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In this study, we characterized a Klebsiella pneumoniae strain in a patient with

shrapnel hip injury, which resulted in multiple phenotypic changes, including the

formation of a small colony variant (SCV) phenotype. Although already described

since the 1960s, there is little knowledge about SCV phenotypes in

Enterobacteriaceae. The formation of SCVs has been recognized as a bacterial

strategy to evade host immune responses and compromise the efficacy of

antimicrobial therapies, leading to persistent and recurrent courses of

infections. In this case, 14 isolates with different resisto- and morpho-types

were distinguished from the patient’s urine and tissue samples. Whole genome

sequencing revealed that all isolates were clonally identical belonging to the K.

pneumoniae high-risk sequence type 147. Subculturing the SCV colonies

consistently resulted in the reappearance of the initial SCV phenotype and

three stable normal-sized phenotypes with distinct morphological

characteristics. Additionally, an increase in resistance was observed over time

in isolates that shared the same colony appearance. Our findings highlight the

complexity of bacterial behavior by revealing a case of phenotypic “hyper-

splitting” in a K. pneumoniae SCV and its potential clinical significance.
KEYWORDS

Klebsiella pneumoniae, hyper-splitting, small colony variant, hypervirulence, multidrug
resistance, in-host evolution, convergence
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Doğan et al. 10.3389/fcimb.2024.1372704
1 Introduction

Klebsiella pneumoniae, an opportunistic pathogen known for its

ability to cause a wide range of nosocomial and community-acquired

infections, has emerged as a significant public health threat due to its

strain-specific, extensive arsenal of resistance and virulence factors

(Wyres et al., 2020; Antimicrobial Resistance Collaborators, 2022).

Infections caused by multi-, extensively-, and pandrug-resistant strains

result in high mortality due to limited response to antibiotic therapy,

which poses an increasing threat (Ventola, 2015; Navon-Venezia et al.,

2017; Avgoulea et al., 2018). Apart from classic strains, a hypervirulent

K. pneumoniae (hvKp) pathotype occurs and is characterized by

invasive, often life-threatening and multiple site infection,

characteristically in healthy patients from the general population

(Russo and Marr, 2019). In addition, convergent types that

successfully combine resistance and hypervirulence represent a

“perfect storm” and have been increasingly reported in recent years

(Heiden et al., 2020; Lan et al., 2021; Eger et al., 2022).

Beyond typical resistance mechanisms against various

antimicrobials, functional resistance mechanisms have been

elucidated that lead to antimicrobial treatment failure and foster

the development of relapses and persistent infections (Ster et al.,

2017). The formation of a biofilm matrix represents one of these

mechanisms that facilitates antibiotic tolerance and the generation

of bacterial persister cells (Ster et al., 2017). Interestingly, it has been

demonstrated that a decrease in capsule biosynthesis, which is

crucial for hypervirulent phenotypes, leads to increase in vitro

biofilm formation and intracellular persistence (Ernst et al., 2020).

Another non-classical mechanism leading to antibiotic tolerance is

the formation of the small colony variant (SCV) phenotype. SCVs

are subpopulations of bacteria that exhibit slow growth, reduced

colony size, and altered phenotypic properties compared to their

normal-growing counterparts, making them difficult to detect and

treat effectively (Proctor et al., 2006; Becker, 2023). Their ability to

evade the host’s immune surveillance and to undermine the

effectiveness of antimicrobial interventions by host cell

internalization results in intracellular persistence, which

contributes significantly to the recurrence and chronicity of the

infection (Tuchscherr et al., 2011; Kahl et al., 2016). Intracellular

persistence have been shown for different human and animal cell

types including endothelial and epithelial cells such as keratinocytes

and osteoblasts (von Eiff et al., 2001; Strobel et al., 2016). Another

pivotal attribute facilitating this phenomenon is their capability to

modulate metabolic processes and virulence characteristics

(Kriegeskorte et al., 2014; Proctor et al., 2014). Hypermutator

SCVs characterized by higher mutation frequencies than wild-

type strains and isolated especially from cystic fibrosis (CF)

patients (Oliver et al., 2000; Prunier et al., 2003) have also been

associated with antibiotic resistance (Schaaff et al., 2003; Besier

et al., 2008) and biofilm formation (Morelli et al., 2015).

To date, research has focused on staphylococcal SCVs, while

SCVs of Gram-negative bacteria have been investigated in only a

few studies and case reports (Proctor et al., 2006). Although the

formation of small colonies in K. pneumoniae has been noticed

during resistance studies against cephalosporins in the mid-1960s

(Benner et al., 1965), this issue has not received sufficient attention
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and detailed research has not been conducted on this subject. The

first clearly defined SCV of K. pneumoniae (SCV-Kp) in literature

was obtained by in vitro exposure to gentamicin (Musher et al.,

1979). SCV-Kp were also isolated from a patient treated with

aminoglycoside antibiotics (Murray and Moellering, 1982).

Smaller and non-mucoid colonies were obtained as a result of

conjugation-induced mutation in the outer membrane protein of a

hypervirulent K. pneumoniae isolate (Srinivasan et al., 2012).

Another study showed that biofilm-forming K. pneumoniae

developed heteroresistance to colistin by presenting slow-growing

SCV-Kp (Silva et al., 2016).

Here, we report on K. pneumoniae isolates displaying 14

different resisto- and morpho-types obtained from an

immunocompetent male patient, who had sustained a traumatic

injury caused by shrapnel shell fragments. The isolates comprise an

initial, mostly susceptible K. pneumoniae isolate with typical

morphological characteristics isolated from the patient’s urinary

specimen. From the urine and tissue samples, 13 additional

phenotypes with different combinations of resistance and

morphological characteristics including K. pneumoniae SCV

phenotypes were isolated.
2 Materials and methods

2.1 Patient data

Sufficient information could not be obtained regarding the

period from the patient’s first acetabular and femoral head

shrapnel-caused war injury in Ukraine in March 2022, where he

underwent hip prosthesis at an external center before his transfer to

our orthopedic service in July 2022. Fracture-related joint infection

treatment in our hospital continued through November 2022. The

administration of antibiotics during this period included

piperaci l l in/ tazobactam from July to October , 2022,

trimethoprim/sulfamethoxazole from July to August, 2022,

cefiderocol from August to November, 2022, and colistin from

October to November, 2022. Daptomycin was introduced into the

treatment protocol starting from October 2022 upon detection of

Staphylococcus epidermidis from intraoperatively obtained hip

tissue samples and central venous catheter tip, and continued

until the patient’s discharge. No other bacteria were isolated from

clinical samples during this period. Subsequently, a planned course

of post-discharge antibiotic suppression therapy with doxycycline

for three months was initiated. The first identification of

carbapenem-resistant K. pneumoniae (CRKP) occurred in July

2022, followed by the initial detection of SCV-Kp in September

2022. Therefore, we decided to aggregate and systematically assess

the entirety of K. pneumoniae strains isolated from the patient.
2.2 Strain identification

The urine sample obtained from the patient was quantitatively

inoculated onto a Columbia agar plate with 5% sheep blood (BD

Diagnostics, Heidelberg, Germany) and a MacConkey II-Agar plate
frontiersin.org
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Doğan et al. 10.3389/fcimb.2024.1372704
(BD Diagnostics) using a 10 µl disposable sterile loop. The plates

were then incubated for 48 hours. Tissue samples collected during

surgery were inoculated onto Columbia agar plates with 5% sheep

blood, MacConkey II-Agar plates, and Mueller Hinton Chocolate

agar plates (all from BD Diagnostics). These plates were incubated

under capnophilic conditions for up to seven days. The remaining

tissue material was inoculated onto Schaedler agar and into BBL

Fluid Thioglycollate media (both from BD Diagnostics) and

incubated for up to 14 days under anaerobic and capnophilic

conditions, respectively.

Preliminary characterization of each phenotype was grounded

in colony morphology and minimal inhibitory concentration (MIC)

results for antibiotics encompassed within the VITEK® 2 AST card

specific to Enterobacterales (bioMérieux SA, Marcy l’Étoile, France)

according to EUCAST criteria. All K. pneumoniae strains, isolated

from various patient’s specimens during the period from July to

December 2022, were identified by matrix-assisted laser desorption/

ionization time-of-flight mass spectrometry (MALDI-TOF MS)

utilizing the MALDI Biotyper® sirius system (Bruker Daltonics,

Bremen, Germany) with MBT Biotargets 96 (Bruker Daltonics).

The presence of carbapenemase-encoding genes was verified by a

loop-mediated isothermal amplification (LAMP)-based assay

(eazyplex®, AmplexDiagnostics, Gars-Bahnhof, Germany).
2.3 Characterization of the phenotypes

@Sequential subcultures of all phenotypic variants were carried

out on various agar plates (including Columbia agar + 5% sheep

blood, MacConkey agar from BD, and CHROMID® CPS® Elite

agar from bioMérieux) to observe whether changes in colony

morphology occurred and SCVs remained stable, followed by

meticulous analysis of generated phenotypic profiles.

In order to determine colony sizes, each phenotype was

inoculated onto 5% sheep blood agar plates in triplicate on

different days. After overnight incubation at 35 ± 1°C in ambient

air, the diameters of ten colonies of each phenotype were measured

and mean values were determined. Additionally, colony

morphology in different phenotypes was assessed using the stereo

zoom microscope Axio Zoom.V16, equipped with the objective

Plan Z 1.0x/0.25 and the Axiocam 305 camera (Zeiss, Oberkochen,

Germany). After Gram staining, single cells from different

phenotypes were observed in transmission light by the Axio

Imager.Z2m microscope with the oil immersion objective Plan-

APOCHROMAT 100x/1.4 and Axiocam 305 camera (Zeiss).
2.4 Antimicrobial susceptibility testing

In addition to the initial VITEK® 2 AST, the MICs of a

standardized set of antibiotics (Table 1) were determined by the

broth microdilution (BMD) method using cation-adjusted Mueller–

Hinton broth (CAMHB; Micronaut-S 96-well microtiter plates,

Merlin, Bornheim-Hersel, Germany), and for cefiderocol using

iron-depleted CAMHB (UMIC®, Merlin, Bornheim-Hersel,

Germany), as recommended by ISO 20776-1, the European
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Committee on Antimicrobial Susceptibility Testing (EUCAST),

and the Clinical and Laboratory Standards Institute (CLSI)

guidelines (CLSI, 2018; Standardization, 2019; EUCAST, 2023b).

The results were observed following 18 ± 2 hours of incubation at 35

± 1°C in ambient air. All tests were conducted in triplicate on

different days, and median MIC values were computed for analysis.

Escherichia coli ATCC 25922, E. coli ATCC 35218, K. pneumoniae

ATCC 700603, and Pseudomonas aeruginosa ATCC 27853 were

used as quality control (QC) strains, and their results were within

the QC range throughout the study. EUCAST Clinical Breakpoint

Tables v. 13.1 were used for MIC interpretation (EUCAST, 2023a).
2.5 DNA isolation and sequencing

After overnight growth on blood agar plates at 37 °C, ten

colonies were randomly selected and suspended in 1.5 mL tubes

(Carl Roth, Karlsruhe, Germany) with 1 mL of phosphate

buffered saline. Total DNA was extracted using the MasterPure

DNA Purification kit for Blood, v. 2 (Lucigen, Middleton,

WI, USA) according to the manufacturer’s instructions.

Quantification of isolated DNA was performed with the Qubit

4 fluorometer and the dsDNA HS Assay kit (Thermo Fisher

Scientific, Waltham, MA, USA). DNA was sent to SeqCenter

(Pittsburgh, PA, USA), where sample library preparation using

the Illumina DNA Prep kit and IDT 10bp UDI indices was

performed. Subsequently, libraries were sequenced on an

I l l umina Nex tSeq 2000 , p roduc ing 2x151bp reads .

Demultiplexing, quality control and adapter trimming at the

sequencing center was performed with bcl-convert v. 3.9.3

(https://support-docs.illumina.com/SW/BCL_Convert/Content/

SW/FrontPages/BCL_Convert.htm).
2.6 Assembly and
genomic characterization

We employed a custom assembly and polishing pipeline to

assemble raw sequencing reads to contigs. This pipeline consists of

four parts, namely trimming (BBDuk from BBTools v. 38.98

[https://sourceforge.net/projects/bbmap/], quality control (FastQC

v. 0.11.9 [https://www.bioinformatics.babraham.ac.uk/projects/

fastqc/]), assembly (shovill v. 1.1.0 [https://github.com/tseemann/

shovill]) with SPAdes v. 3.15.5 (Prjibelski et al., 2020), and polishing

(BWA-MEM2 v. 2.2.1 (Vasimuddin et al., 2019), Polypolish v. 0.5.0

(Wick and Holt, 2022)). Genotyping was performed with Kleborate

v. 2.2.0 (Lam et al., 2021) and Kaptive (Wyres et al., 2016; Lam

et al., 2022).
2.7 Confirmation of clonality

Trimmed sequencing reads of all isolates were mapped against

isolate 1-A with snippy v. 4.6.0 (https://github.com/tseemann/

snippy) and the SNP distance matrix calculated with snp-dists v.

0.8.2 (https://github.com/tseemann/snp-dists).
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TABLE 1 Colony morphology and antimicrobial susceptibility characteristics of the 14 phenotypes of the Klebsiella pneumoniae strain.

MICs), µg/mLa,b

Presence
of

bla genesLVX AMK TGC CHL CST FOF SXT

>2 ≤4 0.5 16 ≤1 >128 ≤1

blaSHV-11

>2 ≤4 0.5 16 ≤1 >128 ≤1

>2 8 0.5 >16 ≤1 >128 ≤1

blaOXA-1,
blaOXA-9,
blaOXA-48,
blaTEM-1D,

blaCTX-M-15,

blaNDM-1,

blaSHV-11

>2 8 ≤0.25 ≤8 ≤1 >128 ≤1
blaOXA-9,
blaTEM-1D,

blaSHV-11

>2 8 ≤0.25 >16 ≤1 >128 ≤1
blaOXA-1,
blaOXA-9,
blaOXA-48,
blaTEM-1D,

blaCTX-M-15,

blaNDM-1,

blaSHV-11

>2 8 ≤0.25 >16 ≤1 >128 ≤1

>2 32 0.5 >16 ≤1 >128 >4

blaOXA-1,
blaOXA-9,
blaOXA-48,
blaTEM-1D,

blaNDM-1,

blaSHV-11

>2 8 0.5 >16 ≤1 >128 2
blaOXA-1,
blaOXA-9,
blaOXA-48,
blaTEM-1D,

blaCTX-M-15
c

blaNDM-1,
c

blaSHV-11

>2 8 0.5 >16 ≤1 >128 4

>2 8 0.5 >16 ≤1 >128 ≤1

>2 32 0.5 >16 ≤1 >128 >4 blaOXA-1,
blaOXA-9,
blaOXA-48,
blaTEM-1D,

blaCTX-M-15,

>2 8 0.5 >16 ≤1 >128 4

>2 8 0.5 >16 ≤1 >128 4
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14 phenotypes of the K. pneumoniae strain Median minimum inhibitory concentrations (

Isolate
number

Specimen Date
Colony morphology

PIP TZP TEM FDC CTX CAZ CZA C/T IPM MEM CIP
Color Surface

1-A

Urine
Jul
22

Whitish
Glistening,
smooth

≤8 ≤4 ≤32 ≤0.03 ≤1 ≤1 ≤1 ≤1 ≤1 ≤0.125 >2

1-B Grey
Glistening,
smooth

≤8 ≤4 ≤32 ≤0.03 ≤1 ≤1 ≤1 ≤1 ≤1 ≤0.125 >2

2-A

Intra-operatively
obtained hip tissue

Jul
22

Whitish
Glistening,
smooth

>16 >64 >128 1 >2 >128 >16 >8 >8 128 >2

2-B Grey
Glistening,
smooth

>16 8 ≤32 0.06 ≤1 ≤1 ≤1 ≤1 ≤1 ≤0.125 >2

3-A

Intra-operatively
obtained hip tissue

Aug
22

Whitish
Glistening,
smooth

>16 >64 >128 1 >2 >128 >16 >8 >8 128 >2

3-B Grey
Glistening,
smooth

>16 >64 >128 2 >2 >128 >16 >8 >8 128 >2

4-A

Intra-operatively
obtained hip tissue

Sep
22

Small colony variant >16 >64 >128 0.25 >2 >128 >16 >8 >8 128 >2

4-B Whitish
Glistening,
smooth

>16 64 >128 0.125 2 ≤1 ≤1 ≤1 8 16 >2

4-C Grey
Glistening,
smooth

>16 >64 >128 1 >2 >128 >16 >8 >8 128 >2

4-D Grey Dry, rough >16 >64 >128 2 >2 >128 >16 >8 >8 64 >2

5-A

Intra-operatively
obtained hip tissue

Sep
22

Small colony variant >16 >64 >128 0.25 >2 >128 >16 >8 >8 >128 >2

5-B Whitish
Glistening,
smooth

>16 >64 >128 2 >2 >128 >16 >8 >8 128 >2

5-C Grey >16 >64 >128 2 >2 >128 >16 >8 >8 128 >2
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3 Results

Overall, 14 distinct phenotypes were determined (Table 1). From

the urine, two phenotypes (1-A and 1-B) exhibiting a normal colony

size and glistening surface but differing in the color of their colonies

displaying whitish or grey colonies, were isolated. All other phenotypes

(n = 12) were isolated from tissue specimens. Strains numbered 1-A, 2-

A, 3-A, 4-B, 5-B, numbered 1-B, 2-B, 3-B, 4-C, 5-C, and numbered 4-

D, 5-D, displayed identical morphological attributes each, distinguished

by whitish, glistening, and smooth (Figure 1B), grey, glistening, and

smooth (Figure 1C), and grey, dry, and rough colonies (Figure 1D),

respectively (Supplementary Figure S1). These strains revealed a

normal colony size of 2.4 mm on average (range, 1 – 5.5 mm). The

isolates displaying the SCV phenotype, numbered 4-A and 5-A,

exhibited similar morphological characteristics, and colony sizes were

smaller than 0.5 mm (Figure 1, Supplementary Figure S1). No

discernible variation in terms of colony clustering was observed

among the various agar plates. There were no obvious differences in

size or shape of cells between different phenotypes except bacteria from

grey, dry, rough phenotype 5-D, in which cells were clearly elongated

(Supplementary Figure S2).

Initially, largely antibiotic-susceptible K. pneumoniae phenotypes

exhibiting whitish and grey colony morphologies on Columbia agar

plates were isolated from the urine sample. Following antibiotic

treatment, MDR K. pneumoniae strains displaying the normal colony

size were isolated from tissue samples, again characterized by

subsequent whitish or grey colony formations. Subsequently, SCVs of

K. pneumoniae were isolated from tissue samples. Subcultivation of

different SCV colonies consistently yielded a division into four distinct

colony morphotypes including one SCV phenotype that resembled the

initial SCV, along with three normal-sized phenotypes distinguished by

variations in colony color and visual attributes. While normal-sized

phenotypes exhibited stability following each round of re-cultivation,

SCV isolates displayed instability and recurrently diverged into the four

phenotypes described above. We have designated the emergence of

these multiple phenotypes as “hyper-splitting”. Despite minor

variations in MIC values, these “hyper-splitting” phenotypes

exhibited multidrug resistance (Table 1).

Except for isolates 1-A and 1-B, all isolates were resistant to the

tested carbapenems. Initially, during routine diagnosis, isolate 2-B was

found to be carbapenem-resistant by VITEK® 2 AST, and to harbor

blaOXA-48 gene by LAMP. After subcultivation of this isolate for MIC

determination, this resistance disappeared and the isolate became

susceptible to all tested beta-lactam antibiotics except piperacillin.

We assume that a mobile genetic element harboring blaOXA-48 gene

was lost upon subcultivation. Only isolates 1-A and 1-B were

susceptible to piperacillin, and only isolate 4-B was not resistant to

the cephalosporins tested. Interestingly, only isolates 4-A and 5-A,

which demonstrated the SCV phenotype, were resistant to amikacin

and trimethoprim-sulfamethoxazole. Another remarkable finding was

the observed increase in the MIC values of cefiderocol and

trimethoprim-sulfamethoxazole over time (Table 1).

Whole-genome sequence (WGS) analysis revealed that all

isolates belonged to sequence type (ST) 147. Lipopolysaccharide

antigen (O) loci were O1/O2v1 and capsule biosynthesis (KL) loci

were KL64 for all isolates except isolate 4-D, which could not be
T
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assigned, as it missed most genes of this locus. Isolates 1-A, 1-B and

2-B showed lower Kleborate resistance score than the other isolates

(resistance: 0 vs. 2). The resistance score of 0 indicates that the

isolate(s) did not carry any genes for extended-spectrum beta-

lactamases (ESBL) or carbapenemases and a score of 2 correlated

with the presence of carbapenemase genes without colistin

resistance genes (Lam et al., 2021). In accordance with the

resistance scores, we detected several beta-lactamase genes, such

as blaSHV-11, blaTEM-1 and blaOXA-9, ESBL genes, such as blaCTX-M-15

and blaOXA-1, and the carbapenemase genes blaNDM-1 and blaOXA-

48. blaSHV-11 was found in all isolates whereas blaTEM-1 and blaOXA-9
were present in all isolates except 1-A and 1-B. However, blaCTX-M-

15 was not found in isolate 4-A. In isolate 4-B, blaCTX-M-15 and

blaNDM-1 genes were initially detected by WGS, however, after sub-

cultivation, a discrepancy between AST and WGS results was

observed. Re-testing by LAMP at this later time point revealed

the loss of both genes (Table 1). Genes associated with

sulphonamide (sul1) and chloramphenicol (catB3) resistance were

also detected in all isolates except 1-A, 1-B and 2-B. Note that we

did not detect any common cefiderocol resistance genes.

The isolates exhibited clonality as emphasized by the low

number of SNPs among them (Supplementary Tables S1, S2).

Especially isolates from the same time point showed no difference

in the core genome alignment (5,360,988 bp) with the exception of

2-A and 2-B (six SNPs) and 5-D (one additional SNP compared to

5-A–C). The largest distance with 17 SNPs was between 2-A and 5-

D (Supplementary Table S1).
4 Discussion

When evaluating the results, we can roughly identify three

distinct outcomes. The first significant observation concerns the
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emergence of resistance development chronologically within a K.

pneumoniae strain, originating from a patient subjected to

continuous, uninterrupted antibiotic intervention. This scenario

promptly elicits contemplation of the subject concerning within-

host adaptive evolution of bacteria. In fact, in-host resistance

evolution, either due to plasmid mediation or chromosome

mutations, has been observed even shortly after the initiation of

antimicrobial treatment (Jin et al., 2021).

The second notable observation in our study is the occurrence

of SCVs from patient specimens following the detection of normal-

sized morphotypes. SCVs demonstrate remarkable abilities to

invade and persist within host cells, thus evading the surveillance

mechanisms of the immune system (Tuchscherr et al., 2020). The

existence of SCVs, mostly observed in Staphylococcus spp., has been

documented since the onset of the 20th century and has gained

increasing attention due to its potential implications for both

clinical and basic research (Jacobsen, 1910; Proctor et al., 2006).

Regarding the SCVs of Gram-negative bacteria, studies have

particularly focused on Burkholderia and Pseudomonas spp.

isolated from CF patients (Oliver et al., 2000; Haussler et al.,

2003a, Haussler et al., 2003b). However, there are only sparse

data on the occurrence of SCV in Klebsiella spp (Benner et al.,

1965; Musher et al., 1979; Murray and Moellering, 1982; Srinivasan

et al., 2012; Silva et al., 2016).

Basically, SCVs have been determined as a subpopulation

characterized by their distinct phenotypic properties, such as

atypical colony morphologies including the reduced colony size

(Proctor et al., 1995). Their decreased growth rate is thought to

contribute to their inherent resistance, given that the decelerated

growth dynamics potentially hinder the effectiveness of antibiotics

geared towards rapidly proliferating cell populations (Proctor and

von Humboldt, 1998). Furthermore, this phenomenon concurrently

signifies decreased metabolic activity, which may engender
A B

C D

FIGURE 1

Columbia blood agar plates showing the different colonial morphotypes of the K. pneumoniae isolates comprising regular sized colonies (wild-type)
with glistening whitish (B) and grey (C), and dry and rough grey colonies (D), respectively, as well as tiny grey and whitish colonies displaying the SCV
phenotype (A). Panel (A) also shows the hyper-splitting phenomenon of the SCV phenotype into the colony morphotypes shown in panels (B–D).
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Doğan et al. 10.3389/fcimb.2024.1372704
modifications in cell wall permeability, drug uptake, or the

modulation of efflux pump expression (Mitsuyama et al., 1997).

For electron transport chain-defective staphylococcal SCVs,

lower efficacy of aminoglycosides known to be taken up through

electrical potential across the cytoplasmic membrane (DY) was

demonstrated, which is attributable to low DY (Baumert et al.,

2002). These alterations could collectively contribute to enhancing

resistance patterns. In this study, we observed an increase in the

MIC values of amikacin, cefiderocol, and trimethoprim-

sulfamethoxazole in the isolates recovered over time. This MIC

increase was especially pronounced for amikacin in SCV

phenotypes. Moreover, most antibiotics penetrate into host cells

poorly, so the concentrations required to kill intracellularly

persistent SCVs cannot be achieved (Proctor et al., 2006).

SCVs, known for their inducible formation through in vitro

processes involving various agents, including antibiotics (Benner

et al., 1965), have exhibited a propensity for increased persistence

and adaptability when confronted with challenging environments (Li

et al., 2016). An enhanced ability to form biofilms on biotic and abiotic

surfaces has been shown for SCVs of different bacterial species

(Haussler et al., 2003b; Webb et al., 2004; Al Laham et al., 2007;

Allegrucci and Sauer, 2007; Millette et al., 2023). The substantial

implication of SCVs extends to their involvement in biofilm

development, as biofilms effectively shield bacteria from harsh host

environments, thereby complicating the elucidation of drug resistance

mechanisms within biofilm structures (Craft et al., 2019). Biofilms not

only confer protection against host immune defenses but also serve as

reservoirs for persistent infections and recurrent episodes (Mirani et al.,

2015). The impact of SCV phenotype on biofilm formation in in

Klebsiella remains to be elucidated in further studies.

Furthermore, the emergence of SCVs could plausibly be due to

selection pressure from antibiotic regimens or other host-associated

factors, e.g., host cationic peptides. Consistent with the case that was

the subject of our study, the higher frequency of SCVs in isolates

from chronic and recurrent infections compared to acute infections

suggests a potential role for these variants in evading host immune

responses and antimicrobial treatments (Proctor et al., 2006). In the

context of our study, the emergence of SCVs after the initiation of

cefiderocol treatment while already undergoing antibiotic therapy

could be construed as a form of in vivo or in host induction.

The third noteworthy finding from our study underscores the

inherent instability of SCVs. This dynamic interplay between stable

and unstable SCVs is still poorly understood and its elucidation may

contribute to a deeper understanding of their role in infection in

general and persistence phenomena in particular (Becker et al.,

2006). Despite comprehensive explorations largely focusing on

staphylococci, a lack of investigations concerning Klebsiella spp.

persists, and requires attention.

The observed instability among SCVs, combined with distinct

antibiotic susceptibility profiles across phenotypes, increases the

significance of investigating SCV plasticity (Proctor et al., 1995).

Stable SCVs represent a long-term adaptation strategy, whereas

their unstable counterparts may arise as stress-induced variants that

result from rapid adaptation to fluctuating environments
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(Tuchscherr et al., 2010, Tuchscherr et al., 2011, Tuchscherr et al.,

2015). This inherent instability potentially serves as a mechanism

for evading host immune responses and circumventing antibiotic

interventions (Tuchscherr et al., 2015). Furthermore, the

involvement of epigenetic modifications, including alterations in

DNA methylation patterns, could significantly influence SCV

stability (Guerillot et al., 2019). In addition, regulatory systems,

such as two-component systems and quorum sensing, play a crucial

role in SCV formation by modulating bacterial behavior and

adaptation. Disruption or dysregulation of these systems could

lead to the emergence of SCVs with altered phenotypic properties

(Pader et al., 2014). Due to instability, slow-growing SCVs may

generate mutants that exhibit a faster growth rate than usual

(Brandis et al., 2017). In instances of reversion to the wild type,

rapidly growing mutant revertants may demonstrate either the loss

or preservation of antibiotic resistance (Brandis et al., 2017).

A high mutation rate might favor the emergence of SCVs (Schaaff

et al., 2003) and also explain the emergence of antibiotic resistance as a

result of antibiotic selective pressure and the adaptation of

hypermutable strains in patients, especially CF patients (Prunier

et al., 2003). CF-like chronic infections have been shown to

specifically contribute to the development of bacterial mutations

(Smith et al., 2006). Hypermutation could result in a subpopulation

of bacteria that temporarily does not grow, thus leading to persistence

(Witzany et al., 2022). Additionally, an increase in the prevalence of

mutator bacterial strains with deficient DNA mismatch repair (MMR)

system has been detected in CF patients, who are used as a reservoir for

mutation (Mena et al., 2008). To our best knowledge, we were unable to

identify any instance in the available literature wherein a solitary SCV

colony has given rise to four distinct colonies exhibiting disparate

morphologies. Accordingly, we suggest the designation “phenotypic

hyper-splitting” for this distinctive phenomenon.

We described in this study unprecedented phenotypic attributes

and primarily focused on in vitro experiments. Therefore, the

clinical relevance of our findings necessitates validation through

animal models and clinical sample analyses. In this context,

macrophage and neutrophil assays would be valuable for

assessing both the extent of immune response and the presence of

persistent cells. Moreover, the determination of the auxotrophism

(Kriegeskorte et al., 2014; Becker, 2023) of K. pneumoniae SCVs and

of the molecular mechanisms that drive SCV formation and the

resulting antibiotic resistance in this species require further

investigation. Integrating a comprehensive range of approaches

encompassing genomics, transcriptomics, and proteomics, the

utilization of experimental evolutionary models can yield valuable

insights into the genetic determinants and regulatory networks

orchestrating SCV phenotypes.

The genomic analysis conducted in this study has revealed

clonality among all 14 isolates. Further exploration is warranted to

uncover the intricate molecular mechanisms underlying phenotypic

hyper-splitting and to elucidate the potential pathogenic

implications of this phenomenon. To better understand the

formation of the SCV phenotype especially in Gram-negative

pathogens, efforts need to be intensified (i) to improve the
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detection and characterization of SCVs recovered from clinical

samples and (ii) to elucidate their clinical impact.
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