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Virus receptors determine the tissue tropism of viruses and have a certain

relationship with the clinical outcomes caused by viral infection, which is of

great importance for the identification of virus receptors to understand the

infection mechanism of viruses and to develop entry inhibitor. Proximity labeling

(PL) is a new technique for studying protein-protein interactions, but it has not

yet been applied to the identification of virus receptors or co-receptors. Here, we

attempt to identify co-receptor of SARS-CoV-2 by employing TurboID-catalyzed

PL. The membrane protein angiotensin-converting enzyme 2 (ACE2) was

employed as a bait and conjugated to TurboID, and a A549 cell line with stable

expression of ACE2-TurboID was constructed. SARS-CoV-2 pseudovirus were

incubated with ACE2-TurboID stably expressed cell lines in the presence of

biotin and ATP, which could initiate the catalytic activity of TurboID and tag

adjacent endogenous proteins with biotin. Subsequently, the biotinylated

proteins were harvested and identified by mass spectrometry. We identified a

membrane protein, AXL, that has been functionally shown to mediate SARS-

CoV-2 entry into host cells. Our data suggest that PL could be used to identify

co-receptors for virus entry.
KEYWORDS
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1 Introduction

Historically, emerging and re-emerging viruses appear constantly, killing tens of

millions of human lives (Lu et al., 2021). Currently, both climate change and intense

globalization have created more favorable conditions for the spread of the viruses. It is

probable that future outbreaks of new emerging viruses will become more frequent. Viruses
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are strictly intracellular parasitic organisms, and their life cycle is

entirely dependent on the hijacking of cellular functions to facilitate

their replication, which starts with the interaction between viral

particles and receptors on the host cell surface, in particular the

binding of the viral surface protein to the receptors expressed in

host cells (Sieczkarski and Whittaker, 2005; Maginnis, 2018).

Receptors serve as the primary mediators of viral tropism, the

host range and transmissibility, and in many cases, receptor

interactions occur in a seemingly programmed series of events

utilizing multiple receptors (Sieczkarski and Whittaker, 2005). The

study of the dynamic mechanism of the virus entry process is not

only a fundamental scientific issue in viral infection, but also

has important implications for vaccine design and entry

inhibitor research.

Due to the fact that protein-protein interactions (PPIs) are

mainly mediated by hydrogen bonds, salt bonds and hydrophobic

forces, all of which have very short interaction distances, it is

generally believed that interacting proteins must be close to each

other. Proximity labeling (PL) is an emerging approach to study the

spatial characteristics of proteins and PPIs in living cells, with unique

advantages in the identification of proteins interacting with

hydrophobic and low-abundance proteins, and the analysis of weak

or transient PPIs, and on the temporal-spatial resolution (Yang et al.,

2021). PL uses engineered enzymes, such as peroxidases (engineered

ascorbate peroxidase 2 (APEX2) (Lam et al., 2015), horseradish

peroxidase (HRP) (Kotani et al., 2008)) or biotin ligases (BioID

(Choi-Rhee et al., 2004; Roux et al., 2012), BioID2 (Kim et al., 2016),

BASU (Ramanathan et al., 2018), TurboID (Branon et al., 2018),

miniTurbo (Branon et al., 2018)), that are genetically tagged to a

protein of interest (Qin et al., 2021). TurboID was developed through

error-prone PCR mutagenesis and directed evolution in yeast and

exhibits faster labeling kinetics, allowing labeling durations as short as

10 min (Branon et al., 2018). While the interaction between virus

particles and receptors is relatively weak, the action time is short, and

the dynamic process is fast, thus TurboID-catalyzed PL has the

potential to identify virus receptors or co-receptors.

Classical biochemical and immunological approaches use the

high-affinity interactions between the viral surface and its cellular

target in order to identify the virus receptor(s), such as virus overlay

protein blot assay (Tayyari et al., 2011), co-immunoprecipitation

assay (Li et al., 2003; Raj et al., 2013; Wang et al., 2021). PL has been

widely used to study membrane-protein interactions (Arora et al.,

2020; Szczesniak et al., 2021), but it has not yet been applied to the

study of virus receptors/co-receptors. Here, we apply TurboID-

catalyzed PL to identify the co-receptor in SARS-CoV-2 entry.

TurboID-conjugated ACE2 was stably overexpressed in the SARS-

CoV-2 poorly susceptible A549 cell lines, and then these cells were

bonded with SARS-CoV-2 pseudovirus in the presence of biotin

and ATP, which could initiate the catalytic activity of TurboID and

tag adjacent endogenous proteins with biotin. Subsequently, the

biotinylated proteins were harvested using streptavidin-coated

beads, and identified by mass spectrometry. Mass spectrometry

analysis revealed that a membrane protein, AXL, which has been

reported to be a receptor for SARS-CoV-2, was significantly

enriched in SARS-CoV-2 pseudovirus-binding cells. Our data

suggest that PL could be used to identify virus co-receptors.
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2 Methods

2.1 Cell lines and plasmid construction

HEK-293T (a human embryonic kidney 293T cell line, CRL-

11268) and A549 (a human non-small-cell lung carcinoma cell line,

CCL-185) were purchased from ATCC and cultured in Dulbecco’s

modified Eagle Medium (DMEM, HyClone). The medium was

supplemented with 10% fetal bovine serum (FBS, Gibco,

Australia), 2 mM L-glutamine, 100 U/ml penicillin and 100 mg/
ml streptomycin (Life Technologies, NY), and maintained at 37°C

in a humidified atmosphere containing 5% CO2.

For plasmid construction, genes were amplified using Transtart

FastPfu DNA polymerase (TransGen Biotech). The vectors and

PCR product were digested by restriction enzyme and then

separated on an agarose gel, purified using MiniBEST Agarose

Gel DNA Extraction Kit (TaKaRa). Vectors and PCR product were

then ligated using T4 DNA ligase.
2.2 Production of overexpression lentivirus
and SARS-CoV-2 spike pseudovirus

In order to overexpress specific genes (TurboID-ACE2 or

ACE2-TurboID or ACE2 or AXL) in A549 cells, transduction by

lentivirus was adopted. For preparation of lentivirus overexpressing

specific genes, HEK293T cells in T25 flasks were transfected with

packaging plasmid psPAX2 (Addgene, 2250ng) and envelope

plasmid pMD2.G (Addgene, 750ng) and specific transfer plasmids

(3000 ng). After 60 h incubation, the supernatant was collected and

centrifuged at 5,000 × g at 4°C for 10 min to remove cell debris, and

then passed through a 0.45 mm filters with low protein binding

membrane (Millipore), aliquoted and stored at -80°C. For

overexpression of specific genes, lentivirus transductions were

performed in the presence of 10 mg/ml polybrene.

SARS-CoV-2 spike pseudoviruses bearing mCherry-SARS-

CoV-2 N were produced as previously described (Ou et al., 2020;

Mi et al., 2023). Briefly, HEK293T cells were co-transfected with

psPAX2, pLenti-mCherry-N, and the plasmids encoding spike (S)

proteins of SARS-CoV-2 by using polyetherimide (PEI) (Beyotime).

The supernatants were harvested at 60 h post transfection,

centrifuged at 5000 × g for 10 min, and passed through 0.45 mm
filter to remove cell debris. The titer of SARS-CoV-2 pseudovirus in

the supernatants was determined using the Lenti-X qRT-PCR

Titration Kit (Clontech) and converted to infectious units (IFUs)

according to the manufacturer’s instructions.
2.3 Immunofluorescence

A549 cells were transduced with the lentivirus expressing

specific genes, and the cells were split at 72 h post-transduction

and seed on glass bottom dishes for another 24 h and then fixed

with 4% paraformaldehyde (PFA) at room temperature for 15 min

followed by permeabilization by 0.5% Triton X-100 for 10 min at

4°C. After blockade with 1% normal goat serum (Boster) in PBS for
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1 h, the cells were incubated with indicated primary antibody for

overnight at 4°C. Subsequently, the cells were washed three times

with PBS and incubated with suitable secondary antibody and

finally stained with DAPI. The dishes were observed using a

Perkin Elmer UltraViewVox confocal microscopy under a 60× oil

objective. While the A549 cells stably expressing ACE2-TurboID

were first plated on glass bottom dishes, then the cells were infected

with SARS-CoV-2 pseudovirus. At 48 h post infection, the cells

were fixed with 4% PFA and stained with DAPI, followed by

observation using confocal microscopy.
2.4 PL and liquid chromatography-mass
spectrometry analysis

For each sample, A549 cells stably expressing ACE2-TurboID

were grown as a monolayer in 100 mm dish. The cells at ~80%

confluency were infected with the SARS-CoV-2 spike pseudoviruses

at a multiplicity of infection (MOI) of 2 or left uninfected for 15 min

and at the same time endogenous protein were biotinylated by adding

500 mM biotin, 1 mM ATP and 5 mM MgCl2 for 15 min. Labeling

was stopped by placing cells on ice and washing six times with ice-

cold PBS. Then the cells were detached in ~ 1.5 mL RIPA lysis buffer

(50 mM Tris pH 8, 150mM NaCl, 0.1% SDS, 0.5% sodium

deoxycholate, 1% Triton X-100, protease inhibitor cocktail, and 1

mM phenylmethylsulfonyl fluoride) from the dish using a cell

scraper, and incubated for 30 min on ice. Lysates were clarified by

centrifugation at 12,000× g for 10 min at 4°C. In order to enrich

biotinylated proteins from the lysates, 200 mL streptavidin-coated

magnetic beads (Pierce) were washed twice with RIPA buffer, and

incubated with clarified lysates of each sample with rotation for 1 h at

room temperature, then moved and incubated at 4°C overnight. The

beads were subsequently washed twice with1 mL of RIPA lysis buffer,

once with 1 mL of 1 M KCl, once with 1 mL of 0.1 M Na2CO3, once

with 1 mL of 2 M urea in 10 mMTris-HCl (pH 8.0), and twice with 1

mL RIPA lysis buffer, and then were shipped to Shanghai

Omicsolution Co., Ltd. with dry ice for further LC-MS/MS analysis.

The data of mass spectrometry were analyzed as previously described,

and the result was shown in Supplementary Table S1. A volcano plot

was adopted to illustrate the differentially biotinylated proteins, which

was drawn with the ggplot2 package in R.
2.5 Western blotting and
co-immunoprecipitation

Whole-cell lysates for both WB and Co-IP were prepared using

the lysis buffer containing 50 mM Tris-base (pH 7.5), 1 mM EGTA,

1 mM EDTA, 1% Triton X-100, 150 mM NaCl, 100 µM

phenylmethylsulfonyl fluoride (PMSF) and protease inhibitor

cocktail (Roche) at 4°C for 30 min. Then the cell lysates were

centrifuged at 14,000×g at 4°C for 10 min. ForWB, the supernatants

were mixed well with sample buffer and followed by denaturation at

95°C for 10 min. For Co-IP, the supernatants were collected and

mixed with Protein G-agarose (Millipore) and anti-HA antibodies

(2mg, Sigma Aldrich) for 16 h at 4°C. After washed six times with
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ice-cold lysis buffer, Protein G agarose-bound immune complexes

were then eluted by sample buffer and subjected to WB analysis.

And the denatured samples were resolved by SDS-PAGE and

transferred to nitrocellulose membranes, then the membranes

were blocked with TBST (pH 7.4, containing 0.1% Tween-20)

containing 5% skimmed milk for 1 h at room temperature,

followed by incubation with primary antibodies to ACE2 (1:1000,

Proteintech), biotin (1:1000, Cell Signalling Technology), HA

(1:1000, Sigma Aldrich), SARS-CoV-2 S (1:1000, ABclonal) and

actin (1:1000, Proteintech) at 4°C overnight. After, the membranes

were washed and incubated with the HRP-conjugated secondary

antibodies for 1 h at room temperature and imaged using the

FluorChem HD2 system (Alpha Innotech). Images were analyzed

using AlphaEaseFC software (Alpha Innotech).
2.6 Pseudovirus binding assay

For the pseudovirus binding assay, A549 cells were washed

twice with ice-cold PBS and incubated with SARS-CoV-2

pseudovirus at an MOI of 20 in cold DMEM medium

supplemented with 2% FBS on ice for 1 h. Afterwards the

supernatant was removed and the cells were washed six times

with ice-cold PBS. Then the cells were collected and the copies of

SARS-CoV-2 N gene were measured by quantitative PCR to

evaluate absorption of pseudovirus.
2.7 Inhibitor assay

Dubermatinib (TP0903) is a potent and selective AXL receptor

tyrosine kinase inhibitor, purchased fromTOPSCIENCE. 1×105 A549

cells were preincubated with serially diluted Dubermatinib for 2 h at

37°C. Then 2×105 IFUs of SARS-CoV-2 pseudovirus (MOI of 2) were

added and incubated at 37°C for 1 h, and the cells were washed with

PBS and cultured in fresh medium at 37°C for another 48 h. Cells

were collected and the copies of SARS-CoV-2 N gene were measured

by quantitative PCR.
2.8 Quantitative PCR

Total cellular RNA was isolated with TRIzol (Invitrogen)

reagent according to the manufacturer ’s protocols. The

quantification of SARS-CoV-2 N gene was analyzed by one-step

real-time qPCR with the HiScript II One Step qRT-PCR SYBR

Green Kit (Vazyme) using specific primers and the Applied

Biosystems ViiA7 real-time PCR system. The data were

normalized to the levels of b-actin in each individual sample.
2.9 Statistical analysis

The data were analyzed and presented as the mean ± standard

error (SEM) using GraphPad 8.0. Statistical significance between

two groups was determined using two-tailed unpaired Student’s t-
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test. Differences were considered to be significant for p value < 0.05.

For differential biotinylated protein analysis, proteins with the p

value < 0.05 and |log2(fold change)| > 1 were considered to be the

differential biotinylated proteins.
3 Results

3.1 Construction and validation of lentiviral
plasmid carrying ACE2 fusing TurboID

We first constructed a plasmid carrying ACE2 coupled with the

TurboID gene, and we adopted two schemes to construct this

plasmid, one was to fuse the TurboID gene to the 5’ end of the

ACE2 gene, and the other fuse the TurboID gene to the 3’ end of the

ACE2 gene (Figure 1A). After co-transfecting these two transfer

plasmids with lentiviral packaging plasmids into HEK293T cells

and obtaining overexpression lentiviruses, the effectiveness of

these two kinds of lentiviruses was verified by infecting A549

cells. Both of the results of immunoblotting (Figure 1B) and

immunofluorescence (Figure 1C) showed that fusing the TurboID
Frontiers in Cellular and Infection Microbiology 04
gene to the 3’ end of the ACE2 gene was more conducive to the

expression of the ACE2 gene, and this construction strategy also

could allow ACE2 to be correctly located on the cell membrane.

Furthermore, ACE2-TurboID also mediated SARS-CoV-2

pseudovirus to efficiently infect A549 cells (Figure 1D). The

subsequent PL was performed using A549 cells stably

overexpressing ACE2-TurboID.
3.2 Identification of SARS-CoV-2 candidate
co-receptors by PL screen

In order to perform PL, we first verified the biotinylation

activity of ACE2-TurboID. After addition of biotin, ATP and

MgCl2, A549 cells overexpressing ACE2-TurboID could efficiently

biotinylate endogenous proteins in a short time (Figure 2A).

Subsequently, the cells were inoculated with SARS-CoV-2

pseudovirus for 15 min accompanied by PL in the presence of the

biotin, ATP and MgCl2. The biotinylated proteins were enriched

using streptavidin-coated beads, and identified by mass

spectrometry (Figure 2B). The volcano plot showed that 4
A B

C D

FIGURE 1

Construction and validation of lentiviral plasmid carrying ACE2 fusing TurboID. (A) Diagram of construction of ACE2-TurboID and TurboID-ACE2
overexpression lentiviral plasmid. Signal peptide (sp), ectodomain (ED), juxtamembrane stalk (JTS), transmembrane domain (TM), cytosolic tail (CT),
TurboID, promiscuous biotin ligase with 15 mutations relative to wild-type BirA. (B, C) A549 cells were transduced with lentiviruses carrying the
TurboID-ACE2 or ACE2-TruboID, respectively. At 72 h post infection, the protein levels of TurboID-ACE2 and ACE2-TruboID were determined by
western blot analysis (B). For immunofluorescence analysis, the cells were plated on the glass dishes for another 24 h, and then fixed with
paraformaldehyde and stained using the anti-ACE2 antibody, and finally analyzed by confocal microscopy (C). (D) A549 cells stably overexpressing
ACE2-TurboID were infected with SARS-CoV-2 spike pseudotyped lentivirus bearing mCherry-SARS-CoV-2 N gene. At 48 h post infection, the level
of mCherry-N was observed with the confocal microscopy.
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proteins, namely HIST2H3A, AXL, RPL37 and MLLT11, were

significantly enriched in the SARS-CoV-2 pseudovirus infection

group (Figure 2C; Supplementary Table S1). However among them,

AXL was the only membrane protein, and in general, virus co-

receptors are membrane proteins (Chappell and Dermody, 2015;

Maginnis, 2018; Zhang et al., 2019). Thus, we suggested that AXL

might be a candidate co-receptor for SARS-CoV-2 to enter

A549 cells.
3.3 AXL facilitates SARS-CoV-2 entry into
host cells

The proteins labeled by TurboID may be only close to the

target protein, and not interact with the target protein (Yang

et al., 2021). To further rule out this possibility, we used the
Frontiers in Cellular and Infection Microbiology 05
immunoprecipitation to verify the results observed with PL. Like

ACE2, AXL was indeed able to immunoprecipitate with the S

protein of SARS-CoV-2 (Figure 3). Moreover, both the virus

binding assay (Figure 4A) and the AXL inhibitor assay

(Figure 4B) confirmed the possibility of AXL as a receptor for

SARS-CoV-2 entry.
4 Discussion

In present study, we performed a PPI screening for host factors

required for SARS-CoV-2 entry using the TurboID-catalyzed PL

system. The biotinylated proteins were identified by LC-MS/MS,

and AXL was significantly enriched in cells infected with SARS-

CoV-2 pseudovirus. Further functional analysis confirmed that

AXL was a mediator of SARS-CoV-2 entry into host cells. This
A B

C

FIGURE 2

Identification of SARS-CoV-2 candidate co-receptors by proximity labeling screening. (A) Detection of the enzymatic activity of ACE2-TurboID and
determination of the optimal reaction time for proximity labeling. A549 cells stably overexpressing ACE2-TurboID were incubated with 500 mM
biotin and reaction buffer and collected at indicated times, followed by western blot analysis. (B) Workflow of proximity labeling. A549 cells stably
overexpressing ACE2-TurboID were infected with SARS-CoV-2 spike pseudovirus at an MOI of 2 or left uninfection for 15 min accompanied by
proximity labeling. Then the cells were harvested and purified by streptavidin, followed by LC-MS/MS analysis. (C) Volcano plot demonstrating the
differentially biotinylated proteins in infection and uninfection groups. The x-axis stands for the log 2 fold change (infection/uninfection) while the y-
axis stands for the value of -log 10 of p value. The differentially biotinylated proteins are indicated in red and blue (p < 0.05 & |log2(FC)| > 1).
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FIGURE 3

SARS-CoV-2 S interacts with AXL. HEK293T cells were co-transfected with ACE2-HA or AXL-HA and SARS-CoV-2 S, respectively. At 48 h post
transfection, the cells were lysed and HA-tagged proteins were immunoprecipitated with anti-HA antibody. Inputs and precipitated proteins were
determined by western blotting with the indicated antibody.
A B

FIGURE 4

AXL facilitates SARS-CoV-2 entry into host cells. (A) SARS-CoV-2 pseudovirus carrying mCherry-SARS-CoV-2 N was incubated with indicated cells at
4°C for 1 h (n=4), then the cells were collected and the copies of N were measured by qPCR using specific primers of N gene. (B) A549 cells stably
overexpressing AXL were preincubated with serially diluted Dubermatinib for 2 h and then were infected with SARS-CoV-2 pseudovirus carrying
mCherry-N for another 48 h at 37°C (n=4), followed by the measurement of the relative expression level of N in the cells. Quantitative data in this
figure are shown as the mean ± SEM. ***p< 0.001, ****p< 0.0001.
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finding was also reported by Wang and colleagues (Wang et al.,

2021). To the best of our knowledge, this is the first study to use PL

to identify virus receptors/co-receptors, and in turn our data also

illustrate the effectiveness of PL for the identification of

virus receptors.

The ability of viruses to cause productive viral infections and to

spread within organisms is largely dependent on the recognition of

receptors and other co-receptors expressed on the surface of

susceptible host cells (Husain et al., 2022). Cellular receptors are

important targets for antiviral strategies, and the discovery and

identification of functional virus receptors is essential for a better

understanding of the virus entry mechanism and the prevention and

control of viral diseases. Currently, the most commonly used method

for virus receptor identification is affinity purification coupled to

mass spectrometry (AP-MS) (Zapatero-Belinchón et al., 2021), which

has been used to identify the key receptors of a variety of important

viruses, such as the receptor sodium taurocholate co-transporting

polypeptide (NTCP) of hepatitis B and D viruses (Yan et al., 2012),

the receptor neural cell adhesion molecule NCAM1 of Zika virus

(Srivastava et al., 2020), and the SARS-CoV-2 receptor AXL identified

by Wang et al (Wang et al., 2021). AP-MS typically requires stable

interactions, but some non-specifically bound proteins will inevitably

be purified during the purification process. For example, in the

process of identifying the SARS-CoV-2 receptor AXL, Wang et al.

initially identified 2153 proteins after two purifications, and then

reduced the number of candidate proteins to 3 by combining other

methods. While we initially identified only 189 high-confidence

proteins using TurboID-catalyzed PL, which greatly simplified the

data screening process compared to AP-MS. This may be related to

the high spatial specificity of PL or to the fact that PL is performed in

live cells, whereas AP-MS is performed in cell lysates, which are

usually not spatially specific. Gingras AC et al. argue that PL is

generally limited to in-cis interactions that take place in a cell

membrane (Gingras et al., 2019; Husain et al., 2022), but a PL

technique called PUT-IT, described by Liu Q et al., has also shown

feasibility in identifying in-trans interactions (Liu et al., 2018).

Therefore, the pseudovirus with an extracellular domain of viral

membrane protein coupled to a PL enzyme could be used for the

identification of novel virus receptors. In addition, in order to

improve the specificity of the affinity purification process, AP-MS

usually requires the use of tandem tags and multistep protein

purification, which is more complex than the TurboID-catalyzed PL.

In addition to the above advantages, there may be some

technical limitations of PL technology. To improve the specificity

of PL, we chose PL enzymes with short labeling times, and virus

entering into cells is a multi-step, multi-factorial process, which

may result in a subset of late co-receptors not being identified. On

the contrary, if a PL enzyme (such as BioID) with a long labeling

time was used, it might lead to a decrease in labeling specificity and

increase the subsequent screening process of the authentic receptor,

so it is necessary to make a reasonable technical selection according

to the actual needs. Further, more than 5 SARS-CoV-2 receptors

have been identified so far, and no other known receptors, such as

ASGR1, KREMEN1, CD147, NRP1, etc (Gu et al., 2022), have been

identified by PL technology, and the same phenomenon exists in
Frontiers in Cellular and Infection Microbiology
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other research publications of SARS-CoV-2 receptors, that is, there

is little overlap between SARS-CoV-2 receptors identified by

different research teams using different methods. The reasons for

this phenomenon may be multifactorial: SARS-CoV-2 exhibits a

wide range of tissue tropism, and different entry strategies may be

used for different tissues, such as ASGR1, a receptor for SARS-CoV-

2 infection in the liver (Yang et al., 2024), which is highly expressed

in the liver and almost not expressed in A549 cells, or it may be due

to objective differences in the detection of ligand-receptor

interactions between cell-based screening methods and co-

immunoprecipitation-based methods. Specifically for our study,

the initial goal was to identify ACE2-dependent SARS-CoV-2 co-

receptors, and short-term labeling only identified strongly

interacting proteins, and AXL protein levels were high in A549

cells, which may have resulted in other receptors not being

identified. There is a need for further validation of the application

of PL technology for virus receptors or co-receptors identification.

Meanwhile viruses often use multiple receptors or co-receptors in

order to establish an efficient infection process and to adapt to

changes in different cell types. These receptors and co-receptors

can provide more opportunities and pathways for the virus to

interact with the cell surface, thereby increasing the success rate of

infection. During HIV entry, the virus needs to bind not only to CD4,

but also to co-receptors such as CCR5 or CXCR4 to successfully enter

the host cell (Mercer et al., 2020). This multiple receptor and co-

receptor dependent infection strategy is often multi-step, complex

and transient, but there is currently no technology that can accurately

elucidate this complex process, and time-sensitive PL offers a novel

approach to this problem. In conclusion, our studies demonstrate the

feasibility of PL for virus receptors or co-receptors identification.
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