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Introduction: SARS-CoV-2 vaccines production and distribution enabled the

return to normalcy worldwide, but it was not fast enough to avoid the emergence

of variants capable of evading immune response induced by prior infections and

vaccination. This study evaluated, against Omicron sublineages BA.1, BA.5 and

BQ.1.1, the antibody response of a cohort vaccinated with a two doses

CoronaVac protocol and followed by two heterologous booster doses.

Methods: To assess vaccination effectiveness, serum samples were collected

from 160 individuals, in 3 different time points (9, 12 and 18 months after

CoronaVac protocol). For each time point, individuals were divided into 3

subgroups, based on the number of additional doses received (No booster, 1

booster and 2 boosters), and a viral microneutralization assay was performed to

evaluate neutralization titers and seroconvertion rate.

Results: The findings presented here show that, despite the first booster, at 9m

time point, improved neutralization level against omicron ancestor BA.1 (133.1 to

663.3), this trend was significantly lower for BQ.1.1 and BA.5 (132.4 to 199.1, 63.2

to 100.2, respectively). However, at 18m time point, the administration of a

second booster dose considerably improved the antibody neutralization, and this
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was observed not only against BA.1 (2361.5), but also against subvariants BQ.1.1

(726.1) and BA.5 (659.1). Additionally, our data showed that, after first booster,

seroconvertion rate for BA.5 decayed over time (93.3% at 12m to 68.4% at 18m),

but after the second booster, seroconvertion was completely recovered (95%

at 18m).

Discussion: Our study reinforces the concerns about immunity evasion of the

SARS-CoV-2 omicron subvariants, where BA.5 and BQ.1.1 were less neutralized by

vaccine induced antibodies than BA.1. On the other hand, the administration of a

second booster significantly enhanced antibody neutralization capacity against

these subvariants. It is likely that, as new SARS-CoV-2 subvariants continue to

emerge, additional immunizations will be needed over time.
KEYWORDS

SARS-CoV-2, vaccination, booster, omicron, variants, antibody neutralization
1 Introduction

The COVID-19 pandemic has highlighted the necessity of

developing fast and effective control measures to avoid viral

dispersion, disease severity, and health system collapse (Martins

et al., 2023; Thakkar et al., 2023). These control procedures included

varied approaches, from social distancing to the development of

antivirals and vaccines for a long-term protection strategy (Golpour-

Hamedani et al., 2023; Thakkar et al., 2023). In this scenario, many

pharmacological interventions were proposed to improve immune

coverage against SARS-CoV-2, resulting in different vaccines, with

different mechanisms to induce immune response, being approved to

the population (Zhou et al., 2022). This was a remarkable moment in

the science history, since many efforts have been made to test and

approve these vaccines in record time (Bravo et al., 2022; Falsey et al.,

2021; Palacios et al., 2020; Sadoff et al., 2021).

Vaccination is the main process to provide mass immunity

protection against infectious diseases, including viral infections,

using safe mechanisms and approaches (Moradpour et al., 2023).

The worldwide vaccination against SARS-CoV-2 played a crucial

role on the control of the disease, reducing the number of cases,

hospitalizations and deaths (Haas et al., 2022; Martinez-Baz et al.,

2024; Steele et al., 2022). However, the process to produce and

distribute the vaccines globally could not follow the rapid viral

dispersion and evolution (Kupferschmidt, 2020; Lopez-Cortes et al.,

2022). In fact, the delayed and gradual vaccination, associated with

the high transmissibility and high mutation rate of the virus,

contributed to the emergence and adaptation of SARS-CoV-2

variants capable to evade immune response induced by

vaccination or prior infections (Mathieu et al., 2021; Rzymski

et al., 2021).

Most of COVID-19 vaccines use Spike protein as the target of

immunization action. The Spike protein is the viral envelope

protein recognized by cell receptors during viral adsorption and
02
entry steps, and this recognition is mainly mediated by the Receptor

Binding Domain (RBD) present in the Spike (Shang et al., 2020).

However, some mutations, especially those in the RBD, are capable

to confer a lower affinity between the viral protein and antibodies

induced by vaccination, resulting in a neutralization decrease

(Martin et al., 2021). The majority of SARS-CoV-2 variants of

concern (VOCs), responsible for the highest infections peak during

the pandemic, present mutations in this region, such as Delta and

Omicron, and many studies have already demonstrated that these

variants are less neutralized by serological immune response

induced by vaccination (CDC, 2021; Hoffmann et al., 2022;

Planas et al., 2021; Planas et al., 2022).

Several strategies have been developed to avoid this immune

response evasion. Initially, one approach involved administering a

supplementary dose of the same vaccine to those who had received

complete vaccination according to any SARS-CoV-2 vaccine’s

primary protocol. In general, this procedure presented an

enhancement on the protection against these VOCs, but in a small

proportion (Furukawa et al., 2022; Schultz et al., 2022; Wen et al.,

2023). Since different immunizationmechanisms have been approved

(inactivated virus, attenuated viral vector, viral subunit and mRNA),

an alternative to improve the immune response induction is the

administration of a heterologous booster, using a vaccine different

from the one used as the primary protocol, where the immune system

could be stimulated in different ways, generating a more complete

immune response (Hillus et al., 2021; Atmar et al., 2022). The results

were widely positive, showing that the heterologous booster,

independently of the immunization mechanisms, indeed presented

a higher antibody and cellular response enhancement when

compared to the homologous dose approach, especially against

omicron (Perez-Then et al., 2022; Yoo et al., 2023).

The improved serological response, generated by the booster

dose, showed to be an important tool to oppose and decelerate

SARS-CoV-2 evolution and adaptation by reducing viral spread
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(Theparod et al., 2023). Even though, subvariants of omicron

continued to emerge (Callaway, 2022; Callaway, 2023; Tegally

et al., 2022; Wang and Cheng, 2022), and some concerns were

raised regarding durability of protection and coverage against these

new subvariants (Willett et al., 2024). Studies have shown that, even

after a booster dose, humoral response tends to decay over time

(Ozbay Kurt et al., 2022; Favresse et al., 2023). In addition, the

scientific literature already exposed the potential evasion of these

subvariants from immune response induced by vaccination and

prior infections (Iketani et al., 2022; Wang Q. et al., 2022; Wang

et al., 2023). The fact is that, as long as new subvariants continue to

emerge, new immunization approaches will likely be needed, such

as additional booster from time to time and updated

vaccine technologies.

In Brazil, the immunization program started in January 2021

with a primary vaccination protocol with the virus inactivated

vaccine CoronaVac, the first approved by the national regulatory

agency (ANVISA, 2021a; Wu et al., 2021; Zhang et al., 2021). The

course of the pandemic led to the approval of a first heterologous

booster dose with the mRNA vaccine BNT162b2 during the huge

omicron infection wave that started at the end of 2021 (ANVISA,

2021b; Lamarca et al., 2023). After this infection peak, a second

booster dose with BNT162b2 or viral vector vaccines (ChAdOx1-S

or Ad26.CoV2.S) was available to avoid immune escape and

another wave of cases, but the adherence was not high as

expected by the Brazilian health ministry (while more than 167

million people were fully vaccinated with the primary protocol, only

43 million people received the first and second booster doses)

(accessed on January 14th, 2024) (Brasil, 2023). At the time, the

panorama of omicron lineages was constantly changing, with many

subvariants being introduced, highlighting BA.5 and BQ.1.1, the

most frequent in the country at that moment (de Menezes et al.,

2023; de Sousa et al., 2023).
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In this scenario of many doubts, our study aimed to investigate

the impact of the first and second booster doses, in a cohort

vaccinated with CoronaVac primary protocol, against the

omicron subvariants (BA.1, BA.5 and BQ.1.1) circulating in the

country during 2022.
2 Methods

2.1 Cohort and vaccination groups

In order to analyze the induction of neutralizing antibodies

against different sublineages of SARS-CoV-2 Omicron variant,

serum samples were collected from individuals that received the

primary protocol and were subsequently submitted to the booster

doses over time. Samples were collected in three different time

points after the CoronaVac initial protocol: 9 months (9m); 12

months (12m); and 18 months (18m). To assess the effectiveness of

the booster doses, individuals were divided into three subgroups

based on whether they had not received any additional doses (No

booster), had received one additional dose (1 booster), or had

received two additional doses (2 boosters), and all were

monitored across the three time points (Figure 1).

For the first booster dose, the mRNA vaccine BNT162b2 was

administered exclusively to the participants. Regarding the second

booster dose, it was selected by the competent authorities the use of

three different vaccines, BNT162b2 and the attenuated adenoviral

vector vaccines Ad26.COV2.S and ChAdOx1-S. It is important to

emphasize that bivalent vaccines were not used for this additional

dose, only the first generation of vaccines were administered, and

the choice of the vaccine was determined under availability. All the

participants who were submitted to the booster doses were

vaccinated at the same time, independent of the time-point group
FIGURE 1

Schematic of vaccination and samples collection.
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under analysis, which allows a fair comparison between the groups,

subgroups and Omicron sublineages.

All individuals consented to be part of the study, which was

approved by the institutional review board (IRB) of the Ethics

Committee of the Oswaldo Cruz Foundation, under the protocol

number CAAE 42898621.9.0000.5091.
2.2 Cell culture and SARS-CoV-2
omicron sublineages

For the in vitro tests, Vero cells (ATCC CCL-81) were cultivated

in DMEM supplemented with 10% fetal bovine serum, 100 U/ml of

penicillin and 100 µg/ml of streptomycin. Cells were maintained in

a water-jacked incubator, at 37°C and 5% CO2.

To perform a comparison analysis on neutralization capacity,

three SARS-CoV-2 Omicron sublineages were used in this study,

the first Omicron variant introduced and isolated in Brazil, from

sublineage BA.1, and two of the most recent sublineages that

dominated the circulation in Brazil between 2022 and 2023,

BQ.1.1 and BA.5. Sublineages BA.1 (HIAE –W.A) and BQ.1.1

(EPI_ISL_18277185) were isolated and kindly donated by Dr.

Edison Durigon, from Universidade de São Paulo (USP), while

BA.5 (EPI_ISL_18277186) was isolated in this study from a clinical

sample. In this case, 300 µl of saline buffer from a nasopharyngeal

swab sample was inoculated in Vero cells, at a confluence of 95%.

Cells were incubated for 1h, for virus adsorption, and after this

period, DMEM supplemented with 2% fetal bovine serum, 100 U/

ml of penicillin and 100 µg/ml of streptomycin was added, followed

by an incubation of 72h at 37°C. At this point, supernatant was

collected and stored in a -80°C freezer until the neutralization tests.

Before neutralization, virus was titrated by TCID50 (median tissue

culture infectious dose), a method used do define the viral

concentration necessary to infect 50% of the cultured cells, as

previously described (Pastorino et al., 2020).
2.3 Viral microneutralization assay (VNT50)

The neutralization capacity of each sample, for each Omicron

sub l ineage , was a s s e s s ed independen t l y by a v i r a l

microneutralization assay, as previously described (Campos et al.,

2022). A total of 8 serum concentrations for each sample were

tested, from 1:20 to 1:2560. After sera dilution, 50 TCID50/ml of

virus was added to each well and incubated for 1h, at 37°C. After

incubation, media from the cell plates was replaced by the mix

containing virus and diluted sera, with a subsequent incubation at

37°C for 72h. Cell plates were fixed with 10% formaldehyde after

incubation and stained with crystal violet. The absence of

cytopathic effect is a result of viral neutralization, and the

neutralization capacity was determined by the reciprocal dilution

titer capable of inhibiting 50% of cytopathic effect in all

replicates (VNT50).

The VNT50 calculation was performed using the Spearman-

Karber algorithm (Spearman, 1908; Kärber, 1931). Seroconvertion,

defined as the production and detection of neutralizing antibodies
Frontiers in Cellular and Infection Microbiology 04
after vaccination with the primary protocol and the booster doses,

was considered for all samples that presented VNT50 value over the

cutoff of 20. This cutoff was defined according to the literature to

maintain a stricter criterion, with higher specificity and avoiding

false seroconvertion results (Favresse et al., 2021; Souza et al., 2021).
2.4 Statistical analysis

In order to compare the neutralization response of each

omicron sublineage, in each time point and inside the vaccination

groups, a two-way ANOVA was performed to evaluate the

occurrence of any significant variance among the tested groups.

After the variance analysis, the data from each time point was

submitted to a Bonferroni’s multiple comparisons test, comparing

to each other the VNT50 means of each sublineage, inside each

vaccination group. For all analyses, the software GraphPad Prism 8

was used, and was considered statistically significant when the two-

sided P value was lower than 0.05.
3 Results

3.1 Cohort samples collection

To evaluate the induction of neutralizing antibodies, individuals

vaccinated with the two doses primary protocol of CoronaVac

joined the study. Serum samples were collected 9 months (9m), 12

months (12m) and 18 months (18m) after the CoronaVac primary

protocol. Inside each time point, samples were divided into three

different subgroups according to vaccination schemes: no booster, 1

booster and 2 boosters, except for the 9m group, where the second

booster was not available yet.

In total, 160 individuals were included in this study. For the 9m

group, 41 samples were collected (15 for no booster; 26 for 1

booster). Regard the 12m group, 69 samples were obtained (20 for

no booster; 30 for 1 booster; and 19 for 2 boosters); and for the 18m

collection point, 50 samples were included (11 for no booster; 19 for

1 booster; and 20 for 2 boosters). The main characteristics of the

cohort can be found in Table 1.
3.2 Neutralization levels of BA.1, BA.5 and
BQ.1.1 over time, with and without
booster doses

The viral microneutralization assay allowed the evaluation of

two parameters: the seroconvertion rates and the neutralization

mean titers. The seroconvertion rates were determined by the

number of individuals that presented a VNT50 value over the

cutoff, and were represented by percentages. The neutralization

mean titers were determined by the VNT50 mean of each group of

samples tested against the omicron sublineages.

At the 9m time point, only the first booster was approved, and

marked exactly one month after the administration of this

additional dose. Thus, only two subgroups were evaluated at this
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1371695
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Campos et al. 10.3389/fcimb.2024.1371695
moment: No booster and 1 booster. The findings here presented

highlight that the first booster dose was capable to improve

neutralization levels against all omicron sublineages. The VNT50

mean against BA.1 increased almost 5-fold, enhancing from 133.1

to 663.3. When compared to the neutralization improvement for

BQ.1.1 and BA.5 (132.4 to 199.1 and 63.2 to 100.2, respectively), this

two sublineages presented a significantly lower antibody

neutralization induced by the first booster dose, when compared

to BA.1 (p-values of 0.0042 and 0.0004, respectively). For

seroconvertion rates, an improvement was observed for all

sublineages after the booster dose (33.3% to 88.4%, 80.7% and

69.2% for BA.1, BQ.1.1 and BA.5, respectively) (Figure 2A).

The 12m collection time point marked the moment which the

second booster was available and 4 months after the administration

of the first booster. The data showed that the groups that received 1

or 2 boosters presented higher seroconvertion rates than those

individuals that received only the CoronaVac primary vaccination.

However, no difference was observed between the 1 booster and 2

booster groups at that moment. Regarding the neutralization titers,

there was no difference when comparing the VNT50 mean values of

each sublineage among the vaccination subgroups, but as observed

for the 9m group, neutralization titers for BA.1 was higher than

BQ.1.1 and BA.5 (Figure 2B).

When serum samples were collected at the 18m time point, 6

months had already passed since the second booster dose was

applied, and 10 months after the first booster administration. The

neutralization results showed that no significantly difference was

observed in the seroconvertion rates among the vaccination

subgroups. For all the tested sublineages, the number of
Frontiers in Cellular and Infection Microbiology 05
seropositive individuals was similar independently of receiving

booster doses or not (Figure 2C). An important observation is

that, for BA.5, seroconvertion rate for the 1 booster subgroup

decayed over time (93.3% at 12m to 68.4% at 18m). However, the

second booster was capable to recover seroconvertion rate for BA.5,

reaching 95% (Figures 2B, C).

On the other hand, when evaluating the neutralization titers,

some significant differences were detected. In the no booster

subgroup, the VNT50 mean for BA.1 was significantly higher than

the observed for BA.5 (1881.4 and 128.4, respectively, with p-value

of 0.0497). When observing the values for the 2 boosters group, it is

noticeable that the neutralization levels were considerably improved

for all sublineages when compared to the other vaccination

subgroups (2361.5 for BA.1, 726.1 for BQ.1.1 and 659.1 for

BA.5) (Figure 2C).

Despite this general improvement, the induction of neutralizing

antibodies by the second booster was significantly higher for BA.1

when compared to the other omicron sublineages, being 3.25 and

3.58 fold higher than BQ.1.1 (p-value of 0.0099) and BA.5 (p-value

of 0.0068), respectively (Figure 2C).
4 Discussion

The approval of the first SARS-CoV-2 vaccines, in the beginning

of 2021, allowed the gradual return to normalcy worldwide. After a

long time of social isolation, restrictions and uncertainty, the

development and distribution of vaccines with different immune

platforms enabled the so desired mass immunization.
TABLE 1 General characteristics of the included participants.

09 Months 12 Months 18 Months

No
booster

1
booster

09m - ALL
(n40) (N, %)

No
booster

1
booster

2
boosters

12m - ALL
(n68) (N, %)

No
booster

1
booster

2
boosters

18m - ALL
(n51) (N, %)

Age

18-30
31-50
51-62

6
7
2

5
18
2

11 (27.5%)
25 (62.5%)
4 (10%)

2
16
2

6
13
11

4
13
1

12 (17.6%)
42 (61.8%)
14 (20.6%)

5
5
1

3
16
1

4
10
6

12 (23.5%)
31 (60.8%)
8 (15.7%)

Gender

Male
Female

6
9

6
19

12 (30%)
28 (70%)

8
12

8
22

4
14

20 (29.4%)
48 (70.6%)

4
7

1
19

6
14

11 (21.6%)
40 (78.4%)

Comorbiditiesa

Present
Absent

5
10

8
17

13 (32.5%)
27 (67.5%)

6
14

8
22

8
10

22 (32.3%)
46 (67.7%)

3
8

4
16

9
11

16 (31.4%)
35 (68.6%)

Prior covid-19
infectionb

Yes
No

0
15

2
23

2 (5%)
38 (95%)

2
18

2
28

0
18

4 (5.9%)
64 (94.1%)

0
11

1
19

3
17

4 (7.8%)
47 (92.2%)

Later covid-19
infectionc

Yes
No

6
9

10
15

16 (40%)
24 (60%)

8
12

8
22

13
5

29 (42.6%)
39 (57.4%)

6
5

6
14

7
13

19 (37.3%)
32 (62.7%)
aComorbidities: Hypertension; obesity; diabetes; asthma; chronic kidney disease; hypothyroidism; dyslipidemia; chronic rhinitis; chronic sinusitis; rheumatoid arthritis; gastritis; endometriosis;
sickle cell anemia.
bInfection before CoronaVac primary protocol.
cInfection after CoronaVac primary protocol.
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Differently from most of the countries, the COVID-19

vaccination in Brazil was initiated with CoronaVac, and this

vaccine was responsible to protect the most affected individuals at

that moment (healthcare workers, elderly and people with

comorbidities). This was essential to reduce COVID-19

dispersion, hospitalization and deaths during a critical period

(Gamma circulation) (Wu et al., 2021; Banho et al., 2022).

The success of this immunization protocol may be related with

the fact that CoronaVac utilizes an inactivated virus technology,

comprising the whole SARS-CoV-2 viral particle as the immunizing

agent (Gao et al., 2020). In general, inactivated vaccines are

associated with higher safety levels and mild adverse events when

compared to attenuated virus and viral vector vaccines (Murdin

et al., 1996; Vellozzi et al., 2009; Xia et al., 2020; Ghattas et al., 2021).
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Additionally, when compared to mRNA, viral vector and subunit

vaccines, known to induce the immune system using only a part of

the virion, the use of a completely inactivated virus, with many viral

epitopes, could allow the induction of a broad-spectrum immune

response, with a wider efficacy range when compared to the other

platforms, probably providing a greater range of protection against

the first emerging variants of concern (Alpha, Gamma and Delta)

(Can et al., 2022; Cerqueira-Silva et al., 2022; Grenfell et al., 2022).

Despite all the approved vaccines were efficient in the induction

of both serological and cellular immune responses (Costa et al.,

2022; Zhang et al., 2022), reducing number of cases, probability of

disease progression and deaths, they were not able to inhibit

completely the viral circulation, especially in those countries

where vaccination programs were still delayed.

This phenomenon allowed, in a lower scale, the continuous

process of viral dispersion and evolution, resulting in the emergence

of SARS-CoV-2 variants and subvariants capable to escape immune

response. It is believed that, despite the divergent evolution of these

new variants, with advantageous adaptations over their ancestor

lineages, a mutation convergence trend on many hotspots of their

RBD exists. These convergent substitutions would be responsible to

guarantee evasion from neutralizing antibodies without negative

impact on infectivity or transmissibility. These data suggests that

herd immunity would not be able to protect from future infections,

and could act in the opposite way, as a selective pressure to the

emergence of new resistant subvariants (Yeh and Contreras, 2021;

Cao et al., 2023).

As a result of this process, some omicron subvariants continued

to emerge worldwide, leading to the conduction of studies to

evaluate the immune protection of the population and the

possibility of new infection waves. Among these subvariants, BA.5

and BQ.1.1 were detected circulating in high frequencies in

many countries.

It is believed that BA.5 was responsible for the initiation of the

fifth infection wave of COVID-19 in the world, replacing BA.2 and

becoming the most predominant subvariant in South Africa, USA

and Europe as of June 2022 (Desingu and Nagarajan, 2022; Tegally

et al., 2022). After this, in September 2022, BQ.1.1 emerged and

became the most frequent variant around the world in January

2023, being responsible for more than 50% of the global cases (Ao

et al., 2023; WHO, 2023). In Brazil, the same situation was observed,

with these two subvariants being responsible for the majority of the

cases in the same period (de Menezes et al., 2023; de Sousa

et al., 2023).

The results presented here evidenced that both omicron

subvariants BA.5 and BQ.1.1 are less neutralized by antibodies

induced by vaccination, when compared to subvariant BA.1. This

lower response can be observed in all vaccination groups (no

booster, 1 booster and 2 boosters) and it is corroborated by the

scientific literature (Wang XJ. et al., 2022; Tauzin et al., 2023). A

study published by Cao et al, in June 2022, revealed that BA.5 was

capable to escape serological immune response, showing increased

capability to evade antibody neutralization when compared to other

subvariants (Cao et al., 2022).

It is worth mentioning that this humoral response evasion was

described for antibodies from a prior exposure to BA.1 and for
A

B

C

FIGURE 2

Viral microneutralization assay against omicron sublineages to
evaluate neutralization titers (VNT50) and seroconvertion rate. (A)
VNT50 for samples collected 9 months after CoronaVac 2 doses
protocol. (B) VNT50 for samples collected 12 months after
CoronaVac 2 doses protocol; (C) VNT50 for samples collected 18
months after CoronaVac 2 doses protocol. Vaccination subgroups
are represented in green (No booster), blue (1 booster) and pink (2
boosters). VNT50 means, for each group, are highlighted under the
graphs. Dashed lines represent the seroconvertion dilution cutoff
(1:20), while seroconvertion rates are defined as percentages. The
significance lines represent the differences among the mean
neutralization titers of the groups. It was considered p-values lower
than 0.05 for the significance. One asterisk (*) = p-value < 0.05; two
asterisks (**) = p-value < 0.01; and three asterisks (***) = p-value
< 0.001.
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vaccination induced antibodies (Cao et al., 2022). In this last

situation, individuals were vaccinated with a 2 doses CoronaVac

protocol, followed by a booster dose with CoronaVac or RBD

protein subunit vaccine (ZF2001) six months later, showing the

capacity of BA.5 to escape humoral response from homologous and

heterologous booster schemes (Cao et al., 2022). Our results

reinforce this reality, where one booster dose was not enough to

enhance considerably the neutralization mean titers against BA.5,

and this could be observed in all time points.

For BQ.1.1, a similar pattern was described by Planas et al.

(2023), presenting capacity to evade neutralization from 6

therapeutic monoclonal antibodies and from sera of individuals

vaccinated with a 2 doses BNT162b2 vaccination protocol, followed

by a homologous booster shot (Planas et al., 2023). However, in our

results, an improvement of neutralization mean titer (199.1 to

673.7) was observed from the 9m to the 12m time point after the

first booster (Figure 2B), showing that the use of a heterologous

approach was more responsive against BQ.1.1 than BA.5.

The use of additional boosters to improve immune response

against some viral infections is widely recommended (Javanian

et al., 2021; Pattyn et al., 2021). In some cases, there is no need to

reformulate or update the vaccine booster, like the vaccination

scheme against hepatitis B virus, for example (Pattyn et al., 2021). In

other situations, where it is known that the virus can evolve quickly,

the regular administration and update of booster doses is required,

such as the annual vaccination against Influenza (Javanian et al.,

2021). Since SARS-CoV-2 subvariants are continually emerging,

administering additional booster doses from time to time will likely

be a necessity.

Our data reinforces this hypothesis, where the administration of

a second booster dose enhanced the antibody neutralization titers,

against all tested omicron subvariants (especially against BA.1),

18m after the primary protocol and 6m after the second booster

(Figure 2C). It is worth highlighting that, when compared to those

individuals vaccinated only with one booster, in the same time

point, neutralization titer against BA.5 doubled (311.9 to 659.1),

showing that this approach could recover immune protection

against immunoresistant subvariants.

The same fact was observed in a phase 2-3 study, where a

second booster dose with mRNA-1273, after three doses of the same

vaccine (homologous booster protocol), was able to recover the

antibody neutralization response against BA.1 and BA.5.

Additionally, the authors compared these results with a protocol

using the updated vaccine mRNA-1273.214 (encoding both spike

proteins from Wuhan ancestral lineage and BA.1) as the second

booster, and it was observed that neutralization against BA.1 and

BA.5 was even greater, suggesting that vaccines platform update will

play a key role in the next rounds against SARS-CoV-2 (Chalkias

et al., 2022; Chalkias et al., 2023).

Our study aimed to observe the impact of a second booster dose

in a real life context, where people are coexisting, in constant

contact with the recently emerged subvariants of omicron. In a

situation like this, it is normal to observe the activation of memory

immune response (Rodda et al., 2022), and this was present in our
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study, where seroconvertion rate and neutralization mean titers for

the no booster group increased after 12m of the CoronaVac

primary protocol.

At that moment, one year after the approval of the first COVID-

19 vaccine, all of the restrictive measurements in Brazil were

abrogated, and a peak of omicron BA.1 infection was on course,

increasing exposure to the virus (Lopes et al., 2022; Lamarca et al.,

2023). Despite the limitation imposed by this constant activation of

memory immunity in the cohort, the results presented here clearly

show that the second booster dose, when compared with no booster

and 1 booster groups, 18m after the primary vaccination, improved

considerably the antibody response against all subvariants

(Figure 2C). This antibody response was robust and long-lasting,

being detected after six months of the second booster, and was not

noticed at the 12m time point (Figure 2B) probably due to the short

period between second booster shot and serum collection.

For the conception of this study, some criteria regarding sample

inclusion and time-point collection needed to be followed, and this

resulted in some limitations. Samples from different individuals

were randomly collected, for each time-point, in order to have a

more representative and heterogeneous cohort, picturing a real-life

scenario without any selection bias. Unfortunately, this approach

does not allow an analysis over time of the same individuals, as a

follow-up, which could enrich the data regarding the effectiveness of

vaccination and boosters. Additionally, this decision led to a

predominance of a female population in our cohort.

Other limitations were also present in our study. It was not

possible to use of a single vaccine as the second booster, since

vaccines for this specific situation were distributed according to

availability at that moment, making it unfeasible to evaluate the

effectiveness of a specific vaccine as a second booster shot. Another

point is that, at the time period of the study, it was almost

impossible to evaluate the impact of boosters isolated. As cited

earlier here, most of the population is in constant exposure to other

people and, consequently, to the virus. Despite not being able to

evaluate the boosters in a controlled isolated environment, these

limitations allowed an even closer analysis of a real-life situation,

one of the aims of our study.

The findings presented here reinforce the concern regarding

immunity evasion of the SARS-CoV-2 omicron subvariants,

showing that BA.5 and BQ.1.1 are less neutralized by vaccine

induced antibodies than their ancestor subvariant, BA.1.

However, the use of a second booster dose, after a three doses

protocol (two doses of CoronaVac followed by a first booster with

BNT162b2) is capable to enhance and recover antibody

neutralization against these subvariants. This may indicate that, as

new subvariants continue to emerge, additional immunizations will

be needed over time.
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