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Introduction: Newcastle disease is one of the significant issues in the poultry

industry, having catastrophic effects worldwide. The lung is one of the essential

organs which harbours Bronchus-associated lymphoid tissue and plays a vital

role in the immune response. Leghorn and Fayoumi breeds are known to have

differences in resistance to Newcastle disease. Along with genes and long non-

coding RNAs (lncRNAs) are also known to regulate various biological pathways

through gene regulation.

Methods: This study analysed the lung transcriptome data and identified the role

of genes and long non-coding RNAs in differential immune resistance. The

computational pipeline, FHSpipe, as used in our previous studies on analysis of

harderian gland and trachea transcriptome was used to identify genes and

lncRNAs. This was followed by differential expression analysis, functional

annotation of genes and lncRNAs, identification of transcription factors,

microRNAs and finally validation using qRT-PCR.

Results and discussion: A total of 8219 novel lncRNAs were identified. Of them,

1263 lncRNAs and 281 genes were differentially expressed. About 66 genes were

annotated with either an immune-related GO term or pathway, and 12 were

annotated with both. In challenge and breed-based analysis, most of these genes

were upregulated in Fayoumi compared to Leghorn, and in timepoint-based

analysis, Leghorn challenge chicken showed downregulation between time

points. A similar trend was observed in the expression of lncRNAs. Co-

expression analysis has revealed several lncRNAs co-expressing with immune

genes with a positive correlation. Several genes annotated with non-immune

pathways, including metabolism, signal transduction, transport of small

molecules, extracellular matrix organization, developmental biology and

cellular processes, were also impacted. With this, we can understand that

Fayoumi chicken showed upregulated immune genes and positive cis-lncRNAs

during both the non-challenged and NDV-challenge conditions, even without

viral transcripts in the tissue. This finding shows that these immune-annotated

genes and coexpressing cis-lncRNAs play a significant role in Fayoumi being

comparatively resistant to NDV compared to Leghorn. Our study affirms and
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expands upon the outcomes of previous studies and highlights the crucial role of

lncRNAs during the immune response to NDV.

Conclusion: This analysis clearly shows the differences in the gene expression

patterns and lncRNA co-expression with the genes between Leghorn and

Fayoumi, indicating that the lncRNAs and co-expressing genes might

potentially have a role in differentiating these breeds. We hypothesise that

these genes and lncRNAs play a vital role in the higher resistance of Fayoumi

to NDV than Leghorn. This study can pave the way for future studies to unravel

the biological mechanism behind the regulation of immune-related genes.
KEYWORDS

Newcastle disease, lung, Leghorn and Fayoumi, long non-coding RNAs, differential
resistance, coexpression network, qPCR validation
Introduction

Newcastle disease is one of the significant issues in the poultry

industry, having catastrophic effects worldwide, especially in

emerging nations. It is a highly contagious viral disease of Avians

caused by the Newcastle disease virus (NDV), a ss-RNA virus

belonging to the Paramyxoviridae family (Ganar et al., 2014).

This is endemic in most of Asia, Africa and some parts of North

and South America. The general approach to controlling the disease

is vaccination, which would result in immunity against NDV

infection and virus replication (Mebrate et al., 2019). Although

vaccination is the most effective treatment available currently, the

lack of suitable infrastructure in developing countries, the

development of new variants of the virus, lack of antigenically

matched vaccines, improper immunisation and the existence of

antibodies against vaccine strain led to the decreased efficacy of the

administered vaccine (Dimitrov et al., 2017).

Leghorn and Fayoumi are the two inbred lines of chicken

(Gallus gallus). While the Leghorn and Fayoumi breeds are

known for their disease resistance, the Fayoumi breed is more

resistant to Newcastle disease than the Leghorn breed

(Vanamamalai et al., 2021; Vanamamalai et al., 2023; Venkata

Krishna et al., 2024). In 2015, Jinxiu Li et al. performed bisulphite

sequencing of Leghorn and Fayoumi chicken and identified

differential methylation patterns in the genomic regions

annotated with immune GO terms (Li et al., 2015). Melissa et al.

have analysed the transcriptome response of Leghorn and Fayoumi

chickens and showed genes playing essential roles in the differential

resistance of these breeds (Deist et al., 2017). A study by MS

Tarabany on immune response against Newcastle disease virus in

Leghorn and Fayoumi breeds showed that in comparison to

purebred Leghorn chicken, purebred Fayoumi and Fayoumi-

Leghorn hybrid chicken had significantly higher antibody titers

and lesser mortality rates during NDV infection (Mahmoud S,

2019). Additionally, Schilling et al. have explored chicken embryos
02
and reported breed-specific expression of immune-related genes

(Schilling et al., 2019). Besides NDV, Leghorn and Fayoumi showed

differential resistance patterns against the Avian Influenza virus

(Wang et al., 2014), Eimeria spp (Pinard-van der Laan et al., 2009).

and Salmonella (Cheeseman et al., 2007). The genetic variations

resulted in differences in the immune responses and susceptibility

against various diseases, including NDV (Hassan et al., 2004).

Long non-coding RNAs (lncRNAs) are a type of RNA molecule

that are longer than 200 nucleotides and do not code for proteins.

They play essential roles in various biological processes, including

gene regulation, chromatin remodelling, and cell differentiation.

They can act as transcriptional regulators by interacting with DNA,

RNA, and proteins to modulate gene expression. They can also act

as scaffolds for protein complexes, combining multiple proteins to

perform specific functions. Recent studies have suggested that

lncRNAs are involved in various diseases, including cancer,

neurological disorders, and cardiovascular disease. Because of

their diverse functions and potential roles in various diseases,

there is a potential for understanding the role of lncRNAs during

Newcastle disease in chickens. In our previous studies, the role of

lncRNAs was studied during Newcastle disease in the harderian

gland (Vanamamalai et al., 2021; Venkata Krishna et al., 2024) and

trachea (Vanamamalai et al., 2023) transcriptome data. These

studies have identified several cis-lncRNAs that co-express with

immune-related genes. These were found to be upregulated in

Fayoumi when compared to Leghorn. In addition, Leghorn

chickens have shown downregulation of immune-related genes

during the progress of ND (between time points), which was not

identified in Fayoumi.

Lung tissue plays a vital role in the immune response, mainly in

case of respiratory infection like NDV, as the lung hosts one of the

critical immune tissues, Bronchus-associated lymphoid tissue

(BALT), which produces a variety of immune cells, including B

cells and T cells (Hwang et al., 2016). Although Leghorn and

Fayoumi are breeds of the same species, there are differences in
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their resistance and immune response against NDV. This study

hypothesises that some immune-related genes might play a vital

role in these differential resistance patterns. Different lncRNAs

might play a significant role in regulating these immune-related

genes, thus making Fayoumi comparatively resistant to NDV

compared to Leghorn. With this, the current study aims to

investigate lung tissue transcriptome data to identify the potential

lncRNAs, understand the differences in the expression of these

lncRNAs and genes between challenged and non-challenged

chicken, between the two breeds and during the progress of

infection, identify the co-expression between genes and lncRNAs

and determine the roles of the lncRNAs using the functional

annotation of the genes co-expressing with the lncRNAs, which

helps in understanding the role of long non-coding RNAs in the

lung during Newcastle disease challenge.
Methods

Data collection

The transcriptome sequencing dataset was downloaded from a

publicly available resource – EBI ENA, from the project

PRJEB21760 (Deist et al., 2017). This dataset consists of 48

samples of chicken lung tissue sequenced using Illumina Hiseq

2500 with single-end 100bp reads. Of these 48 samples, 24 belong to

the Leghorn breed, and 24 belong to the Fayoumi breed. Regarding

infectivity, 12 out of 24 samples of each breed were control non-

challenged samples, and the other 12 were NDV-challenged

samples. This dataset includes three different time points

concerning the viral challenge – 2 DPC (days post-challenge), 6

DPC and 10 DPC. The details of the downloaded data are

mentioned in Supplementary Table 1.
Identification of lncRNAs – FHSpipe

In this study, the pipeline described in our previous study

(Vanamamalai et al., 2023) was used to identify lncRNAs,

perform differential expression and further downstream analysis.

This pipeline includes different steps like quality check which was

performed using Fastp tool (Chen et al., 2018), followed by mapping

of clean reads against the latest Chicken reference genome of

version GRCg7b using the tool Hisat2 v2.2.1 (Kim et al., 2019)

followed by assembly of mapped reads into transcripts using

Stringtie v2.1.4 (Pertea et al., 2015), annotation of the transcripts

into different class codes using GFFCompare (Pertea and Pertea,

2020), extraction of the sequences of transcripts annotated with

class codes “I” (intronic), “U” (unknown/intergenic) and “X” (anti-

sense) and filtering these sequences by eliminating the sequences

with a length less than 200 nucleotides, ORF length greater than 100

amino acids (300 nucleotides), having hits against protein family

(Pfam) database and sequences annotated with “coding” tag using

Coding potential calculator 2 (CPC2) (Kang et al., 2017). The

filtered sequences were finally subjected to BLAST against various

databases like NONCODE v6 (Zhao et al., 2021) to identify known
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and novel lncRNAs, tRNA database (Chan and Lowe, 2009), SILVA

rRNA database (Quast et al., 2013) and miRbase (Kozomara et al.,

2019) to eliminate other non-coding RNAs, if any, and the finally

remaining sequences were considered as potential long non-

coding RNAs.
Differential expression analysis

To perform differential expression analysis of genes and the

identified lncRNAs, FHSpipe generates read counts for genes and

lncRNAs, which can be used to perform differential expression

analysis using edgeR v3.34.1 (Robinson et al., 2010) with the

generalised linear model (GLM). Three factors were considered

while writing the contrasts as used in our previous study

(Vanamamalai et al., 2023) – challenge (challenged and non-

challenged), breed (Leghorn and Fayoumi) and timepoint (2, 6,

10). Differential expression was performed in three cases, and

heatmaps were plotted for both genes and lncRNAs using gplots

R library (Warnes et al., 2020). The identified differentially

expressed genes (DEGs) and lncRNAs (DElncRNAs) were plotted

against chromosomes based on their position using Circos

(Krzywinski et al., 2009).
Gene ontology analysis and GSEA

As described earlier, OmicsBox v2.1.14 (BioBam Bioinformatics,

2019) was used to perform the GO functional annotation and the

pipeline contains six steps – BLAST (Altschul et al., 1990) against

nonredundant (nr) protein database, Interpro scan (Philip et al., 2014)

against various protein databases, Gene ontology mapping (Gotz et al.,

2008) against GOA version 2022.03, GO annotation (Gotz et al., 2008),

mapping against EggNOG v5.0.2 database (Huerta-Cepas et al., 2019)

and KEGG (Kanehisa and Goto, 2000) and Reactome (Fabregat et al.,

2018) combined pathway analysis. The Gene Set Enrichment Analysis

(GSEA) module in OmicsBox (Subramanian et al., 2005) was used to

perform GO functional enrichment analysis to identify enriched gene

ontologies (“Biological Process”, “Molecular Function”, and “Cellular

Component”) and enriched pathways (“Reactome” and “KEGG”). The

parameters, including weighted enrichment statistic, the gene set

permutation number and other filters, were set as mentioned earlier

(Vanamamalai et al., 2023).
Functional annotation of lncRNAs

The functions of the Co-expressing genes were used to predict the

functions of the lncRNAs by subjecting the co-expressing gene-

lncRNA pairs to cis-trans analysis (Guttman and Rinn, 2012; Zhao

et al., 2020). The pairs with lncRNA and gene on the same

chromosome were termed cis, and the pairs with lncRNA and gene

on different chromosomes were termed trans. WGCNA (Weighted

Gene Correlation Network Analysis) v1.70-3 (Langfelder and

Horvath, 2008) was used to analyse the co-expression of the

differentially expressed genes and lncRNAs. As mentioned in the
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tutorials on the WGCNA webpage, the pipeline was followed to

perform co-expression analysis. The expression values (FPKM) of the

genes and lncRNAs were used as input. All the parameters, including

outlier height cut-off and minimum module size, were selected based

on the input data, and a scale-free topology fit index cut-off of 0.8 was

used to select soft power. The eigengenes module was used to merge

the closely related modules. The text files containing the data

regarding the edges and nodes of the co-expression network were

extracted as final output.
Gene-transcription factor
interaction analysis

The transcription factors interacting with the genes at 5’ UTRs

were identified using the MEME toolkit version 5.4.1 (Bailey et al.,

2009). This pipeline includes two steps – identification of motifs and

identification of transcription factors of the obtained motifs. First,

motifs were identified using theMEME tool and then obtainedmotifs

were compared against the JASPAR 2023 vertebrate database using

the TomTom tool. The identified transcription factors were searched

against the Animal TF database v4.0 (Shen et al., 2023) to obtain

Chicken Transcription factors.
Gene -miRNA interaction analysis

The online server miRNet (Chang et al., 2020) was used to

obtain the microRNAs targeting the differentially expressed genes

obtained in all three conditions. The official gene symbol of these

genes was used to search the microRNAs targeting them. A list of

microRNAs was downloaded in the form of a comma-

separated file.
Network visualisation

The data, including co-expressing pairs of genes and long non-

coding RNAs, transcription factors interacting with 5’ UTR of the

DEGs and microRNAs targeting these DEGS, was used to construct

a network and plotted using Cytoscape v3.10 (Shannon et al., 2003).

The differentially expressed genes annotated with immune-related

level 2 Gene ontologies, i.e., response to biotic stimulus

(GO:0009607) and immune system process (GO:0002376), and

Reactome Immune system pathways were selected for

visualisation. Accordingly, the data of long non-coding RNAs,

Transcription factors and microRNAs was filtered.
1 GraphPad Software. Multiple unpaired t-tests were performed by using

GraphPad Prism v9.4.1 for WIndows (San Diego, California, USA).
QTL analysis

The quantitative trait loci information of the differentially

expressed genes was obtained from the chicken QTL data

available on the Animal QTL database (Hu et al., 2019). The data

was downloaded in GFF format, and the QTL information was

acquired using an in-house Python script.
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Validation studies

Validation of 4 selected DElncRNAs with co-expressing genes for

3 lncRNAs was performed as described earlier (Vanamamalai et al.,

2023), including three pairs of co-expressing lncRNA-genes, namely

TCONS_00098393 (Lnc 1) – IFIT5 (Gene 1), TCONS_00133885 (Lnc

2) – CD55 (Gene 2), TCONS_00381885 (Lnc 3) – LOC112533599

(Gene 3) and one lncRNA without co-expressing gene –

TCONS_00383493 (Lnc 4). All the experiments were performed

according to the guidelines approved by the Institute Animal Ethics

Committee (IAEC/DPR/20/2). The detailed information on the

Primers generated using NCBI Primer-BLAST (Ye et al., 2012) is

mentioned in Supplementary Table 2. Briefly, chickens (aged 21 days)

were chosen for the study. LaSota strain of NDV of 200mL of EID 50 ≥

106 per dose was used for inoculation, and phosphate-buffered saline

was inoculated for the control group. The viral antibody levels were

determined as described earlier (Vanamamalai et al., 2023) using

Hemagglutination inhibition (HI) and indirect ELISA. Lung tissue was

collected at three time points – 2, 6 and 10. A viral RNA purification

kit (Himedia Pvt. LTD) was used for total RNA isolation, High-

capacity cDNA Reverse transcription Kit (Applied Biosystems, USA)

was used for cDNA reverse transcription and real-time PCR was

performed using Maxima SYBR Green/ROX qPCR Master Mix (2X)

(MBI Fermentas, USA) on Insta Q96™ real-time PCR machine

(Himedia, India) machine. The 2^-DDCt method was utilised to

calculate relative expression between respective conditions (1 DEG

and 2 DElncRNAs at 2 DPC and 2 DEGs and 2 DElncRNAs at 6

DPC). The results were visualised as bar plots with error bars (SEM)

and significance values from multiple unpaired t-tests, plotted using

GraphPad Prism1.

Results

Data preprocessing

The quality assessment of all the samples using the Fastp tool

showed that an average of 97.2% of the reads (94.5-97.8%) of all 48

samples passed the quality filter with a quality cut-off of 25. About

2.65% of reads were discarded due to low quality, 0.01% were

discarded due to too many ‘N’ bases, and 0.14% were too short. The

average GC content was 48.5%, and the average Q30 base content

post-filtering was about 95.02%. The detailed result for each of the

48 samples was shown in Supplementary Table 3.
Mapping and assembly

The cleaned high-quality reads were mapped against the latest

version of the chicken reference genome, i.e., GRCg7b. The mapped

reads were assembled into potential transcripts with the help of

reference annotation. As mentioned in Supplementary Table 3, the

average mapping percentage across all 48 samples was 94.6%, with
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the sample mapping in the range of 92.78% to 95.84%. Post

assembly, the average number of transcripts was found to be

43904, ranging from 42729 to 46501. After reassembly, about

25451 transcripts were obtained in each sample.
Identification of long non-coding RNAs

A total of 415627 transcripts were annotated with 11 different

class codes, with the class code C (transcripts contained in

reference) being annotated to the highest number of transcripts

(42.3%). A total of 11216 transcripts were found to be annotated

with Class codes U with the highest transcripts (4914, 44%)

followed by I (3780, 34%) and X with the least transcripts (2522,

22%), as shown in Figure 1A. The 11216 transcripts representing

class codes I, U, and X were subjected to various filtration steps, and

2997 transcripts were eliminated, with 8219 transcripts being

extracted as final potential long non-coding RNAs. These details

are mentioned in Table 1. Of these, the highest number of

transcripts, i.e., 3788 (46%), were found to be intergenic (U),

followed by intronic (I), i.e., 2911 (35%), and anti-sense (X) with

the least transcripts, i.e., 1520 (19%), as shown in Figure 1B. Of the

8219 transcripts, 5532 showed no hits against the NONCODE v6

database, indicating novel transcripts and 2687 showed similar hits.
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Of these, 471 showed 100% similarity, and only 6 showed 100%

similarity and 100% coverage. There were no hits with 100%

similarity and 100% coverage against miRBase (Mature and

Hairpin) and transfer RNA database. The chromosomal positions

of these lncRNAs were plotted using the Phenogram tool and the

plot was shown in Figure 1C. All the chromosomes showed

lncRNAs except Chromosome 32, which had no lncRNAs

mapped. Chromosome 1 showed the highest percentage of

lncRNAs, and Chromosome 33 showed the lowest percentage.
FIGURE 1

The characteristics of the long non-coding RNAs identified in the lung transcriptome. (A) Class code classification of all the transcripts. (B) Pie chart
composition of different types of lncRNAs. (C) Chromosomal localisation of the identified lncRNAs.
TABLE 1 The statistics of the lncRNA identification pipeline.

STEP
Number of
sequences
eliminated

Number of
sequences
retained

Total – 11216

Length
filter (<200nt)

0 11216

ORF filter (>100aa) 1767 9449

Pfam filter 179 9270

CPC2 1051 8219

Final 2997 8219
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Differential expression analysis

Of the three-factor analyses used for estimation of differential

expression, about 83 DEGs and 183 DElncRNAs were identified in

the challenge-based analysis, i.e., comparison between challenged

and non-challenged chicken, about 261 DEGs and 1165

DElncRNAs in breed-based analysis, i.e., comparison between

Leghorn and Fayoumi, and about 47 DEGs and 55 DElncRNAs

in timepoint-based analysis, i.e., comparison between different

timepoints. The number of differentially expressed genes and

lncRNAs identified in each of the three analysis conditions were

mentioned in Table 2 – A: challenge-based analysis, B: breed-based

analysis and C: timepoint-based analysis. Heatmaps showing the

read count data were shown in Supplementary Figure 1 for genes

and Supplementary Figure 2 for lncRNAs. The characteristics and

expression values of the extracted lncRNAs are mentioned in

Supplementary Table 4. Figure 2 represents the chromosomal

localisation of the DEGs and DElncRNAs identified in the three

analysis factors - challenge (A, B), breed (C, D) and timepoint (E,

F). The outermost grey circle represented the chromosomes of

chickens, followed by the circle showing the genes (A, C, E) and
Frontiers in Cellular and Infection Microbiology 06
TABLE 2 The number of differentially expressed genes and long non-
coding RNAs identified in (A) – Challenge-based analysis, (B) – Breed-
based analysis and (C) – Timepoint-based analysis.

A

Leghorn Fayoumi

2-
day

6-
day

10-
day

2-
day

6-
day

10-
day

DEGs 2 33 1 12 5 31

DElncRNAs 2 10 0 1 2 168

B

Non-challenged Challenged

2-
day

6-
day

10-
day

2-
day

6-
day

10-
day

DEGs 75 60 162 60 79 45

DElncRNAs 530 580 727 568 422 394

C
Leghorn Fayoumi

2v6 2v10 6v10 2v6 2v10 6v10

DEGs 6 2 34 0 5 3

DElncRNAs 34 7 4 0 13 6
fron
FIGURE 2

The synteny plot of the Chromosomal localisation of differentially expressed genes (A, C, E) and differentially expressed lncRNAs (B, D, F) identified in
challenge-based analysis (A, B), breed-based analysis (C, D) and timepoint-based analysis (E, F).
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lncRNAs (B, D, F) of the different conditions as mentioned in the

legend. This figure shows that more differentially expressed genes

and lncRNAs were obtained in breed-based analysis compared to

the challenge-based and timepoint-based analysis. In comparison to

genes, a more significant number of lncRNAs were observed. In

challenge-based analysis, Leghorn 6 DPC showed a higher number

of genes and Fayoumi 10 DPC showed a higher number of

lncRNAs. In breed-based analysis, non-challenged 10 DPC

showed a higher number of genes and lncRNAs. In timepoint-

based analysis, Leghorn 6 v/s 10 DPC showed a higher number of

genes and Leghorn 2 v/s 6 DPC showed a higher number

of lncRNAs.
Gene ontology analysis

Gene ontology (GO) and functional annotation results were

obtained in various forms including biological process, molecular

function, cellular component GOs, and KEGG and Reactome

pathways. The GO annotation results were plotted as pie charts

using GraphPad Prism (GraphPad Software) and were represented

in Figure 3 with (A) Level 2 biological process GOs, (B) sequence

distribution of molecular function GOs and (C) sequence

distribution of cellular component GOs. A total of 14 different

biological process level 2 GOs were obtained, of which cellular

process (GO:0009987) was annotated to the highest number of

genes, i.e., 149 (16.28%). In contrast, locomotion (GO:0040011) was

annotated to the lowest number of genes, i.e., 17 (1.78%). Also,

about 25 (2.61%) genes were annotated with the immune system

process (GO:0002376). In addition, a total of 4 level 2 molecular

function GOs were obtained, of which binding (GO:0005488) was

annotated to the highest number of genes, i.e., 136 (51.32%)

followed by catalytic activity (GO:0003824 – 25.94%), structural

molecule activity (GO:0005198 – 11.65%) and molecular function

regulator activity (GO:0098772) was annotated to lowest number of

genes, i.e., 29 (10.94%). In the sequence distribution across ten

molecular function GOs, the GO Metal ion binding (GO:0046872)

was annotated to the highest percent of genes, i.e., 14.58%, as

represented in Figure 3B. In the case of the cellular component, only

2 level 2 GOs were obtained, i.e., cellular anatomical entity

(GO:0110165) was annotated to 158 (71.17%) genes and Protein-

containing complex (GO:0032991) was annotated to 64 (28.83%)

genes. In the sequence distribution of 10 cellular component GOs,

the GO Plasma membrane (GO:0005886) was annotated to the

highest percent of genes, i.e., 17.59% as represented in Figure 3C.

Figure 4 shows the distribution of the DEGs across different

categories of KEGG and Reactome databases plotted using

GraphPad Prism (GraphPad software). The KEGG database

pathway analysis showed that most genes were annotated to

pathways in the organismal systems category and very few

pathways were annotated to the metabolism category. As per the

Reactome database, most of the genes were annotated with

pathways in the metabolism of proteins and only 1 pathway was

found in the Protein localisation, Reproduction and DNA
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replication categories. A total of 45 different genes were annotated

with pathways in the immune system (Reactome) category, which

were annotated with different biological process GOs, including

biological regulation (GO:0065007), cellular process (GO:0009987),

immune system process (GO:0002376), response to biotic stimulus

(GO:0009607) and Signalling (GO:0023052). Apart from this, 25

genes were annotated with the biological process GO - immune

system process (GO:0002376), and 18 genes were annotated with

the biological process response to biotic stimulus (GO:0009607).

About 66 genes were annotated with either immune biological

process GOs or pathways. Of this, 12 genes were annotated with

both immune GOs and pathways. The detailed information on the

functional annotation, including gene ontologies, pathways and the

fold change values of all the DEGs, is mentioned in

Supplementary Table 5.
Functional enrichment analysis (GSEA)

Unlike the trachea (Vanamamalai et al., 2023), the lung showed

enriched GOs and pathways under a few conditions. The number of

total and enriched GOs and pathways are mentioned in Table 3. In

challenge-based analysis, Only Leghorn 6 DPC showed enriched GOs.

Under biological process, the highest number of enriched GOs were

identified under level 2 GO developmental process (111), followed by

biological regulation (61), cellular process (21), metabolic process (19),

response to stimulus (15), signalling (6), localisation (2) reproductive

process (2) and one each under multicellular organismal process and

growth. In breed-based analysis, non-challenged 2 DPC showed no

enriched GOs. Challenged 2 DPC showed the highest enriched GOs

with biological process GOs under biological regulation (27),

developmental process (11), cellular process (8), response to

stimulus (8), metabolic process (4), localisation (3) and signalling

(1). Challenge 6 DPC showed enriched GOs under biological

regulation (7). Challenge 10 DPC showed enriched GOs under

biological regulation (14) and developmental process (1). Non-

challenged 6 DPC showed enriched GOs under metabolic process

(2). Non-challenged 10 DPC showed enriched GOs under biological

regulation (14), metabolic process (6), developmental process (4),

localisation (3) and cellular process (1). In timepoint-based analysis,

enriched GOs were obtained only in Fayoumi 2 vs 10 DPC, but none

were identified under biological process. No enriched pathways were

identified in the challenge-based analysis. In breed-based analysis, 11

pathways under disease (Reactome) were identified to be enriched in

all six conditions. In addition to these 11 pathways, challenge 6 DPC

showed enriched pathways under metabolism (KEGG) (1), non-

challenge 2 DPC under Organelle biogenesis and maintenance

(Reactome) (1), non-challenge 6 DPC under metabolism (KEGG)

(2) and non-challenge 10 DPC under immune System (Reactome) (1)

and metabolism of proteins (Reactome) (1). In timepoint-based

analysis, only Fayoumi 2 vs 10 DPC showed enriched pathways

under transport of small molecules (Reactome) (2). Detailed

information on the enriched GOs and pathways is mentioned in

Supplementary Tables 6, 7, respectively.
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Functional annotation of lncRNA

The co-expression analysis of differentially expressed genes and

lncRNAs identified in three different conditions resulted in several

modules. The parameters, including outliers, soft power, minimum

size and number of modules before and after merging, and sizes of

the top and least sized modules, were mentioned in Supplementary

Table 8. The scale-free topology model fit cut-off was selected as 0.8,

and the soft power of the conditions failing to reach the cut-off

index for reasonable powers was chosen as 9. There were no outliers
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in the challenge-based analysis, and soft power was chosen as 9 for

all conditions. There were no interactions at Leghorn 10DPC. In

breed-based analysis, outliers were observed at 2DPC non-

challenged and 6 DPC challenged conditions, and soft power was

chosen as 15 and 12 for challenged 2 DPC and 10 DPC, respectively,

as they have scale-free topology fit index values above 0.8. In

contrast, in the case of other conditions, soft power was chosen as

9. In the case of timepoint-based analysis, outliers were found in 4

conditions and soft power was chosen as 9 for all the conditions.

There were no interactions at Fayoumi 2v6 DPC. In the cis-trans
FIGURE 3

Pie charts representing (A) the proportions of Level 2 biological process gene ontologies. (B) the distribution of molecular function gene ontologies.
(C) the distribution of cellular component gene ontologies.
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analysis, 94.29% of the pairs were trans-acting, while 5.71% were

cis-acting. Of these cis-acting pairs, 38.45% of pairs have lncRNA

upstream of the gene, 59.36% have lncRNA downstream of the

gene, 2.1% have lncRNA within a gene, 0.06% have lncRNA

covering the 3’ end of the gene, and 0.04% have lncRNA covering

5’ end of the gene. The number of cis-trans pairs is mentioned in

Table 4. The cis gene-lncRNA pairs were analysed further to predict

the functions of these lncRNAs using the genes. A total of 745

DElncRNAs were found to be in 4490 cis-interactions with 168

DEGs. Of these interactions, a higher number of positive

interactions, i.e., both genes and lncRNAs either upregulated or

downregulated, were identified than negative interactions, i.e., genes

and lncRNAs with one being upregulated and the other being

downregulated. Of the 66 DEGs annotated with either immune GO

or pathway, 46 DEGs were found to be co-expressing with 489 cis-

DElncRNAs in a total of 975 interactions – 514 positive and 461

negative interactions. These details are mentioned in

Supplementary Table 9.
Gene-transcription factor
interaction analysis

A total of 10 different motifs were identified as per the cut-off

mentioned in the methods section. Of this, 8 motifs showed hits

with transcription factors. With a q-value cut-off (<0.05), a total of 3

motifs (1, 4, 6) and 34 transcription factors were obtained. Motif 1
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was found to be interacting with 1 transcription factor, Motif 4 with

12 transcription factors and Motif 6 with 32 transcription factors.

These transcription factors belong to three families - E2F, zf-C2H2

and ZBTB. Most of them belong to the zf-C2H2 family. The list of

motifs, their transcription factors, family and other details are

mentioned in Supplementary Table 10A and details of

transcription factors associated with immune-related genes were

mentioned in Supplementary Table 10B.
Gene -miRNA interaction analysis

A total of 504 different microRNAs were identified, which target

169 different genes. About 14 miRNAs were found to target

immune related genes. Similar to our previous report on the

trachea transcriptome (Vanamamalai et al., 2023), the gene

BAIAP2 was found to be targeted by 78 different miRNAs and

the miRNA gga-mir-1587 was found to target 23 different DEGs.

The details of microRNAs associated with DEGs were mentioned in

Supplementary Table 10C.
Network visualisation

The networks of the selected immune-related DEGs, co-

expressing DElncRNAs, transcription factors, microRNAs, and

biological process level 2 GOs were constructed and visualised in
FIGURE 4

Bar plot representing the number of the differentially expressed genes annotated to different pathways across various categories of KEGG and
Reactome databases.
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the form of networks and plotted using Cytoscape. There were no

interactions involving immune-related genes in challenge-based

and timepoint-based analysis. Figure 5 shows the network plots

for breed-based analysis. The black circular nodes denote long non-
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coding RNAs, blue diamond nodes denote genes, green boxes

denote Gene ontology (Biological process Level 2), pink arrows

denote microRNAs targeting the genes, and red triangles denote

Transcription factors binding to genes. Figure 5A shows the
TABLE 3 The number of Total and Enriched Gene Ontologies, i.e., Biological Process (BP), Molecular Function (MF) and Cellular Component (CC), and
Pathways, i.e., KEGG and Reactome identified in all the conditions in (A) Challenge-based, (B) Breed-based and (C) Timepoint-based analysis.

A
LEGHORN FAYOUMI

2-day 6-day 10-day 2-day 6-day 10-day

BP
Total 16 256 16 215 241 474

Enriched 0 241 0 8 6 5

MF
Total 13 30 1 45 40 70

Enriched 0 25 0 2 2 0

CC
Total 9 15 5 55 43 66

Enriched 1 8 0 2 2 0

KEGG
Total 0 0 0 3 1 8

Enriched 0 0 0 0 0 0

REACTOME
Total 6 15 0 16 20 84

Enriched 0 0 0 0 0 0

B
NON-CHALLENGED CHALLENGED

2-day 6-day 10-day 2-day 6-day 10-day

BP
Total 889 696 1202 693 687 551

Enriched 0 2 28 64 7 17

MF
Total 157 107 212 114 124 105

Enriched 0 0 6 5 0 0

CC
Total 132 126 185 132 142 124

Enriched 0 1 0 4 0 1

KEGG
Total 35 18 70 27 12 24

Enriched 0 2 0 0 1 0

REACTOME
Total 132 112 397 117 88 78

Enriched 12 11 13 11 11 11

C
LEGHORN FAYOUMI

2 v/s 6 2 v/s 10 6 v/s 10 2 v/s 6 2 v/s 10 6 v/s 10

BP
Total 263 16 44 0 131 191

Enriched 0 0 0 0 0 0

MF
Total 31 11 10 0 33 24

Enriched 0 0 0 0 1 0

CC
Total 16 4 2 0 27 26

Enriched 0 0 0 0 0 0

KEGG
Total 0 0 0 0 2 0

Enriched 0 0 0 0 0 0

REACTOME
Total 16 6 4 0 8 4

Enriched 0 0 0 0 2 0
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network obtained with non-challenged 2 DPC data with three

DEGs annotated with two BP GOs, 511 lncRNAs and 34 TFs. No

miRNAs were identified. Of the three DEGs, the gene

MSTRG.10718 showed interactions with the highest number of

lncRNAs (483), while the gene IL6ST showed the least (268). A total

of 124 lncRNAs were identified to be explicitly interacting with a

single gene, i.e., MSTRG.10718 (96), MSTRG.4083 (15) and IL6ST

(13). Figure 5B shows the network obtained with non-challenged 6

DPC data with two DEGs annotated with one BP GO, 541 lncRNAs

and 34 TFs. No miRNAs were identified. Of the two DEGs, the gene

MSTRG.10718 showed the highest interactions (516), while the

gene IL6ST showed the least (188). A total of 378 lncRNAs were
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identified to be explicitly interacting with a single gene, i.e.,

MSTRG.10718 (353) and IL6ST (25). Figure 5C shows the

network obtained with non-challenged 10 DPC data with nine

DEGs annotated with two BP GOs, 718 lncRNAs and 34 TFs. No

miRNAs were identified. Of the two DEGs, the gene IL6ST showed

the highest interactions (557), while the gene MSTRG.9061 showed

the least (15). A total of 52 lncRNAs were identified to be explicitly

interacting with a single gene, i.e., MSTRG.4083 (23), IL6ST (15),

MSTRG.8108 (7), NPC2 (6) and MSTRG.14170 (1). Figure 5D

shows the network obtained with challenged 2 DPC data with three

DEGs annotated with two BP GOs, 235 lncRNAs and 34 TFs. No

miRNAs were identified. Of the three DEGs, the gene
TABLE 4 The number of Cis-Trans gene-lncRNA pairs and the different classes of Cis interacting pairs identified during - (A) Challenge-based analysis,
(B) Breed-based analysis and (C) Timepoint-based analysis.

A Leghorn Fayoumi

Timepoint 2 DPC 6 DPC 10 DPC 2 DPC 6 DPC 10 DPC

Total interactions 2 139 0 1 3 2640

Trans 2 138 0 1 3 2525

Cis

Total 0 1 0 0 0 115

Downstream 0 1 0 0 0 62

Upstream 0 0 0 0 0 53

Within gene 0 0 0 0 0 0

At 3’ end 0 0 0 0 0 0

At 5’ end 0 0 0 0 0 0

B Non-challenged Challenged

Timepoint 2 DPC 6 DPC 10 DPC 2 DPC 6 DPC 10 DPC

Total interactions 24328 22367 36676 10426 13450 10898

Trans 24326 20602 34399 9551 12435 10038

Cis

Total 2 1765 2277 875 1015 860

Downstream 1 1076 1251 550 616 548

Upstream 1 652 989 303 364 292

Within gene 0 35 35 21 34 20

At 3’ end 0 1 0 1 1 0

At 5’ end 0 1 2 0 0 0

C Leghorn Fayoumi

Timepoint 2v6 2v10 6v10 2v6 2v10 6v10

Total interactions 69 0 4 0 26 3

Trans 64 0 3 0 26 3

Cis

Total 5 0 1 0 0 0

Downstream 0 0 0 0 0 0

Upstream 4 0 1 0 0 0

Within gene 0 0 0 0 0 0

At 3’ end 1 0 0 0 0 0

At 5’ end 0 0 0 0 0 0
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1368887
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Vanamamalai et al. 10.3389/fcimb.2024.1368887
MSTRG.10718 showed the highest interactions (231), while the

gene IL6ST showed the least (112). A total of 90 lncRNAs were

identified to be explicitly interacting with a single gene, i.e.,

MSTRG.10718 (86) and IL6ST (4). Figure 5E shows the network

obtained with challenged 6 DPC data with five DEGs annotated

with two BP GOs, 412 lncRNAs and 34 TFs. No miRNAs were

identified. Of the five DEGs, the genes MSTRG.12549 and

MSTRG.18444 showed the highest interactions (400), while the

gene MSTRG.4083 showed the least (108). A total of 11 lncRNAs

were identified to be explicitly interacting with a single gene, i.e.,

MSTRG.12549 (5), MSTRG.18444 (4), MSTRG.10718 (1) and

MSTRG.4083 (1). Figure 5F shows the network obtained with

challenged 10 DPC data with three DEGs annotated with two BP

GOs, 311 lncRNAs and 34 TFs. No miRNAs were identified. Of the

three DEGs, the gene IL6ST showed the highest interactions (266),

while the gene MSTRG.4083 showed the least (193). A total of 86

lncRNAs were identified to be explicitly interacting with a single

gene, i.e., IL6ST (49), MSTRG.10718 (19) and MSTRG.4083 (18).
QTL analysis

The quantitative trait loci of the DEGs were identified using the

gene coordinates, and different types of QTLs, including exterior,

physiological, production, and health, were identified. The number

of genes under each category of QTLs is shown in Table 5.

Challenge-based analysis showed a higher number of QTLs, and

the Production QTL category had the highest number of genes.
Validation studies

Figure 6 shows the relative expression values between

challenged (green bars) and non-challenged (red bars) of the
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selected 4 DElncRNAs and 3 co-expressing DEGs. The relative

expression values were similar to those obtained from in silico

analysis. The expression levels of the lncRNAs and the co-

expressing genes were also validated, indicating the validation of

the co-expression of these lncRNAs and genes. The significance

values calculated using the unpaired t-test represent –*: p <= 0.05,

**: p <= 0.01, ****: p <= 0.0001. All the genes and lncRNAs were

found to be significant.
Discussion

Newcastle disease is one of the challenging diseases of chickens,

devastatingly impacting poultry industries, especially in

underdeveloped countries. Along with the trachea, the lung is one

of the essential tissues during respiratory infections due to the

presence of Bronchus-associated lymphoid tissue (BALT).

Previously, analysis of the harderian gland and trachea

transcriptome has shown differences in the expression patterns of

genes and co-expressing long non-coding RNAs, which were

involved in a wide range of biological processes and pathways,

including Immune-system related pathways. These studies have

shown that although Leghorn showed upregulated immune genes in

challenge-based analysis, Fayoumi was found to be showing higher

upregulation in immune genes than Leghorn in breed-based

analysis. In addition, Leghorn showed downregulation of immune

genes in timepoint-based analysis, while Fayoumi showed no

such response.

In the current study, investigating the lung tissue transcriptome

has given essential insights into the immune response of Leghorn

and Fayoumi chicken during Newcastle Disease. Several novel

lncRNAs were identified, co-expressing with different genes

involved in immune system pathways. A higher number of

intergenic lncRNAs, also known as long intergenic lncRNAs
FIGURE 5

The plot of the network between differentially expressed genes (blue colour diamond shaped), co-expressing differentially expressed lncRNAs (black
colour spherical shaped), transcription factors (red colour triangular shaped), microRNAs (pink colour arrow shaped) and biological process GOs
(green colour rectangular shaped) identified in breed based analysis. (A) – non-challenged 2 days, (B) – non-challenged 6 days, (C) – non-
challenged 10 days, (D) – challenged 2 days, (E) – challenged 6 days, (F) – challenged 10 days.
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(lincRNAs), were identified in comparison to intronic and anti-

sense lncRNAs. Breed-based analysis showed more DEGs and

DElncRNAs than challenge-based and timepoint-based analysis.

Non-challenged datasets showed more DEGs and DElncRNAs than

challenged datasets, which shows the differences in the expression

of genes between Leghorn and Fayoumi even under normal non-

challenged conditions. With this result, we can deduce the

differences between both breeds in lung transcriptome response,

similar to that identified in our previous studies on the trachea and

harderian gland. However, the number of DEGs and DElncRNAs

was lower in the case of the lung transcriptome.

In functional annotation of genes, it was found that a total of 25

different genes were annotated with the biological process Immune

system process (GO:0002376), and 18 different genes were

annotated with the biological process response to biotic stimulus
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(GO:0009607). A total of 45 different genes were annotated with

pathways in the Immune system (Reactome) category, which were

annotated with different biological process GOs, including

biologica l regulat ion (GO:0065007) , ce l lu lar process

(GO:0009987), immune system process (GO:0002376), response

to biotic stimulus (GO:0009607) and Signalling (GO:0023052).

Overall, 66 genes were annotated with either immune-related

biological process GOs or pathways. Of this, 12 genes were

annotated with both biological process GOs and Immune system

category pathways. In challenge and timepoint-based analysis, only

one gene, MSTRG.18444, was found to be differentially expressed. It

was found to be downregulated in challenge-based analysis in

Fayoumi at 6DPC and upregulated in timepoint-based analysis in

Fayoumi 6 vs 10 DPC. In breed-based analysis, the genes IL6ST,

MSTRG.10718, and MSTRG.4083 were upregulated in Fayoumi

and the genes MSTRG.12549 and MSTRG.18444 were found to be

downregulated in Fayoumi than in Leghorn in breed-based analysis

during both challenged and non-challenged conditions. The other 7

genes, i.e., CTSS, MSTRG.14170, MSTRG.14920, MSTRG.5632,

MSTRG.8108, MSTRG.9061 and NPC2 were upregulated in

Fayoumi at 10 DPC in non-challenged samples. Apart from this,

of the 66 genes annotated with either immune GO or immune

pathway, several genes were upregulated in challenge-based analysis

in Fayoumi but not in Leghorn. A few genes were also

downregulated between time points in timepoint-based analysis

in Leghorn but not in Fayoumi. This pattern shows the differences

in the breeds even in the absence of any infection. In addition to

this, several non-immune genes involved in pathways, including

metabolism, signal transduction, transport of small molecules,

extracellular matrix organisation, developmental biology and

cellular processes, were impacted by NDV infection.

In GO functional enrichment analysis, several enriched GOs

and pathways were identified. No enriched immune-related GOs

were identified across all the datasets. In breed-based analysis, only

one enriched immune pathway was identified in non-challenge 10

DPC data. In Leghorn challenge vs non-challenge data, enriched

biological process GOs were identified only at Leghorn 6 DPC. The

highest number of enriched GOs were found under the

developmental process followed by biological regulation. All the

enriched GOs were found to have positive NES, indicating

upregulated GOs. In the Fayoumi challenge vs non-challenge

data, enriched biological process GOs were identified at 2, 6 and

10 DPC. At 2 DPC, metabolic process and cellular process GOs

were enriched with positive NES. At 6 DPC, enriched GOs were

found under biological regulation and developmental process, with

negative NES indicating downregulation. In comparison, at 10

DPC, biological regulation and cellular process GOs were

enriched with positive NES, indicating upregulation. In breed-

based analysis, non-challenge data showed enriched GOs at 6

DPC under metabolic process and at 10 DPC under biological

regulation followed by metabolic and developmental process with

positive NES. Challenge data showed enriched GOs at 2, 6 and 10

DPC. The most enriched GOs were found under biological

regulation, followed by the developmental process with positive

NES at all three timepoints. There were no enriched biological

process GOs in timepoint-based analysis. In the case of pathway
TABLE 5 The number of differentially expressed genes associated with
different types of QTL obtained in (A) Challenge-based analysis, (B)
Breed-based analysis and (C) Timepoint-based analysis.

A

Leghorn Fayoumi

2
DPC

6
DPC

10
DPC

2
DPC

6
DPC

10
DPC

Total Genes 2 7 1 6 3 25

Exterior
QTL

0 1 1 2 1 11

Health QTL 1 5 0 3 2 12

Physiology
QTL

1 0 0 1 3 11

Production
QTL

1 3 1 6 3 25

B

Non-challenged Challenged

2
DPC

6
DPC

10
DPC

2
DPC

6
DPC

10
DPC

Total Genes 54 45 123 44 36 32

Exterior
QTL

26 21 45 20 14 11

Health QTL 31 26 58 26 22 17

Physiology
QTL

18 16 45 16 12 12

Production
QTL

53 42 118 43 30 29

C F2v6 F2v10 F6v10 L2v6 L2v10 L6v10

Total Genes 0 3 1 4 2 7

Exterior
QTL

0 0 0 3 0 1

Health QTL 0 3 1 3 1 5

Physiology
QTL

0 0 1 1 1 0

Production
QTL

0 3 1 4 1 2
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enrichment analysis, no enriched pathways were identified in the

challenge-based analysis. In breed-based analysis, all six conditions

showed enriched pathways, most belonging to the Disease

(Reactome) category with negative NES. A few metabolic and

immune system pathways were identified in non-challenged

samples with positive NES. In timepoint-based analysis, only

Fayoumi 2 vs 10 DPC data showed two enriched pathways under

the transport of small molecules category with negative NES. These

results show the impact of NDV on various non-immune pathways,

unlike previous analyses on the trachea and harderian gland, in

which several enriched immune-related GOs and pathways

were identified.

In co-expression analysis between the DEGs and DElncRNAs, it

was observed that most of the co-expression pairs were trans than

cis. As mentioned earlier, cis co-expression lncRNAs were

considered to regulate the genes near them. In challenge-based

analysis, only Leghorn 6 DPC and Fayoumi 10 DPC have shown cis

co-expression pairs. Leghorn showed only 1 pair with the gene

involved in sensory perception. In Fayoumi, cis-pairs had genes

involved in various pathways under the immune system, metabolic,

cellular process, signal transduction, DNA repair, response to

stimulus and developmental biology. This result clearly shows the

differences in the lncRNA transcriptome response between the

Leghorn and Fayoumi breeds during the NDV challenge. In

breed-based analysis, both challenged and non-challenged

datasets have shown several gene-lncRNAs pairs with genes

involved in various pathways under metabolism, immune system,

disease, signal transduction, metabolic and cellular processes,

transport of molecules and developmental pathways. In

timepoint-based analysis, only Leghorn have shown cis co-

expression pairs with genes involved in sensory perception and

biological regulatory pathways. This analysis shows that the

lncRNAs might have a potential role in differentiating these
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breeds. A higher number of the pairs were shown to have a

positive correlation, indicating that most of the DElncRNAs could

positively regulate the co-expressing genes. However, several

negatively regulating DElncRNAs were also identified, even with

immune-related genes.

In addition, several transcription factors and microRNAs were

identified to be interacting with the DEGs. A total of 10 immune

annotated genes were identified to be interacting with transcription

factors, of which six genes showed three all motifs (1, 4, 6) and 34

TFs, two genes showed two motifs (4, 6) and 33 TFs, and two genes

showed one each motif – motif 4 and 12 TFs, and motif 6 and 32

TFs respectively). Similar to the previous reports on the trachea and

harderian gland, TFs from three families – E2F, ZBTB (Zinc finger

and BTB domain containing) and zf-C2H2 (zinc finger Cys2–His2)

were identified. These were known to regulate apoptotic

(Xanthoulis and Tiniakos, 2013), T-lymphocyte-related molecular

mechanisms (Cheng et al., 2021) and disease developmental

processes (Han et al., 2016), respectively. Only two immune genes

were found to be targeted by 14 microRNAs. – gene CTSS (3) and

NPC2 (12). Along with co-expressing cis-lncRNAs, this

information on TFs and miRNAs can be used to regulate the

expression of immune genes in further studies. QTL analysis has

shown that most of the DEGs identified in different conditions were

mapped to production and health QTLs. Breed-based QTL analysis

showed the highest number of genes mapped to QTLs of the three

methods. In challenge-based analysis, Fayoumi showed the highest

number of genes with overall QTLs and the highest number of

health QTLs compared to Leghorn. However, in timepoint-based

analysis, Leghorn showed a higher number of Health QTLs than

Fayoumi, which could mean that Leghorn shows more differential

expression during the disease than Fayoumi, which is comparatively

resistant and could have fewer differences in expression between

different timepoints of the disease. The breed-based analysis has
FIGURE 6

The bar plots representing the relative expression (2^-DDCT) of NDV challenged (Green bars) and Non-challenged (Red bars) samples with error
bars representing the SEM values and significance (p) values: * - p <= 0.05, ** - p <= 0.01, **** - p <= 0.0001.
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shown the health QTLs in both challenged and non-challenged

datasets, indicating the difference between Leghorn and Fayoumi,

even in the normal state.

Overall, in this analysis, most of the 12 genes annotated with

immune-related GOs and pathways were upregulated in Fayoumi,

compared to Leghorn during the NDV challenge. Such immune

gene upregulation was even observed during non-challenged

conditions. In addition, in challenge-based analysis, NDV-

challenged Fayoumi showed a higher number of upregulated

immune genes compared to non-challenged Fayoumi, while there

was no such upregulation in Leghorn. Similarly, a higher number of

cis-lncRNAs were identified in Fayoumi compared to Leghorn.

Most of these cis-lncRNAs were positively correlated with the

immune-related genes. Previous studies by Melissa et al. show

that the presence of viral transcripts in the tissue significantly

helps in eliciting immune response and upregulation of immune-

related genes, which was also observed in our earlier work on the

trachea and harderian gland transcriptome analysis, where higher

levels are viral transcripts were observed in those tissues. Unlike

those tissues, lung tissue from both Leghorn and Fayoumi showed

no viral transcripts. With this, we can understand that Fayoumi

chicken showed upregulated immune genes and positive cis-

lncRNAs during both the non-challenged and NDV-challenge

conditions, even without viral transcripts in the tissue. This

finding shows that these immune-annotated genes and co-

expressing cis-lncRNAs play a significant role in Fayoumi being

comparatively resistant to NDV compared to Leghorn. Our study

affirms and expands upon the outcomes of previous studies and

highlights the crucial role of lncRNAs during the immune response

to NDV. Although this analysis is robust, certain limitations exist.

This study is limited to in-silico analysis of transcriptome data

obtained from lung tissue and experimental validation of a few

lncRNAs and co-expressing genes. To better understand the overall

response of the host and identify the role of immune genes and

lncRNAs, the analysis of different tissues during NDV is required.

Future studies can unravel the mechanisms of co-expression and

interaction of DEGs and DElncRNAs. This information about these

twelve immune-annotated genes and lncRNAs co-expressing with

them can be used to improve resistance in susceptible breeds.
Conclusion

The lung is one of the essential organs in chickens and plays a

vital role in the immune response against the Newcastle disease

virus. In this analysis of the lung transcriptome, most of the

immune-related genes were upregulated in Fayoumi in challenged

and non-challenged conditions compared to Leghorn. In addition,

several immune genes were upregulated in Fayoumi non-challenge

vs challenge but not in Leghorn. Several gene ontologies under

developmental process and biological regulation categories were

enriched with positive NES (upregulated) in Fayoumi but not in

Leghorn. In the case of pathways, few immune system and

metabolic pathways were found to be enriched with positive NES

(upregulated) between Leghorn and Fayoumi non-challenge data,

indicating the difference between the breeds. A similar trend was
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observed in the case of lncRNAs. Several co-expressing pairs

included lncRNAs positively correlated with both immune and

non-immune genes. Fayoumi showed several positively correlated

cis-lncRNAs co-expressing with immune-related genes, while no

such lncRNAs were identified in Leghorn. This analysis clearly

shows the differences in the gene expression patterns and lncRNA

co-expression with the genes between Leghorn and Fayoumi,

indicating that the lncRNAs and co-expressing genes might

potentially have a role in differentiating these breeds. This study

shows the transcriptomic response. An in-depth protein level

analysis will help understand the exact mechanism in regulating

genes and the role of the lncRNAs in regulating these genes.
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