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Purpose: Human gut microbiota has been shown to be significantly associated

with various inflammatory diseases. Therefore, this study aimed to develop an

excellent auxiliary tool for the diagnosis of juvenile idiopathic arthritis (JIA) based

on fecal microbial biomarkers.

Method: The fecal metagenomic sequencing data associated with JIA were

extracted from NCBI, and the sequencing data were transformed into the relative

abundance of microorganisms by professional data cleaning (KneadData,

Trimmomatic and Bowtie2) and comparison software (Kraken2 and Bracken).

After that, the fecal microbes with high abundance were extracted for

subsequent analysis. The extracted fecal microbes were further screened by

least absolute shrinkage and selection operator (LASSO) regression, and the

selected fecal microbe biomarkers were used for model training. In this study, we

constructed six different machine learning (ML) models, and then selected the

best model for constructing a JIA diagnostic tool by comparing the performance

of the models based on a combined consideration of area under receiver

operating characteristic curve (AUC), accuracy, specificity, F1 score, calibration

curves and clinical decision curves. In addition, to further explain the model,

Permutation Importance analysis and Shapley Additive Explanations (SHAP) were

performed to understand the contribution of each biomarker in the

prediction process.

Result: A total of 231 individuals were included in this study, including 203 JIA

patients and Non-JIA individuals. In the analysis of diversity at the genus level, the

alpha diversity represented by Shannon value was not significantly different

between the two groups, while the belt diversity was slightly different. After

selection by LASSO regression, 10 fecal microbe biomarkers were selected for

model training. By comparing six different models, the XGB model showed the

best performance, which average AUC, accuracy and F1 score were 0.976, 0.914

and 0.952, respectively, thus being used to construct the final JIA

diagnosis model.
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Conclusion: A JIA diagnosis model based on XGB algorithm was constructed

with excellent performance, which may assist physicians in early detection of JIA

patients and improve the prognosis of JIA patients.
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Introduction

The gut microbiota plays a crucial role in immune system

development and regulation. Autoimmune diseases, marked by the

immune system’s attack on healthy cells, lead to inflammation and

tissue damage. Dysbiosis in the gut microbiome, such as abnormal

enrichment of certain symbionts, diversity loss, or pathogen

invasion, has been shown to cause various human diseases. For

example, Zaky et al. have identified the role of the gut microbiome

in diabetes and obesity-related kidney diseases (Zaky et al., 2021).

And several studies have found that gut microbiota disorder is

linked to the activity of rheumatic diseases (Yu et al., 2021; Bao

et al., 2020).

Juvenile Idiopathic Arthritis (JIA), the most common chronic

rheumatic disease in children, is marked by its mysterious origins

and sustained arthritis for over six weeks in individuals under 16

years old. The disease exhibits a varied incidence rate, estimated

between 1.6 and 23 cases, and a prevalence ranging from 3.8 to 400

per 100,000 children (Gibiino et al., 2018; Weiss, 2022). It often

severely impacts the physical and mental health of children,

restricting growth and causing joint deformities, thus

diminishing the quality of life and social participation

(Haverman et al., 2012). Early diagnosis and treatment are

critical to improving outcomes and preventing deformities.

Clinical symptoms and imaging findings are helpful in the

diagnosis of JIA. However, the etiology of JIA remains elusive

and inflammatory findings are not always evident as early

symptoms, which may delay the diagnosis of JIA and further

aggravate the progression of the disease. By identifying particular

signs of chronic inflammation, imaging studies are essential to the

early diagnosis of JIA. They are also beneficial in tracking the

illness and assessing the efficacy of treatment. Nevertheless, this

approach is still in its infancy (Stevens and Rudd, 2013; Tsujioka

et al., 2023). Previous research indicated that the diagnosis of JIA

often necessitates referrals to three different physicians, with an

average median time of three months for a definitive diagnosis,

indicating that the diagnosis of JIA is currently difficult (Aoust

et al., 2017). Therefore, it is of great significance to develop a tool

that can accurately diagnose JIA.

With the emergence of digital health and gene sequencing,

artificial intelligence (AI) has shown a broad prospect in medical

field (Kim et al., 2021). At present, the emergence of electronic
02
medical records (EMR) and the expansion of databases present

significant opportunities for ML application in the medical field.

Additionally, ML algorithms are frequently employed for prediction

of clinical outcomes, tailored treatment, and early illness diagnosis

(Goecks et al., 2020; Huang et al., 2018). For instance, Liu et al. had

developed efficient machine learning (ML) models for predicting

metastatic bone tumors (LiuWC. et al., 2021). Similarly, Li et al. had

designed a ML model to predict the incidence of pulmonary

infections following spinal cord injuries (Li et al., 2023). With the

advent of software for quality control and precise alignment of

metagenomic sequencing data (such as kneaddata, bracken,

Kracken, etc.) (Wood et al., 2019; Lu et al., 2022), our

understanding of gut microbiota has become more accurate and

in-depth, and it is also possible for gut microbiota to be used as

predictors for the construction of machine learning prediction

models. For example, Su et al. used species based on fecal

microbial species level to construct a machine learning predictive

model for the prediction of multiple diseases (Su et al., 2022).

In previous studies, the relationship between fecal microbiome

and JIA had been explored (Tejesvi et al., 2016). Many studies have

pointed out that the pathophysiology of JIA is linked to the gut

microbiome (De Filippo et al., 2019; van Dijkhuizen et al., 2019; Qian

et al., 2020). A study by Tejesvi et al. (2016) found that the fecal

microbiota in JIA presents a high level of Bacteroidetes and a low

level of Firmicutes, and changes in the gut microbial ecology may put

genetically predisposed individuals’mucosal immune systems at risk,

which could lead to local proinflammatory cascades and the

development of JIA. However, fecal microbiome-based ML

diagnostic models for JIA are rare. Therefore, in this study, we

aimed to integrate phylum and genus-level gut biomarkers to

construct and validate a high-performance ML model for assisting

JIA diagnosis.
Methods

Metagenomic datasets

The metagenomic data utilized in this study were derived from

the NCBI project PRJNA379123. We downloaded the FASTQ files

of 16S rRNA gene sequences extracted from the fecal samples.

Metagenomic data from the experimental group were exclusively
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derived from fecal samples collected from juvenile idiopathic

arthritis (JIA) patients at the initial treatment phase. Figure 1

illustrated the research flow of this study.
Sequencing data processing and
microbiome profiling

Firstly, we used the KneadData tool to clean and control the raw

FASTQ file. The quality of all reads was managed with Trimmomatic

(version 0.39), with parameters set to SLIDINGWINDOW:4:20

MINLEN:50 LEADING:3 TRAILING:3 (Bolger et al., 2014). Reads

containing human sequences were filtered out using Bowtie2

(version 2.4.5), applying the human reference database

(hg37_and_human_contamination) recommended by KneadData,

with parameters configured to –very-sensitive –dovetail (Langmead

and Salzberg, 2012).

Subsequently, the cleansed FASTQ data were compared against

sequences from known microbes with the goal of translating

metagenomic 16S rRNA sequencing data into species abundance

information. The metagenomic data were classified using Kraken

software version 2.2.1.3, with reference to the official Kraken2/

Bracken 16S RNA indexes (Silva 138) (Wood et al., 2019; Lu et al.,

2022). For precise quantification of microbial abundance as

determined by Kraken2, Bracken version 2.9 was employed (Lu

et al., 2017). The read counts were converted into relative

abundances of gut microbiota at both the phylum and genus

levels through Bracken software for subsequent analysis.
Microbiome analysis and screening

Microbiome analysis and screening and statistical analysis were

performed using Python 3.8 and R version 4.3.2. Descriptive

statistics were assessed using chi-square tests or Fisher’s exact

tests as appropriate. Continuous variables were compared using

Student’s t-tests or rank-sum tests. P-value of less than 0.05

considered statistically significant.
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To understand the distribution of gut microbiota in the study

population, we performed diversity analysis at the genus level,

including a-diversity and b-diversity, based on the data after

kraken2 classification and bracken abundance estimation. Alpha

diversity is often used to measure the number of species in a single

sample or environment (richness) and how evenly these species are

distributed (evenness). We calculated the Shannon’s a-diversity
index (Sh) for each sample using the alpha_diversity.py script from

KrakenTools. However, beta diversity is often used to measure the

differences in species composition across environments or regions.

In this study, b-diversity was examined using Principal Coordinates

Analysis (PCoA) based on the Bray–Curtis distance matrix, which

was computed using the relative abundances of microbial genus.

This facilitated the visualization of sample clustering according to

their genus-level compositional profiles. Differences in microbiome

composition among various phenotypes were determined using

permutational multivariate analysis of variance (PERMANOVA)

with distance matrices (adonis) via the adonis function of the vegan

R package v.2.6-4.

To reduce the risk of overfitting the prediction model, we need

to screen suitable variables before training the model. Initially, we

selected the top three phyla and the top twenty genera ranked by

average abundance to reduce the influence of technical error on the

results. Subsequently, to refine the variables used to train the ML

model, these 23 variables were further filtered by least absolute

shrinkage and selection operator (Lasso) regression. Features with

nonzero regression coefficients in the LASSO model were chosen to

train the subsequent ML predictive models.
Model establishment and evaluation

In this study, all data were randomly divided into training and

test sets in a 7:3 ratio. The Synthetic Minority Over-sampling

Technique (SMOTE) method was used to oversampling the

training set to mitigate the potential impact of imbalanced data

on model training (Solihah et al., 2020; Wu et al., 2019). The secret

to this approach is to oversample the small class data samples in

order to increase the number of small class data samples and boost

the model’s accuracy. To identify the most effective ML model for

diagnosing juvenile idiopathic arthritis, we trained six commonly

used ML models, including three ensemble algorithms and three

simple classification algorithms: Random Forest (RF), eXtreme

Gradient Boosting (XGB) and Gradient Boosting Machine (GBM)

are ensemble algorithms. Naive Bayes Classifiers (NBC), Decision

Tree (DT) and Logistic Regression (LR) are three simple

classification algorithms. In model construction, each model

underwent internal ten-fold cross-validation and tuned

hyperparameters. Subsequently, ROC curves and calibration

curves for each model were plotted in both the training and test

sets to comprehensively assess model performance, aiming to select

the model with optimal efficacy for the diagnosis of juvenile

idiopathic arthritis. Additionally, to visually demonstrate the net

benefit of each model at varying clinical decision thresholds, clinical

decision curves were plotted for the models in both training and test

sets. Ultimately, the best-performing model for disease diagnosis
FIGURE 1

The flow chart of the study.
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was selected based on a combined consideration of AUC value,

accuracy, specificity, F1 score, calibration curves, and clinical

decision curves.
Feature importance analysis and
model demonstration

Shapley Additive Explanations (SHAP) and Permutation

Importance analysis are frequently utilized for elucidating ML

models (Altmann et al., 2010; Li et al., 2022). The presentation of

feature importance not only aids in interpreting the predictive

process of ML models but also substantially contributes to our

understanding of the roles various microbiota play in the onset and

progression of diseases. Through a randomization of the feature test

data values and measuring the average error they introducing into

the model, permutation importance determines which features are

more accurate for a trained model. Different from permutation

importance, the SHAP computes each feature’s contribution to the

predicted value in order to identify the feature’s significance

(Goings and Hammes-Schiffer, 2020; Liu LP. et al., 2021).

Therefore, both methods were used to explain the prediction

models in this study. In addition, for a more transparent

demonstration, we conducted SHAP value visualization by

randomly selecting samples from both the experimental and

control groups. This approach distinctly illustrates the

contribution of different features to the final prediction value

when the model predicts outcomes for individual samples.
Results

Basic characteristics of the dataset

The present investigation sourced its dataset from the NCBI

project PRJNA379123, submitted by the Bambino Gesù Children’s

Hospital, IRCCS, Rome, Italy, incorporating a cohort of 231

European individuals. This dataset spans across four distinct

phenotypes: three stages of JIA—baseline, inactive, and persistent

activity—and a cohort of healthy controls. Our analysis consolidates

all JIA conditions into a unified experimental group to delineate the
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association between the gut microbiota and JIA. Consequently, the

study designates 203 individuals as the experimental group and 28

as the control group, with the intent to construct ML models for

JIA diagnosis.
Microbiome analysis and
biomarkers screening

Following metagenomic data processing, including cleaning,

taxonomic classification, and abundance estimation, our study

performed a diversity analysis of gut microbiota at the genus

level. As shown in Figure 2A, alpha diversity was evaluated by

Shannon index, and there was no significant difference between the

JIA group and the healthy group (mean values were 2.47 and 2.52,

respectively, P=0.568). However, Principal Component Analysis

(PCA) in Figure 2B indicated subtle distinctions in beta diversity

between JIA patients and healthy individuals (P=0.001).

To train a high-performance diagnostic model, we initially selected

biomarkers based on the top three phyla and top twenty genera by

average abundance, with their distribution across the experimental and

control groups presented in Table 1. At the phylum level, Firmicutes

dominate the gut microbial distribution in this population, with a

higher relative abundance in healthy individuals than in JIA patients.

Bacteroidota and Proteobacteria followed, with higher prevalence in

the JIA group. In addition, at the genus level, only Faecalibacterium,

with a mean relative abundance exceeding 0.1, showed no significant

difference between the groups. To prevent overfitting due to an excess

of biomarkers, a LASSO regression was applied to the 23 preselected

biomarkers, culminating in the identification of 10 variables for the

subsequent model construction and validation, including 3 phylum-

level biomarkers (Firmicutes, Bacteroidota and Proteobacteria) and 7

genus-level biomarkers (Faecalibacterium, Alloprevotella, UCG-002,

Dialister, Lachnoclostridium, Monoglobus and Veillonella) (Figure 3).
Model selection and
performance evaluation

After screening the variables, we trained six ML models based

the ten biomarkers. In internal ten-fold cross-validation, the
BA

FIGURE 2

Genus-level diversity of fecal microorganisms. (A) alpha diversity; (B) belt diversity.
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XGBoost (XGB) model emerged as the most effective, achieving an

average AUC of 0.976 (Figure 4A). The ROC curves for both

training and test sets underscored the XGB model’s exceptional

performance (Figure 4B). Calibration curves for each model further

substantiated the XGB model’s accuracy and interpretability,

showcasing a closer alignment with perfect calibration in both

datasets (Figure 4C). Other performance metrics such as

accuracy, AUC, Recall, precision, and F1 index of the six models

in the test set are detailed in Table 2, where the RF, GBC, and XGB

models demonstrated remarkable effectiveness. Clinical decision

curve analysis confirmed the XGB model’s superior net benefit

across nearly all risk thresholds, especially in the test dataset

(Figure 4D). Considering the overall performance, the XGB

model was selected as the diagnostic tool for JIA. Figure 5

presented the confusion matrix of the final diagnostic model in

the training and test sets.
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Feature importance analysis and prediction
process presentation

To explain the role of different biomarkers in the predictive

mechanism, we performed a feature importance analysis. Initially, a

permutation feature importance assessment across all six models

highlighted that Proteobacteria and genus UCG-002 provided the

most substantial contribution within the top-performing models—

RF, GBC, and XGB (Figure 6). The subsequent SHAP analysis of the

XGB model also yielded the same result that the contributions of

these two biomarkers were significantly higher than those of other

biomarkers, followed by Bacteroidota, among others (Figure 7).

In addition, Figure 8 presented the diagnostic model’s analytic

process through SHAP value visualization. Figure 8A specifically

demonstrates the model’s predictive sequence for a JIA sample, with

an outcome of f(x) = 0.99, suggesting a high likelihood of JIA as
TABLE 1 Summary descriptives table by groups of `juvenile idiopathic arthritis’.

Gut microflora Control Experiment P-value

N=28 N=203

Phylum level

Firmicutes_1672 0.91 (0.11) 0.66 (0.26) <0.001

Bacteroidota_43868 0.05 (0.09) 0.17 (0.18) <0.001

Proteobacteria_2375 0.01 (0.01) 0.12 (0.19) <0.001

Genus level

Faecalibacterium_45544 0.22 (0.19) 0.13 (0.14) 0.023

Bacteroides_43874 0.02 (0.06) 0.07 (0.11) 0.001

Subdoligranulum_45553 0.07 (0.06) 0.06 (0.10) 0.477

Escherichia.Shigella_46463 0.00 (0.01) 0.04 (0.09) <0.001

Alloprevotella_43941 0.01 (0.01) 0.04 (0.08) <0.001

Ruminococcus_45552 0.05 (0.08) 0.03 (0.08) 0.144

Blautia_45422 0.04 (0.05) 0.03 (0.05) 0.414

Streptococcus_1853 0.02 (0.03) 0.03 (0.07) 0.188

UCG.002_45530 0.07 (0.08) 0.02 (0.07) 0.009

Dialister_45783 0.06 (0.13) 0.02 (0.06) 0.131

Bacillus_1688 0.03 (0.05) 0.02 (0.06) 0.430

Christensenellaceae.R.7.group_45329 0.03 (0.04) 0.02 (0.07) 0.296

Lachnoclostridium_45446 0.00 (0.00) 0.02 (0.09) 0.001

Pseudomonas_3723 0.00 (0.00) 0.02 (0.08) 0.001

uncultured_43978 0.01 (0.03) 0.02 (0.06) 0.113

Alistipes_43965 0.01 (0.01) 0.02 (0.05) 0.005

Flavobacterium_44221 0.01 (0.02) 0.01 (0.05) 0.152

Monoglobus_45507 0.03 (0.06) 0.01 (0.03) 0.177

Akkermansia_46831 0.01 (0.01) 0.01 (0.05) 0.048

Veillonella_45786 0.00 (0.01) 0.01 (0.04) <0.001
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TABLE 2 Performance metrics of different models.

Models Accuracy AUC Recall Precision F1

LR 0.700 0.948 0.661 1.000 0.796

NB 0.671 0.887 0.629 1.000 0.772

DT 0.771 0.847 0.758 0.979 0.855

RF 0.900 0.942 0.903 0.983 0.941

GBM 0.886 0.946 0.919 0.950 0.934

XGB 0.914 0.958 0.952 0.952 0.952
F
rontiers in Cellular and In
fection Microbiology
 06
RF, Random Forest; XGB, eXtreme Gradient Boosting; GBM, Gradient Boosting Machine; NBC, Naive Bayes Classifiers; DT, Decision Tree; LR, Logistic Regression.
BA

FIGURE 3

Through LASSO binary logistic regression analysis, ten fecal microbe biomarkers were selected, 3 phylum-level biomarkers (Firmicutes, Bacteroidota
and Proteobacteria) and 7 genus-level biomarkers (Faecalibacterium, Alloprevotella, UCG-002, Dialister, Lachnoclostridium, Monoglobus and
Veillonella). (A) Penalty maps of the Lasso model for 23 biomarkers; (B) LASSO coefficient mapping of 23 biomarkers.
B

C D

A

FIGURE 4

Demonstration of model performance. (A) ten-fold cross-validation results of different machine learning (ML) models in training dataset; (B) ROC
curves of different ML models in training set and test set; (C) calibration curves of different ML models in training set and test set; (D) decision curve
analysis (DCA) of different ML models in training set and test set.
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assessed by the diagnostic model. The numbers following the

biomarkers detailed their individual contributions to the

prediction. Figure 8B showed the prediction process of the model

for a healthy sample.
Discussion

Juvenile Idiopathic Arthritis (JIA) is a relatively uncommon

disease that not only affects joints but can also involve other organs.

The limited understanding of JIA among pediatricians and general

practitioners, coupled with the absence of characteristic symptoms,

leads to a high incidence of misdiagnosis, missed diagnosis, and

delayed diagnosis. A retrospective study from France, analyzing the

diagnostic journey of 67 JIA patients, highlighted these challenges

(Aoust et al., 2017). The study revealed that prior to a confirmed

diagnosis of JIA, patients had consulted with an average of three

physicians, and the median time to diagnosis was 3 months,
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underscoring the significant difficulties encountered in accurately

diagnosing JIA. The most common initial misdiagnoses were

Reactive Arthritis (34%) and Septic Arthritis (24%) (Aoust et al.,

2017). The treatment approaches for these conditions differ

markedly from JIA, and misdiagnosis resulting in prolonged

antibiotic use not only hinders recovery but may also promote

the development of JIA by disrupting the balance of the human

microbiome (Horton et al., 2015). Therefore, the development of a

simple and effective tool for diagnosing JIA is of great significance.

Artificial intelligence (AI) is a broad field that enables

computers to mimic human intelligence to perform tasks,

including understanding language, recognizing images, solving

scientific problems, and learning (Laskaris, 2015). Machine

Learning (ML), a subset of AI, focuses on developing algorithms

and techniques that allow computers to learn from data and make

decisions or predictions (Alhusain et al., 2013). ML algorithms

achieve learning by analyzing and identifying patterns in data

(Alhusain et al., 2013). Considering the abundance of data
FIGURE 6

Permutation importance analysis of different models.
BA

FIGURE 5

Confusion matrix of the diagnostic model constructed by the XGB algorithm. (A) training set; (B) test set.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1371371
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Tu et al. 10.3389/fcimb.2024.1371371
accessible online and the emergence of electronic medical records

(EMR), more clinical data sets, including clinical diagnoses and

laboratory data, could be obtained conveniently, thus making ML

bring a bright future in medical filed (Deo, 2015; Handelman et al.,

2018; Toh et al., 2019; Bhavsar et al., 2021).

In this study, we innovatively constructed six different ML

classification models based on fecal microbiomics, including the

conventional logistic regression model and ensemble ML models

commonly used in the medical field, such as RF, GBM and XGB.

Ultimately, XGB model was chosen to construct the diagnostic tool

for JIA. Previously, the RF model was commonly employed for

processing fecal microbiomics data, and it was generally considered

more suitable for handling such data. For instance, Huang et al.

developed an RF model based on fecal microbiomics data to predict

tumor patients’ responses to PD-L1 antibodies (Huang et al., 2023),

and Su et al. also constructed an RF model for multi-disease

classification using fecal microbiome data (Su et al., 2022). In our

study, an RF model was also developed in the pre-construction

phase of the models, which demonstrated excellent performance

across various evaluation metrics. However, compared to the XGB

model, the RF model was slightly inferior in all aspects, particularly

in the calibration curve and clinical decision curve in the test set.

This indicates that the XGBmodel may has stronger generalizability

and can bring greater benefits to clinical diagnosis. The XGB

algorithm is a scalable, adaptable and effective ML algorithm

classifier that has been applied extensively in the medical field,
Frontiers in Cellular and Infection Microbiology 08
such chronic kidney disease, COVID-19, and bone metastasis (BM)

in non-small cell lung cancer (Ogunleye and Wang, 2020; Guan

et al., 2021; Li et al., 2022). Li et al. compared six commonly

machine learning algorithms and found the XGB algorithm

performed best, thus building a web predictor of BM from non-

small cell lung cancer (Li et al., 2022). The XGB algorithm included

a regular term in the objective function in order to prevent

overfitting and manage model complexity. Additionally, it

supported column sampling to improve model stability. This

could be contributing to the fact that it performed the best in this

study (Ester et al., 2022).

In this study, the diversity assessments were conducted at the

genus level, which might introduce some deviations compared to

the species level. This limitation was due to sequencing quality

issues, which prevented accurate extraction of relative abundance of

species at the species level (Caporaso et al., 2011; Kuczynski et al.,

2011). In addition, the abundance of gut microbiota at phylum level

and genus level were extracted to further analyze the influence of

gut microbiota on JIA. At the phylum level, a significant reduction

in Firmicutes was observed in JIA patients compared to healthy

individuals. Firmicutes play a crucial role in immune regulation, as

elucidated in the literature. Clarke et al. had explored the

relationship between Firmicutes and the immune system,

revealing that the gut can process and release glycoconjugates

from Firmicutes, promoting cytokine IL-34 release (Jordan et al.,

2023). This cytokine stimulates macrophage proliferation,
B

A

FIGURE 8

Demonstration of the prediction process of the XGB model. (A) A JIA sample; (B) A health sample.
FIGURE 7

SHAP features analysis of the XGB model.
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enhancing the body’s defense mechanisms. Additionally, IL-34-

mediated Mtorc1 activation in sentinel cells can remove

glycoconjugates in peripheral tissues, maintaining immune

homeostasis. Our findings indicated a significantly lower

proportion of Firmicutes in JIA patients, potentially linked to

decreased immune regulation functions.

In evaluating model feature importance and SHAP analysis, we

focused on two significant biomarkers: Bacteroidetes and UCG-002.

We observed a notably higher relative abundance of Bacteroidetes

in the JIA group compared to healthy individuals, with SHAP

analysis indicating a positive impact of this biomarker on predicting

JIA. As the largest phylum of Gram-negative bacteria found in our

guts, Bacteroidetes are regarded as crucial participants in

maintaining the complex and healthy homeostasis. It has been

proved that several Bacteroidetes genera are linked to the

emergence of immunological dysregulation, neurological

problems, and systemic diseases including metabolic syndrome

(Gibiino et al., 2018). The abundance of the proteobacteria

phylum is significantly increased in patients with moderate-to-

severe COPD, especially in those with exacerbation of the disease

(Pragman et al., 2012). In inflammatory bowel disease, this group of

bacteria was also significantly increased (Sartor, 2008). This

suggests that the Proteobacteria are important for inflammation

promotion, but the underlying mechanisms remain unclear

(R izza t t i e t a l . , 2017) . UCG-002 , be long ing to the

Ruminococcaceae family, is a key indicator in gut microbiome

studies. Lee et al. showed that the high relative abundance of

Ruminococcaceae UCG-002 is associated with IgE-mediated food

allergy in children (Lee et al., 2021), and Rhee et al. also suggested

that Ruminococcaceae UCG-002 genus is a potential factor for

psychiatric disorders such as bipolar disorder and major depression

(Rhee et al., 2020). Our research found that UCG-002 contributed

significantly to JIA, but the underlying mechanisms remain unclear.

Although this study constructed a ML model for JIA diagnosis

based on feces with excellent performance, there were still some

limitations. First, only sequencing data from a single center were

used in this study. In future studies, multi-center data including

different ethnic groups are needed for further training of the model

to increase the generalization ability of the model. Second, because

the data came from a public database, some common confounding

factors such as age and gender that may affect the onset of JIA could

not be excluded. Third, since species-level relative abundance could

not be extracted, only species at the genus and phylum levels were

analyzed in this study, and more subdivided species may be more

beneficial to construct prediction models with excellent

performance in future studies.
Conclusion

In this study, based on the relative abundance of 10 fecal

biomarkers, we used XGB algorithm to construct a JIA diagnosis

model with excellent performance, which can assist physicians in

early detection of JIA patients and improve the prognosis of

JIA patients.
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