briefly, an A. pittii strain with different KL

types was selected as the host bacterium for screening

bacteriophages. The raw sewage collected from the Fifth Medical

Center of the Chinese PLA General Hospital was centrifuged to

obtain the supernatant, which was then mixed with the different A.

pittii cultures in the exponential growth phase. The mixtures were

cultured at 37°C in LB medium for 6 h. After 5-min centrifugation

at 10,000 rpm, the supernatants were filtered with 0.22-mm
membrane filters. The phage lytic ability was determined through

a double-layer agar plate assay to observe the presence of phage

plaques, as previously described (Kropinski et al., 2009).
Phage DNA extraction, sequencing,
and analysis

Phage nucleic acids were extracted and purified using the High-

Pure Viral RNA Kit (Roche Diagnostics). The obtained nucleic

acids were sequenced and assembled, as described above. The phage

genomic sequence was annotated using Rapid Annotation in

Subsystem Technology (RAST; http://rast.nmpdr.org/), and the

putative function of the coding sequences (CDSs) was predicted

using NCBI BLASTP. The phage genome was visualized using the

online software Proksee (Grant et al., 2023).
Depolymerase cloning, expression,
and purification

Based on the results of the phage genomic annotation, a gene

encoding the tail fiber protein (ORF27, GenBank accession number:

WRM43609.1) was predicted to have polysaccharide depolymerase

activity. The sequence of ORF27 was amplified by using PCR with

p r im e r s ( f o rw a r d : 5 ′ -CAAATGGGTCGCGGATCC

ATGACAAACCCAACTTTAG-3′ , reverse: 5′-GTGGTGG

TGGTGCTCGAGTTATATCAACTTAACGTGA-3′) and cloned

into the pET28a vector with restriction sites for BamHI and XhoI

using the pEASY®-Uni Seamless Cloning and Assembly Kit

according to the manufacturer’s protocol (TransGen Biotech,

Beijing, China). Clones containing inserts were selected using

PCR and restriction enzyme digestion analysis and verified

through DNA sequencing.

The depolymerase was expressed and purified as previously

described (Liu et al., 2019b). Briefly, the recombinant plasmid

containing a C-terminal hexahistidine-tag (6×His-tag) was

transformed into the Escherichia coli BL21(DE3) and induced

with 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG; Sigma-
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Aldrich, MO, USA) at 16°C overnight. Cells were pelleted at 10,000

rpm for 5 min and lysed by sonication (20 min with a 3-s pulse and

a 4-s pause) in lysis buffer (50 mM NaH2PO4 and 300 mM NaCl,

pH 8.0). Bacterial lysates were centrifuged and passed through a

0.45-mm filter. The expressed protein was purified on a gravity

column with Ni-NTA resin according to the manufacturer’s

instructions (Sangon Biotech, Shanghai, China). The eluted

protein was collected in an 8- to 14-kDa-molecular-mass-cutoff

membrane (Viskase, IL, USA) and dialyzed against a 1,000-fold

volume of lysis buffer for 24 h. The molecular weight of the purified

protein was determined using 10% sodium dodecyl sulfate-

polyacrylamide gel electrophoresis (SDS-PAGE). The protein

concentration was measured using a fluorometer (Qubit 2.0;

Thermo Fisher Scientific, Waltham, MA, USA).
Depolymerase activity

The depolymerase activity of Dpo27 against host bacteria was

semi-qualitatively determined using a modified single-spot assay as

previously described (Liu et al., 2019b). Briefly, A. pittii 7 culture in

the exponential growth phase was mixed with molten soft LB agar

and poured onto the surface of an LB agar plate. After solidifying,

the protein dilution (0.1–2 ng) in 5 mL of PBS was dropped onto the

plate, with the same volume of PBS used as a negative control. The

plates were observed for the formation of translucent spots while

incubating overnight at 37°C.
Determination of the host range of phage
IME-Ap7 and depolymerase Dpo27

The host range of IME-Ap7 was determined using a double-

layer agar plate assay (Kropinski et al., 2009). Briefly, plates

containing a 10-fold dilution of IME-Ap7 and A. pittii strains

with different KL types were incubated overnight. The formation

of singular phage plaques on bacterial lawns was used to evaluate

the lytic activity and host range of isolated phage. Next, bacterial

sensitivity to Dpo27 (2 ng) was determined using a modified single-

spot assay, as described in the previous section.
Extraction and purification of bacterial
surface polysaccharides

Extraction and purification of bacterial exopolysaccharides

(EPS) containing both CPS and liposaccharides (LPS) were

conducted using a modified hot water–phenol method, as

previously described (Hsieh et al., 2017). Briefly, 1 mL of A. pittii

7 cultured overnight in LB with 0.25% glucose was harvested and

resuspended in 200 mL of double-distilled water (ddH2O). An equal

volume of hot-water-saturated phenol (pH 6.6; Thermo Fisher

Scientific) was added and vortexed vigorously. After incubating at

65°C for 20 min, the mixture was extracted and purified using

chloroform to remove bacterial debris. The obtained EPS was

lyophilized and stored at −20°C.
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Assessment of depolymerase activity and
Alcian blue staining

The enzymatic activity of Dpo27 against bacterial surface

polysaccharides was measured using the 3,5-dinitrosalicylic acid

(DNS) method with minor modifications (Oliveira et al., 2017).

Briefly, the EPS solution of A. pittii 7 (2 mg/mL) was mixed with

Dpo27 or heat-inactivated Dpo27 (100°C for 15 min; 10 mg/mL) to

a final volume of 1.0 mL and subsequently incubated at 37°C for 1 h;

EPS or enzyme alone, respectively, served as the controls. Next, two

volumes of DNS reagent (Solarbio, Beijing, China) were

immediately added to each reaction mixture, and the mixtures

were boiled for 5 min. The absorbance was measured at 540 nm

using a Synergy HT Multi-Detection Microplate Reader (BioTek,

VT, USA). The experiment was repeated at least three times.

The degradation of bacterial CPS was confirmed using Alcian

blue staining, as previously described (Pan et al., 2013; Hsieh et al.,

2017). Briefly, each of the mixtures described above was loaded and

separated on 10% SDS-PAGE gel. After running, the gel was washed

three times (5, 10, and 15 min) with the fix/wash solution (25%

ethanol and 10% acetic acid in water) at room temperature and

stained with 0.1% Alcian blue (Sigma-Aldrich) dissolved in the fix/

wash solution for 15 min in the dark at 37°C. After the gel was

destained overnight in the fixed/washed solution, CPS was

visualized as a blue band.
Stability of depolymerase in various pH
values and temperatures

The effects of pH and temperature on the enzymatic activity of

Dpo27 were determined as previously described (Liu et al., 2019b).

The lyophilized EPS powder of A. pittii 7 (described in a previous

section) was resuspended in 50 mM sodium acetate buffer (pH 4.0–

5.0), 50 mM Na2HPO4 buffer (pH 6.0–7.0), 50 mM Tris-HCl buffer

(pH 8.0–9.0), and 50 mM sodium carbonate buffer (pH 10.0–11.0)

to a final concentration of 2 mg/mL, and then mixed with Dpo27

(10 mg/mL) to obtain a final volume of 1.0 mL. The mixtures were

then incubated for 1 h at 37°C. To test the thermal stability of the

enzyme, the EPS powder was dissolved in 50 mM Na2HPO4 buffer

(pH 6.0) and then incubated with the Dpo27 (10 mg/mL) at different

temperatures (20–70°C) for 1 h. EPS solution or enzyme alone was

used as a control. Enzymatic activity was determined using the DNS

method, as described in the previous section. All experiments were

performed in triplicate.
Human serum assay

The ability of Dpo27 to enhance bacterial susceptibility to serum

killing was determined as previously described with minor

modifications (Lin et al., 2017; Pan et al., 2017). Briefly, the

overnight A. pittii 7 culture (approximately 107 CFU/mL) was

treated with Dpo27 (10 mg/mL) for 1 h at 37°C. The human serum

from healthy volunteers or its inactivation (heated at 56°C for 30 min)

was then added to the enzyme-pretreated bacteria at a volumetric ratio
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of 1:3, and the overnight bacteria culture was incubated with enzyme

or active serum as control. After incubation for 1 h at 37°C, the

mixture was serially diluted and plated for bacterial enumeration. The

experiment was performed independently three times.
Hemolysis assay

The hemolytic effect of Dpo27 on erythrocytes was evaluated as

described previously, with minor modifications (Wang et al., 2015).

Briefly, blood samples from healthy donors were centrifuged (1,000

rpm for 10 min) to collect serum and erythrocytes. Next, the obtained

erythrocytes were washed three times and diluted to a concentration

of 5% (v/v) with PBS. The erythrocytes were incubated with Dpo27

(10 mg/mL) at 37°C for 1 h with gentle shaking. The erythrocytes

treated with PBS or 0.1% Triton X-100 were included as negative or

positive controls, respectively. Supernatant (100 mL) was transferred
to a 96-well microplate after the sample was centrifuged at 1,000 rpm

for 10 min, and another 100 mL of PBS was added to the wells. The

absorbance of the hemoglobin was measured at 540 nm. All

experiments were repeated in triplicate.
Statistical analysis

All experimental data are presented as means ± standard

deviation (SD), and statistical analyses were performed using

Prism 7 (GraphPad Software, CA, USA). One-way analysis of

variance (ANOVA) was used to compare multiple groups, with

p-values < 0.05 considered to be statistically significant.
Results

Species identification, antimicrobial
susceptibility testing, and
capsular genotyping

To determine the prevalence of different Acinetobacter spp. in

the collected isolates, a 305-bp partial rpoB gene of the 105 clinical

strains was sequenced and analyzed. As shown in Supplementary

Table 1, the isolates were identified as A. baumannii (72.38%, 76/

105), A. pittii (21.91%, 23/105), A. nosocomialis (3.81%, 4/105), and

A. soil (1.90%, 2/105). The antimicrobial susceptibility of A. pittii

was tested using the Vitek 2.0 compact system. The susceptibility

rates of A. pittii to different classes of antibiotics are shown in

Supplementary Table 2. Among the 23 A. pittii strains, 16 (69.57%,

16/23) were non-susceptible to one or more agents in three or more

antimicrobial categories (MDR). Moreover, nine strains (39.13%, 9/

23) were resistant to imipenem, a type of carbapenem. Furthermore,

the KL types and MLST of 23 A. pittii strains were identified. As

presented in Table 1, these isolates were assigned to KL14 (K14;

4.34%, 1/23), KL32 (K32; 4.34%, 1/23), KL38 (8.70%, 2/23), KL111

(8.70%, 2/23), KL163 (47.83%, 11/23), KL207 (17.39%, 4/23), and

KL220 (8.70%, 2/23). According to the Pasteur MLST scheme,

seven isolates (30.43%, 7/23) could not be typed, whereas other
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1373052
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2024.1373052
strains belonged to ST63 (52.17%, 12/23), ST119 (4.35%, 1/23),

ST205 (8.70%, 2/23), and ST248(4.35%, 1/23).
Plaque observation and genome analysis of
phage IME-Ap7

Seven A. pittii strains (653, 1316, 1178, 1477, 910, 1483, and 7),

representative of different KL types, were used as host bacteria to

screen for phages. A lytic phage, IME-Ap7, was isolated using
Frontiers in Cellular and Infection Microbiology 05
KL220 A. pittii 7 as an indicator bacterium. Following

incubation overnight at 37°C, the phage formed clear plaques

surrounded by translucent halos on the double-layer agar plate

(Figure 1A). Remarkably, even at room temperature, the size of

translucent halos continued to increase, suggesting that some

depolymerases produced from phage virions might degrade

bacterial surface polysaccharides.

The phage genome was assembled after high-throughput

sequencing, and the obtained sequence was deposited in GenBank

under the accession number OR791279. The linear genomic
TABLE 1 Sensitivity range of IME-Ap7/Dpo27 to various KL (or K) types and MLSTs of A. pittii strains.

KL (or K) type MLST Bacteria strain Sensitivity to IME-Ap7 Sensitivity to Dpo27

KL14 (K14) NT 653 – –

KL32 (K32) 119 1316 – –

KL38 NT 1178 1668 – –

KL111 205 1477 1478 – –

KL163 63 910 1475 1476 1480 1481 1482 1484 1487 1493 1494 1496 – –

KL207 NT 1483 1488 1489 1490 – –

KL220 248 7 + +

63 1492 + +
NT, non-typable; “−”, non-sensitive; “+”, sensitive.
B

C

D

A

FIGURE 1

Characterization of phage IME-Ap7 and depolymerase Dpo27. (A) After incubation with the host bacterium A. pittii 7 at 37°C overnight, the phage
IME-Ap7 could form clear plaques surrounded with translucent halos on the double-layer agar plate. (B) The annotation results from RAST and NCBI
BLAST are presented using Proksee. The complete genome of phage IME-Ap7 contains 92 CDSs, 21 of which are predicted to encode a functional
protein as indicated. (C) The purified Dpo27 migrated as a single band on 10% SDS-PAGE gel, with a molecular weight of approximately 77.60 kDa.
(D) The polysaccharide-degrading activity of Dpo27 was determined by a modified single-spot assay, with different enzyme dilutions (0.1–2 ng) on a
lawn of the host bacterium A. pittii 7, and PBS served as a control.
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sequence of phage IME-Ap7 was 45,048 bp with a G+C content of

37.9%. According to the results of RAST and NCBI BLASTP, the

phage genome contains 92 CDSs, the function of 21 of which has

been predicted (Figure 1B, Supplementary Table 3). ORF27 was

predicted to encode a polysaccharide depolymerase with a length of

704 amino acids and a molecular weight of 77.60 kDa.
The ORF27 displays depolymerase activity

To determine whether the predicted depolymerase exhibited

activity for polysaccharide degradation, a recombinant plasmid

containing the ORF27 sequence was constructed and expressed.

As depicted in Figure 1C, the protein Dpo27 migrated as a single

band on 10% SDS-PAGE gel and had an estimated size of

approximately 77.60 kDa. The concentration of purified Dpo27

was determined to be 0.5 mg/mL using a fluorometer. The

polysaccharide-degrading activity of Dpo27 was evaluated using a

modified single-spot assay with different enzyme dilutions (0.1–2

ng). As illustrated in Figure 1D, the size of the semi-clear circles

decreased with a reduction in Dpo27 concentration, and the halo

disappeared at an enzyme concentration of 0.25 ng.
Sensitivity range of phage IME-Ap7
and Dpo27

To determine the lytic spectrum of phage IME-Ap7, 23 A. pittii

strains representing seven KL types were tested using a double-layer

agar plate assay (Table 1). Phage IME-Ap7 lysed the KL220 type of

A. pittii 7 and 1492, producing clear plaques on the bacterial lawn.
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The sensitivity of these isolates to Dpo27 was assessed using a

modified single-spot assay. As described in Table 1, Dpo27 formed a

translucent halo on the KL220 type of A. pittii 7 and 1492,

indicating that the protein had the same sensitivity range as its

parent phage, IME-Ap7.
Dpo27 could degrade bacterial CPS

Enzymatic activity was evaluated by monitoring the amount of

reducing sugars released from the enzyme-digested bacterial surface

polysaccharides. As shown in Figure 2A, treatment with Dpo27

resulted in the release of sugars to an OD540 value of 0.477 ± 0.007,

which was significantly higher than that observed for treatment with

heat-inactivated Dpo27 or the corresponding controls. Thus, EPS

was degraded after incubation with Dpo27 (p < 0.0001, one-way

ANOVA). The capsular polysaccharide-degrading capacity of Dpo27

was further verified using Alcian blue staining (Figure 2B). The

results of gel electrophoresis showed that a smeared band was formed

upon incubation of A. pittii CPS with Dpo27 when compared to the

CPS alone or the CPS treated with the inactivated enzyme, indicating

that the CPS of A. pittii 7 was degraded by Dpo27.
Dpo27 tolerance to pH and temperature

To determine the optimal pH for Dpo27 activity, the enzymatic

activity of the protein at pH 4–11 was determined by measuring the

production of reducing sugars. As shown in Figure 3A, Dpo27

remained active at pH 5.0–10.0. The thermal stability of Dpo27

was evaluated in 50 mMNa2HPO4 buffer (pH 6.0) using a previously
BA

FIGURE 2

Dpo27 could effectively degrade CPS on bacterial surface. The EPS solution of A. pittii 7 mixed with Dpo27 or inactivated Dpo27 was incubated at 37°C
for 1 h EPS or enzyme alone served as controls. (A) Residual EPS was quantified using the DNS method, and the absorbance of the reactions was
measured at 540 nm. Data are presented as the mean ± SD (n = 3), and statistical analysis was performed using one-way ANOVA (****p < 0.0001). (B)
The mixtures were examined with 10% SDS-PAGE gel and detected using Alcian blue staining.
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described method. Dpo27 maintained enzymatic activity at

temperatures ranging from 20–50°C, with an optimum temperature

of 37°C (Figure 3B).
Serum-sensitive assay and acute toxicity to
erythrocytes of Dpo27

To verify the capacity of Dpo27 to enhance bacterial susceptibility

to killing by incubation with serum, the bacterial counts of A. pittii 7

were determined across different treatment groups (Figure 4A). A.

pittii 7 exhibited resistance to killing by incubation with serum, as

indicated by a slight reduction in viable counts of the serum-treated
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bacteria. However, upon treatment with depolymerase Dpo27, A.

pittii 7 became sensitive to serum, and a significant reduction in the

viable bacterial count was observed (p < 0.0001, one-way ANOVA).

Additionally, the acute toxicity of Dpo27 toward red blood cells was

assessed to further evaluate the safety of depolymerase as an

antimicrobial agent. As shown in Figure 4B, Dpo27 displayed no

hemolytic activity against erythrocytes in vitro.
Discussion

Among the species of the ACB complex, A. baumanii stands out

as a major opportunistic agent causing nosocomial infections,
BA

FIGURE 3

Activity of Dpo27 across a range of pH and temperatures. (A) The lyophilized EPS powder of A. pittii 7 was dissolved in 50 mM sodium acetate buffer
(pH 4.0–5.0), 50 mM Na2HPO4 buffer (pH 6.0–7.0), 50 mM Tris-HCl buffer (pH 8.0–9.0), or 50 mM sodium carbonate buffer (pH 10.0–11.0) and
mixed with Dpo27 for 1-h incubation at 37°C. (B) The EPS powder was suspended in 50 mM Na2HPO4 buffer (pH 6.0) and incubated with Dpo27 at
different temperatures (20–70°C) for 1 (h) EPS solution or enzyme alone was used as control. The enzymatic activity was determined by the
reducing sugars produced after treatment, and the absorbance of mixtures was quantified at 540 nm. All data are presented as the mean ± SD
(n = 3), and statistical analysis was conducted using one-way ANOVA (*p < 0.05).
BA

FIGURE 4

Human serum assay and hemolysis assay. (A) The overnight culture of A. pittii 7 was incubated with Dpo27 or serum, and the enzyme-pretreated
bacteria were mixed with serum or inactivated serum for 1 h at 37°C. The mixtures were then serially diluted and plated for bacterial counting.
(B) The erythrocytes were treated with Dpo27, PBS, and 0.1% Triton X-100 at 37°C for 1 h with gentle shaking at 60 rpm, respectively. Next, the
absorbance of hemoglobin was measured at 540 nm. All data are presented as the mean ± SD (n = 3). Statistical analysis was performed using one-
way ANOVA (****p < 0.0001).
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presenting severe manifestations such as pneumonia, urinary tract

infections, bloodstream infections, and peritoneal dialysis-related

peritonitis (Pailhories et al., 2018; Chopjitt et al., 2021; Yang et al.,

2021; Bajaj et al., 2023). In recent years, non-baumannii

Acinetobacter isolates have increasingly been identified in human

clinical specimens and are attracting increased research attention

worldwide (Chuang et al., 2011; Fitzpatrick et al., 2015). The

prevalence rates of A. pittii are 3.2%, 5.2%, 6.4%, 9.3%, and 29%

in the southern part of Thailand, South Korea, Thailand, Singapore,

and Japan, respectively (Koh et al., 2012; Park et al., 2012; Chusri

et al., 2014; Matsui et al., 2014; Singkham-In and Chatsuwan, 2018).

In this study, a total of 23 A. pittii strains (21.91%, 23/105) were

identified (Supplementary Table 1). Carbapenem-resistant A. pittii

has recently emerged worldwide. As shown in Supplementary

Table 2, the resistance rate of A. pittii to imipenem was 39.13%

(9/23) in our study, which was higher than that found in Latin

America (20%), Thailand (22.7%), Taiwan (33.3%), and Singapore

(38.9%), but lower than that of South Korea (53.3%) (Koh et al.,

2012; Park et al., 2012; Teixeira et al., 2013; Singkham-In and

Chatsuwan, 2018; Chen et al., 2019). Overall, the increasing

prevalence and carbapenem-resistance rate of A. pittii strains

have begun to impose challenges in clinical therapeutics.

Several clinical trials have demonstrated the promising

potential of lytic phages in treating MDR bacterial infections

(Sarker et al., 2016; Jault et al., 2019; Petrovic Fabijan et al.,

2020). Additionally, phage-derived proteins (such as endolysins

and depolymerases) have been explored as antibacterial agents

against bacterial infections in vitro and in vivo (Oliveira et al.,

2017; Kim et al., 2020; Domingues et al., 2021; Pallesen et al., 2023).

Previous studies have identified phages and their encoded

depolymerases specific to different capsular types of Acinetobacter

strains (Oliveira et al., 2017; Liu et al., 2019a; Oliveira et al., 2019a;

Domingues et al., 2021; Popova et al., 2021; Shchurova et al., 2021;

Timoshina et al., 2023a, b). However, few studies exist on

depolymerases specifically targeting A. pittii isolates. Thus, in this

study, seven A. pittii strains of different KL types served as indicator

bacteria for phage screening. As shown in Figure 1A, the lytic phage

IME-Ap7 was isolated using A. pittii 7 (KL220) as the host

bacterium and was identified as possessing depolymerase activity.

The phage genomes were sequenced and analyzed (Figure 1B,

Supplementary Table 3). Results of NCBI BLASTN showed that

the query coverage and percent identity of the phage genome

sequence were 43%–62% and 87.81%–93.53%, respectively,

compared to those of 41 Acinetobacter phages. This finding

indicates that IME-Ap7 is a novel phage with a relatively lower

query coverage of sequences than that of other homologous

phages. Additionally, we speculated that the putative tail fiber

protein (ORF27; GenBank accession number: WRM43609.1),

containing a phage_tailspike_middle domain (residues 148–233

aa) at the N-terminus, may exhibit depolymerase activity.

The ORF27 sequence was cloned, expressed, and purified

(Figure 1C). As shown in Figure 1D, Dpo27 was active against

the host strain, A. pittii 7, at a minimum concentration of 0.5 ng.

This finding aligns with our previous report, where ORF71 of phage

IME-AB2 (GenBank accession number: YP_009592222.1),

containing a phage_tailspike_middle domain (residues 161–238
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aa) in the N-terminus, was identified as a depolymerase (Chen

et al., 2022).

Although bacteriophages or their derived proteins can effectively

and safely control bacterial infections as potential therapeutic agents,

their wide application in clinical settings is limited due to their

narrow spectrum and high specificity (Oliveira et al., 2017). Finding a

bacteriophage or its derivatives with a wide host range or creating a

cocktail of bacteriophage-derived antibacterial agents targeting

different types of bacteria may be a feasible strategy in the future.

In the present study, both phage IME-Ap7 and depolymerase Dpo27

were shown to target the KL220-type A. pittii strains (7 and 1492),

indicating an extremely narrow host range (Table 1). This trait has

also been observed in capsular depolymerases from phages infecting

Klebsiella pneumoniae and E. coli, which are often restricted to one or

two K types (Lin et al., 2014; Majkowska-Skrobek et al., 2016;

Lin et al., 2017; Liu et al., 2020). A. pittii 7 and 1492 were

resistant to imipenem and belonged to strains ST248 and ST63,

respectively. Both MLSTs have often been identified in other

carbapenem-resistant A. pittii isolates (Chopjitt et al., 2021; Yang

et al., 2021; Tian et al., 2023), underscoring the need to focus on the

prevalence of this type of A. pittii. Although the sensitivity ranges of

IME-Ap7 and Dpo27 were determined only using the 105 clinical

isolates of Acinetobacter spp. collected in this study (data not shown),

we hypothesize that this phage or depolymerase is specific to most

Acinetobacter strains of the KL220 type, according to the results of

Oliveira et al. (2017). Furthermore, considering the host specificity of

phage and depolymerase, the phage IME-Ap7 and depolymerase

Dpo27 could be used to rapidly identify the capsular type of

Acinetobacter spp (Timoshina et al., 2023a).

To determine the hydrolytic activity of Dpo27 under different

conditions, the EPS extracted from the bacterial surface was

degraded and quantified using the DNS method. As described in

Figure 3, the Dpo27 was active at various pH values (5.0–10.0) and

temperatures (20–50°C). Similarly, the B9gp69, Dpo48, and K2

maintained activity under moderately acidic or alkaline conditions

(pH 5.0–9.0) (Oliveira et al., 2019a; Liu et al., 2019b; Oliveira et al.,

2019b). However, DpoMK34 has a broader pH range (4–11)

compared to that of the other four depolymerases (Abdelkader

et al., 2022). Furthermore, DpoMK34 had a similar temperature

range (20–50°C) to Dpo27, which was narrower than that of

B9gp69 (20–80°C), Dpo48 (20–70°C), and K2 (20–70°C) (Oliveira

et al., 2019a; Liu et al., 2019b; Oliveira et al., 2019b). In summary,

Dpo27 ensured high efficacy over a relatively broad range of pH

values and moderate temperatures.

CPS is an important virulence factor that helps bacteria evade

host immunity; therefore, the degradation of CPS deprives

encapsulated bacteria of a vital shield, making them more

susceptible to the host immune-defense system (Liu et al., 2019a,

b, 2020). In this study, the survival counts of bacteria showed that

the group of enzyme-pretreated bacteria plus active serum

decreased by ~6 log compared to that of the untreated bacteria

plus serum (Figure 4A). This result indicated that Dpo27 could

enhance bacterial susceptibility to killing by human serum, which

was also previously verified (Liu et al., 2019b; Abdelkader et al.,

2022). In addition, the enzyme mixed with serum could not

completely eradicate all bacteria, and similar observations have
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also been reported in previous studies (Liu et al., 2019b, 2020;

Abdelkader et al., 2022). According to our previous research,

incomplete bacterial eradication might be attributed to the

presence of a subpopulation of bacteria that are susceptible to

depolymerases but resist serum complement-mediated killing (Liu

et al., 2019b, 2020). Notably, Dpo27 displayed no hemolytic activity

against erythrocytes (Figure 4B), which suggests that the enzyme

has the potential as a therapeutic agent and warrants further

exploration of its antibacterial properties in vivo.

In conclusion, the capsule depolymerase, Dpo27, from phage

IME-Ap7 is specific to KL220-type A. pittii strains. The enzyme

could effectively strip the CPS on bacterial surfaces and maintained

activity across a wide range of pH values (5.0–10.0) and

temperatures (20–50°C). Moreover, the enzyme enhanced the

sensitivity of bacteria to human serum, but had no hemolytic

effect on erythrocytes. These results suggest that Dpo27 has the

potential to be developed as an alternative treatment for the

prevention and control of MDR KL220-type A. pittii strains.
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