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pathogenesis of bacterial
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promising pharmacological
target in bacterial vaginosis
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Medicine, University College Dublin, Dublin, Ireland
Bacterial vaginosis (BV) is an infection of the genital tract characterized by

disturbance of the normally Lactobacilli-dominated vaginal flora due to the

overgrowth of Gardnerella and other anaerobic bacteria. Gardnerella vaginalis,

an anaerobic pathogen and the major pathogen of BV, produces sialidases that

cleave terminal sialic acid residues off of human glycans. By desialylation,

sialidases not only alter the function of sialic acid-containing glycoconjugates

but also play a vital role in the attachment, colonization and spread of many other

vaginal pathogens. With known pathogenic effects, excellent performance of

sialidase-based diagnostic tests, and promising therapeutic potentials of sialidase

inhibitors, sialidases could be used as a biomarker of BV. This review explores the

sources of sialidases and their role in vaginal dysbiosis, in aims to better

understand their participation in the pathogenesis of BV and their value in the

diagnosis and treatment of BV.
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1 Introduction

Bacterial vaginosis (BV) is caused by a disturbance to the vaginal flora in which

Gardnerella and other anaerobic bacteria replace the normal vaginal microbiota dominated

by lactobacilli (Ravel et al., 2011). Lactic acid, H2O2, bacteriocins, and biosurfactants, which

are antimicrobial and anti-inflammatory products produced by lactobacilli, decreases along

with the health-promoting lactobacilli. The increased pH of the vagina creates advantages for

the proliferation of facultative and obligate anaerobes, including Gardnerella, Atopobium,

Mobiluncus, Prevotella, Streptococcus, Ureaplasma,Megasphaera etc (Amabebe and Anumba,

2018). Meanwhile, the concentrations of short chain fatty acids (SCFAs, such as acetate,

malonate and succinate) and amines (such as putrescine, cadaverine, and tyramine) produced

by the overgrown anaerobes increase in parallel with bacterial abundance and species
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biodiversity (Srinivasan et al., 2015; Vitali et al., 2015). A recent study

found that a combination of vaginal microbiota metabolites

representing BV increased basal and toll-like receptor (TLR)

-induced production of TNF-a, demonstrating their immune

regulatory effects (Delgado-Diaz et al., 2020).

As a major obstetrical and gynecological concern, BV is

associated with many negative health outcomes, such as infertility

(Ravel et al., 2021), preterm delivery (Honest et al., 2004; Cauci and

Culhane, 2011; Manns-James, 2011), pelvic inflammatory disease

(Taylor et al., 2013; Ravel et al., 2021), and sexually transmitted

infections (Bautista et al., 2016; Armstrong and Kaul, 2021).

Pathogenesis of BV involves degradation of the mucus layer on the

surface of vaginal epithelium, exfoliation and detachment of the

epithelial cells (Cauci et al., 2003), which in turn facilitates bacterial

adhesion and biofilm formation (Swidsinski et al., 2005; Varki, 2009;

Varki and Gagneux, 2012). Sialidases play a key role in the processes

mentioned above, making sialidase activity measurement useful in

the diagnosis and management of BV (Javed et al., 2019; Mabugana

et al., 2023). Of course, mucus degradation is such a complex process

that there are other glycosidases, proteases, and sulphatases involved

in (Wiggins, 2001). For example, prolidase is a kind of proteolytic

enzymes associated with BV, which shows a negative association with

interleukin (IL)–8 levels in female CVF (Cauci et al., 2002) and can

predict low birth weight and preterm birth with combination of

vaginal pH and vaginal sialidase (Cauci et al., 2005).

As a major virulence factor of Gardnerella spp (Schellenberg

et al., 2016; Kurukulasuriya et al., 2021), sialidases are important

glycoside hydrolases that cleave sialic acid residues off of terminal

glycans (Lewis et al., 2013; Robinson et al., 2019). Sialic acids are 9-

carbon monosaccharides found in glycoconjugates such as

glycoproteins and glycolipids, as well as at the distal end of N-

and O-linked carbohydrate chains, also named glycans (Ghosh,

2020). As a part of glycoconjugates and substrates of sialidases,

glycans have been found in human cervicovaginal fluid (CVF)

(Moncla et al., 2015; Moncla et al., 2016; Wang et al., 2015) and

surface of vaginal epithelial cells (Agarwal et al., 2023). Glycans

heavily coat the surface of mammalian epithelial cells (Ochs et al.,

2020; Argüeso et al., 2021), making them the frequent primary

point of interaction between microorganisms and mucosal barriers

(Poole et al., 2018). Through hydrolysis of sialic acids, which are

highly electronegative carbohydrates, sialidases participate in many

physiological and pathological pathways by lowering the surface

charge of the whole cell, exposing glycoconjugates’ binding sites,

changing the conformation of the glycoproteins, and eventually

altering the functions of sialic acid-containing glycoconjugates

(Pshezhetsky and Ashmarina, 2013).

Sialic acids support the defense barriers through a delicate

balance between sialylation and desialylation (Cohen and

Varki, 2010; Cao and Chen, 2012). Sialylation, mediated by

sialyltransferases, is the addition of sialic acids to the end of

oligosaccharides and glycoproteins, while desialylation, mediated

by sialidases, is the removal of sialic acids. Sialoglycoproteins,

composed of glycoproteins and sialic acids, are important defense

components of the mucosal surface that create a physical barrier

against pathogens (Lewis and Lewis, 2012). With a weight

percentage of almost 16% sialic acids, mucins provide a dense
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physical barrier that disrupt the interactions between pathogens and

epithelial cells (Slomiany et al., 1996; Moran et al., 2011). Moreover,

sialylation also plays a role in immune response by altering the

functions of immunoglobulins and regulating inflammation (Yoo

and Morrison, 2005; Anthony and Ravetch, 2010).

Sialidases, also known as neuraminidases, have been detected in

CVF and elevated level of sialidase activity is associated with BV

(Briselden et al., 1992; Myziuk et al., 2003). In a 1992 study, women

with BV had higher levels of sialidase activity in their vaginal

secretions than those without (Briselden et al., 1992). Over the next

three decades, many more studies produced similar results (Howe

et al., 1999; Smayevsky et al., 2001; Cauci et al., 2003; Lewis et al.,

2012). A recent study suggests that women with BV have higher sialic

acid depletion and lower levels of sialylation (Agarwal et al., 2023),

which could be explained by elevated sialidase activity as sialylation

breaks down and depletes sialoglycans. Another study also detected

roughly 3-fold lower amounts of total sialic acids and 3.5-fold greater

amounts of free sialic acids in BV samples compared with normal

samples using high-performance liquid chromatography (HPLC)

(Lewis et al., 2012). However, the exact mechanism of sialidases

causing BV is not fully understood, as the current understanding of

the roles of vaginal epithelial glycans is still limited.

Besides BV, sialidases are involved in a broad spectrum of

diseases within the human body as they can be produced by not

only bacteria but also viruses, mammals, and protozoa. Bacterial

sialidases also participate in host-bacteria interactions, coinfections,

and dysbiosis in oral cavity, gastrointestinal tract and respiratory

system (Siegel et al., 2014; Huang et al., 2015; Wong et al., 2018).

Influenza A and B viruses can also produce sialidases, which in turn

facilitates the development of influenza (Zambon, 2001). In

mammals, sialidases are involved in a wide range of health issues,

including cancers (SoÈnmez et al., 1999; Zhou et al., 2020), diabetes

(Natori et al., 2013), neurodegenerative disorders (Liao et al., 2020;

Khan et al., 2021), fibrosing diseases (Karhadkar et al., 2022) and

heart diseases (Zhang et al., 2018; Chen et al., 2021).

As the catalytic activity of sialidases is essential to the colonization

and dissemination of several pathogenic microorganisms, sialidases

could be used as a promising diagnostic marker for BV (Briselden

et al., 1992; Smayevsky et al., 2001). This article aims to review

relevant literature to explore the characteristics of sialidases in CVF,

their contributions to vaginal dysbiosis, and their clinical use in BV

diagnosis and treatment.
2 Sources of sialidase activity

So far research has reported in vitro sialidase activity in some BV-

associated bacteria (BVAB), such as isolates of Prevotella, Bacteroides,

and Gardnerella (Briselden et al., 1992). Studies have illustrated the

ability to produce sialidases by every strain of Prevotella bivia, while

only some G.vaginalis isolates produce sialidases (Briselden et al.,

1992; Lopes Dos Santos Santiago et al., 2011). However, G.vaginalis is

able to produce higher levels of sialidases, demonstrated in a study of

C57BL/6 mouse models where Prevotella models showed similar

levels of sialidase activities with G.vaginalis in a 100 times infection

titer compared to Gardnerella-colonized models (Gilbert et al., 2019).
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Apart from the abundance of bacteria themselves, other factors, such

as sialidase expression levels, individual heterogeneity, and

interactions between bacteria, might also affect sialidase activity in

the CVF. Furthermore, sialidase produced by possible viruses and the

host should be taken into consideration though there are few studies

about this.

Among genotypes of G.vaginalis, the expression levels of

sialidases are highly heterogeneous (Schellenberg et al., 2016).

Based on quantitative polymerase chain reaction (qPCR) targeting

clade-specific genes, Gardnerella is divided into four clades, clade 1

(encoding putative a-L-fucosidase), clade 2 (encoding a hypothetical

protein), clade 3 (encoding thioredoxin) and clade 4 (encoding CIC

family chloride transporter) (Balashov et al., 2014). They are different

in sialidase activity: clade 2 have the highest activity followed by

clade 1, clade3, and clade 4 (Qin and Xiao, 2022). In clade 4, the

proposed sialidase encoding gene sialidase A gene is not detected

(Shipitsyna et al., 2019).

Three sialidase homologs, NanH1 (also known as sialidase

A), NanH2, and NanH3, have been identified in G.vaginalis

(Janulaitiene et al., 2018; Robinson et al., 2019). Sialidase activity

in G.vaginalis was initially thought to derive from sialidase

encoding gene nanH1 (Lopes Dos Santos Santiago et al., 2011),

while a more recent study concludes that nanH2 and nanH3 are the

primary sources of sialidase activity in G.vaginalis (Robinson et al.,

2019). Schellenberg et al (Schellenberg et al., 2016). found that using

a filter spot assay, the presence of nanH1 was not indicator of

sialidase activity: only 36 of the 77 G.vaginalis isolates that tested

positive for nanH1 actually produced sialidases. Meanwhile in

another test done by polymerase chain reaction (PCR), sialidase

activity in a collection of 34 isolated G.vaginalis strains was

consistent with the detection of nanH2 or nanH3 (Robinson

et al., 2019). The main functional distinction between NanH2 and

NanH3 is that, NanH2 cleaves 9-O-acetylated sialic acid substrates

far more efficiently than NanH3, either in vitro or in vivo (Robinson

et al., 2019). In addition, nanH3 is more commonly present than

nanH2 (Cauci et al., 2003). These results suggest that NanH2 and

NanH3 are more likely to be the primary sources of sialidase activity

in G.vaginalis in human CVF, whereas NanH1 contributes little.

Studies propose that the absence of sialidase activity by nanH1

could be due to transcriptional regulation (Janulaitiene et al., 2018)

and a lack of signal sequence, suggesting an intracellular localization

of nanH1 (Kurukulasuriya et al., 2021). However, limited evidence

supports these hypotheses. Additionally, elevated nanH1 gene levels

have been found to be associated with both high-risk human

papillomavirus (HPV) (Di Paola et al., 2017) and BV (Hardy et al.,

2017). Thus, more research is needed to better understand the roles of

the sialidase encoding genes besides sialidases expression.
3 Pathogenicity of sialidases

The host mucosal defense barrier, which is important in the

identification, integration, and elimination of pathogens, can be

destroyed by desialylation of glycoconjugates such as mucins,

cellular receptors, and immunoglobulins, which in turn facilitates

bacterial adherence, colonization, invasion, and tissue breakdown
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(Briselden et al., 1992; Cauci et al., 2003, 1998; Cauci and Culhane,

2011). Sialidases’ participation in the pathogenesis of G.vaginalis

and BV is discussed below (Figure 1).
3.1 Source of nutrition in bacteria

Bacteria can use free sialic acids, a hydrolysate of glycoconjugates

catalyzed by sialidases, as a source of carbon for their nutrition and

colonization (Figure 1A) (Lewis et al., 2013; Agarwal et al., 2020;

Agarwal and Lewis, 2021). Evidence from mouse models shows that

free sialic acids released by sialidases promote the growth of group B

Streptococcus and the spread of ascending vaginal tract infections

(Pezzicoli et al., 2012; Gilbert et al., 2013). Bacteria lacking sialidase

encoding genes can also benefit from sialoglycan in the vagina via

sialidase producers such as G.vaginalis (Agarwal et al., 2020). Some

bacteria, such as Fusobacterium nucleatum (Haines-Menges et al.,

2015; Agarwal et al., 2020) and group B Streptococcus (Pezzicoli et al.,

2012), have sialic acid transport or catabolic pathways despite being

sialidase-negative themselves. Moreover, F.nucleatum can reinforce

sialidase activity produced by G.vaginalis in both ex vivo and in vitro

coculture studies. G.vaginalis titers exhibit a dose-dependent increase

with higher inocula of F.nucleatum or increasing proportions of its

cell-free supernatant in an in vitro coculture system of F.nucleatum

and G.vaginalis, in which G.vaginalis could not survive itself. This

suggests that F.nucleatum may secrete factors to facilitate G.vaginalis

growth. Additionally, in comparison to cocultures with F.nucleatum,

monocultures of G.vaginalis needed at least a 20,000-fold greater

inoculum to be viable after an overnight incubation (Agarwal et al.,

2020). Therefore, F.nucleatum and G.vaginalis form a mutually

beneficial relationship based on their glycan cross-feeding

mode, which promotes their colonization and contributes to

vaginal dysbiosis.

There have also been reports of the cross-feeding between

commensal bacteria in the gut. For example, Bifidobacterium

breve UCC2003, which contains a functional Nan cluster for sialic

consumption, can use the sialic acid produced by Bifidobacterium

bifidum PRL201048 (Egan et al., 2014). Similarly, in the oral cavity,

Streptococcus gordonii employs sialic acids as their only carbon

source (Byers et al., 1996). During the coinfection of influenza and

Streptococcus pneumoniae in the respiratory tract, sialic acids

produced by influenza accelerate bacterial replication in vivo and

stimulate pneumococcal proliferation (Siegel et al., 2014).
3.2 Exposure of receptor binding sites

Sialidases can also promote infections by damaging the

protective physical and biochemical barriers against pathogens

through exposure of receptor binding sites for adhesins and

toxins. In the oral cavity, adhesion of S.gordonii to oral epithelial

cells is greatly increased by the presence of Streptococcus oralis in a

sialidase-dependent manner through exposure of cryptic receptors

binding sites (Beighton and Whiley, 1990; Wong et al., 2018).

Sialic acids are typically found at the terminal position of

glycans. They can shield the underlying sugars (mostly galactose
frontiersin.org
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residues) from recognition, and then breakdown or adherence.

Sialidases in the vagina may reveal glycan epitopes by the

depletion of sialic acids and the exposure of underlying sugars to

the surface (Figure 1B). In both N- and O-linked glycans, sialic acids

cap Gal residues bound to N-acetylglucosamine (GlcNAc) or

N-acetylgalactosamine (GalNAc), which is not accessible on

the epithelial surface unless treated with exogenous sialidases or

using cells from BV-positive specimens (Agarwal et al., 2023).

Desialylation of glycoconjugates by sialidases causes loss of or

reveal of new glycan epitopes, affecting microbe binding and host

immunological recognition (Varki and Gagneux, 2012). Bacterial

adhesion occurs when terminal sugars are exposed with the

degradation of glycans, in which process carbohydrate-binding

proteins like lectins, previously predicted in Gardnerella, serve as

mediums (Bonnardel et al., 2021). According to genome screening,

a greater repertory of carbohydrate-binding proteins is produced

by vaginal bacterial species that are linked to infection and

inflammation, which may allow them to bind a greater variety

of glycans in the vagina. Compared with commensals like

Lactobacillus crispatus, the mean number of lectins per strain is

approximately 2-fold higher among those regarded as potential and

confirmed pathogens (including Lactobacillus iners, G.vaginalis,

Prevotella, group B Streptococcus, and Escherichia coli) (Bonnardel

et al., 2021). With the deepening of research on the surface

polysaccharide structure of the vagina and the bacterial

carbohydrate-binding proteins, comprehensive insights into host–

microbe interactions will be reached.
Frontiers in Cellular and Infection Microbiology 04
3.3 Biofilms formation

A biofilm is an organized community of microorganisms encased

in a extracellular matrix made of proteins, polysaccharides, and

nucleic acids, that attaches to a biological surface (Flemming et al.,

2016; Jung et al., 2017) and contributes to the survival of bacterial

infections (Del Pozo, 2018). Vaginal biofilms contribute to the

persistence and recurrence of BV, as well as antibiotic resistance

(Swidsinski et al., 2008; He et al., 2021). According to a recent

research, 11 of the 24 G.vaginalis strains were able to form biofilms,

providing themselves with advantages to evade host defense

mechanisms and survive against antibiotics (Ma et al., 2022). An in

vitro study suggests that most of the BVAB have a tendency to grow

biofilms, and G.vaginalis has greater propensity to form a biofilm,

enhancing its virulence potential through increased adhesion and

cytotoxicity of epithelial cells compared to other anaerobes (Alves

et al., 2014).

The lifecycle of biofilm formation is considered to include several

stages: (i) adhesion to a surface, (ii) production of extracellular

matrix, bacterial aggregation and biofilm accumulation until the

development of a mature biofilm structure, and finally (iii)

detachment (Joo and Otto, 2012). The initial adherence to vaginal

epithelial cells has been acknowledged to be a necessary process to

elicit BV (Swidsinski et al., 2005). As a dominant component of BV

biofilm, Gardnerella spp. replaces pre-dominant L.crispatus, initiate

bacterial colonization on vaginal epithelium and then serve as a

scaffold for the attachment of other BVAB, including Atopobium
B

C D

A

FIGURE 1

Sialidases’ participation in the pathogenesis of Gardnerella vaginalis and bacterial vaginosis. (A) Sialidase producers catalyze sialic acids from
glycoconjugates as nutrition source for sialic acid consumers. (B) Desialylation of glycoconjugates by sialidases exposes new glycan epitopes for
bacterial recognition and adhesion. (C) G.vaginalis and BVAB bacteria establish synergistic interactions based on sialidases during the formation of a
polymicrobial biofilm. (D) Sialidases participate in the immune regulation of BV, supported by other hydrolytic enzymes, virulence, and
immunomodulatory metabolites. BVAB, bacterial vaginosis-associated bacteria; SCFAs, short chain fatty acids; Gvh, Gardnerella vaginalis hemolysin;
IL, interleukin; Anti-Gvh IgA, immunoglobulin A against Gardnerella vaginalis hemolysin.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1367233
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Chen et al. 10.3389/fcimb.2024.1367233
vaginae (found in 80% of the samples and compromises 40% of the

biofilm mass) and other heterogeneously mixed bacteria belonging to

the Bacteroides, Corynebacterium, Lactobacillus, Staphylococcus,

Streptococcus genera and so on (Castro et al., 2015; Castro et al.,

2019; Swidsinski et al., 2005; Verstraelen and Swidsinski, 2013;

Schwebke et al., 2014). The process is known as coaggregation

(Figure 1C). Sialidases serve as a trigger at this initial stage of

colonization. By means of its mucinase activity, the enzymes alter

the characteristics of mucus discharges, catalyze them as a meal for

bacteria and expose adhesion receptors on polysaccharides to

promote bacterial colonization, increasing the potential for

G.vaginalis to contact closely with the epithelium. Then early

biofilm forms with the aggregation of other BVAB and the

accumulation of extracellular matrix (Verstraelen and Swidsinski,

2013). Though sialidase A gene is not found to be associated with

sialidase activity, it has been found to be associated with the presence

of G.vaginalis biofilms, suggesting its possible contribution to biofilm

formation (Hardy et al., 2017). There is still a lack of research

comparing the expression levels of sialidase in biofilms and

planktonic cells, which can provide us with deeper insights into the

role of sialidase in biofilm formation. What’s more, interactions

between the microorganisms within vaginal biofilms are worth

investigating as sialidase activity may be affected by those sialidase-

negative bacteria. Besides the finding that F.nucleatum and

G.vaginalis benefit from each other, an in vitro dual-species biofilm

model demonstrates that other BVAB, such as Actinomyces neuii and

Enterococcus faecalis, can upregulate sialidase and vaginolysin

expression in G.vaginalis to reinforce its virulence (Castro

et al., 2019).

Similar findings of the involvements of sialidases in biofilm

formation also presents in infections of other systems. In the early

phases of pulmonary infection, Pseudomonas aeruginosa and its

sialidases, existing on the highly sialylated surfaces of the upper

respiratory tract, can target bacterial glycoconjugates, promote cell-

cell interactions, and initiate biofilm formation (Soong, 2006). Viral

sialidase inhibitors have demonstrated the ability to block the

process of biofilm formation in clinical in vitro, suggesting a

potential novel pharmacological target in bacterial pneumonia

prevention (Soong, 2006). In Porphyromonas gingivalis, the main

pathogenic bacterium in chronic periodontitis, the sialidase

encoding gene shows a higher expression level than that in

planktonic cells (Lo et al., 2009). Sialidase-deficient strains also

demonstrates less and discontinuous biofilm formation compared

with wild-type P.gingivalis strains (Xu et al., 2017).
3.4 Immune regulation

The host-mucosa-sialidase can be regarded as a whole because

sialidase functions on the mucosa. Sialidase is central to the

suppression and overwhelm of host immune response. Meanwhile,

it is also supported by other hydrolytic enzymes, vaginolysin, and

immunomodulatory metabolites (Figure 1D) (Amabebe and

Anumba, 2022). Sialylation of glycoconjugates, such as mucins,

immunoglobulins (especially secretory immunoglobulin A, sIgA),

and cytokines, cleave the molecules’ terminal sialic acids and
Frontiers in Cellular and Infection Microbiology 05
uncover their carbohydrate residues to all kinds of glycosidases,

thus making them more susceptible to proteolytic degradation and

hampering immune response against bacteria (Cauci et al., 2003;

Cauci, 2004). For example, during the incubation of sIgA and BV

vaginal specimens, the release of products with lower molecular

weight into the extracellular environment are observed and the

phenomenon can be reproduced by adding three exogenous

enzymes: sialidase, b-galactosidase and hexosaminidase, which

suggests the deglycosylation and proteolysis of sIgA in BV (Lewis

et al., 2012).

In BV-positive women with a specific IgA immune response

against G.vaginalis hemolysin (Gvh, vaginolysin), increased

cleavage of IgA and a 5-fold higher sialidase activity is observed

compared to those with a weaker IgA response (Cauci et al., 1998).

Later, another study reconfirmed that elevated sialidase and

prolidase levels reduce this mucosal adaptive immune response.

Vaginolysin, another virulence factor of G.vaginalis, is a cholesterol-

dependent cytolysin (CDC) which forms pores on cell membranes,

free host intracellular contents and disrupts genital epithelial cells

(Morrill et al., 2023). The immunosuppression allows vaginolysin to

fully carry out its cytolytic action, which results in the detachment

and destruction of the vaginal epithelial cells that eventually

produce clue cells (Castro et al., 2019).

High sialidases and prolidases levels are also associated with

elevated vaginal IL-1b, leading to tissue damage and increased

susceptibility to sexually transmitted infections (STIs) (Cauci

et al., 2008). Despite that IL-1b stimulates IL-8 secretion, sialidase

level is also inversely correlated to vaginal IL-8 and neutrophils,

which inhibits neutrophil infiltration and the proinflammatory

cascade (Cauci et al., 2008). According to in vivo research, BVAB

can evade the immune response by either secreting molecules that

aid in the breakdown of IL-8 or by suppressing the generation and

stability of IL-8 (Santos et al., 2018). These findings suggest that in

BV-positive women, sialidases contribute to the suppression of

innate mucosal immunity.

However, BVAB induced the secretion of IL-6, IL-8, G-CSF, IP-

10, MIP-1b, RANTES, and Gro-a, while lactobacilli did not in

another study that used a coculture model to characterize the

response of vaginal epithelial cells to a series of vaginal bacteria,

including commensal lactobacilli and BVAB such as G.vaginalis,

A.vaginae, Mobiluncis curtisii, and P.bivia (Eade et al., 2012). The

results is consistent with that A.vaginae induces a robust

proinflammatory response by elevating transcript levels of IL-6,

IL-8, and antimicrobial peptide b-defensin 4 (Libby et al., 2008). It

seems that BVAB trigger mucosal innate immune response,

increasing production of cytokines and defensins to eliminate

pathogens. But excessive inflammatory response might lead to a

disturbance of the vaginal immunological barrier and increasing

susceptibility to STIs (Doerflinger et al., 2014).

Furthermore, bacterial surface sialylation may serve as an

immunological mask (Ram et al., 2017; Vimr and Lichtensteiger,

2002). It has been proposed that bacteria might be passed for host

cells and evade the host’s immune system by incorporating the

cleaved sialic acids into their cell surface structures (Varki and

Gagneux, 2012). Differentiation between self-sialic-acids and close

mimics is achieved through intrinsic lectins such as sialic acid-
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binding immunoglobulin-like lectins (Siglecs) anchored on most

immune cells (Duan and Paulson, 2020). By engaging inhibitory

Siglec‐5 and Siglec‐9, group B Streptococcus can escape from host

immune responses (Carlin et al., 2007). Neisseria gonorrhoeae

transfers sialic acid residues to its surface lipooligosaccharide

(LOS) to achieve molecular simulation, which contributes to its

serum resistance and complement resistance in all three pathways

(classical, lectin, and alternative) (Ram et al., 2017). A study reports

that vaginolysin is able to release the contents of cervical epithelial

cells, promote gonococcal LOS acquisition of sialic acids, and evade

complement attack through increased binding of the regulatory

protein factor H (Morrill et al., 2023), suggesting that sialidases and

vaginolysin are both crucial in the regulation of the LOS sialylation

level and its pathogenic ability. Meanwhile, another study reports

that desialylation of gonococcal LOS by sialidases in women

promotes increased transmission of infection to men (Ketterer

et al., 2016). These findings suggest that sialylation and

desialylation may to have unique functions during the invasion

of pathogens.

4 Sialidase and bacterial vaginosis

4.1 Sialidase and characteristics of BV

Elevated sialidase activity has been observed in BV CVF,

suggesting that sialidases could be used as a promising biomarker

for BV (Briselden et al., 1992). The presence of sialidase A gene was

detected in all 24 G.vaginalis samples in a recent study (Ma et al.,

2022), while another study reports an association between sialidase

activity in molecular-BV (community state type IV, CST IV) and

changes in the bacterial components of the local microbiome,

assessed by using V3–V4 16S rRNA sequencing (Ferreira et al.,

2022). Gardnerella, Atopobium, and Prevotella were among BV-

associated the genera that were more prevalent in women with high

sialidase activity (Ng et al., 2021). Increased sialidase may be

attributed to the higher abundance of some BVAB that can

produce sialidases by themselves, such as Prevotella (Briselden

et al., 1992). At the same time, sialidases can impair the vaginal

mucosal immune system, which creates a beneficial environment

for the overgrowth of BVAB over the Lactobacillus spp. and

increases bacterial diversity (Lewis et al., 2013).
4.2 Sialidase and diagnosis of BV

As a biomarker for BV, sialidases could be used to develop new

diagnostic tests as cheaper and quicker alternatives to the current

standard clinical diagnostic tools. Current clinical diagnosis of BV is

often based on the Nugent scoring system (Nugent et al., 1991) or

the Amsel criteria (Amsel et al., 1983), both of which require

microscopy and trained professionals. On the contrary, enzyme-

based simple assays may be cheaper and quicker (Robinson et al.,

2019; Wu et al., 2019; Cortés-Sarabia et al., 2020; Rodrıǵuez-Nava

et al., 2021; Avila-Huerta et al., 2023; Liu et al., 2023). Several new

tests have been developed to detect sialidases. A comparison of their
Frontiers in Cellular and Infection Microbiology 06
clinical diagnostic performance is shown in Table 1. The most

widely used is BVBlue test, a microscopy-independent bedside test

that detects sialidase activity using ≥7.8 U as the cut-off value for

diagnosis of BV (Myziuk et al., 2003; Bradshaw et al., 2005; Permsak

et al., 2005; Madhivanan et al., 2014; Foessleitner et al., 2021).

OSOM® BVBLUE® Test is a commercial chromogenic test that can

rapidly detect elevated vaginal fluid sialidase activity, with excellent

sensitivity and specificity compared to Gram Stain, and it is widely

used in many parts of the world. Similarly, a sensitive colorimetric

bioactive paper that changes its color from white to dark purple in

the presence of sialidases demonstrates a quick reaction time and

strong storage stability (Zhang and Rochefort, 2013), though its

clinical performance in BV diagnosis was not evaluated. Although

sialidase activity tests are performed clinically, the results are

currently only used as references and not as a diagnostic criterion.

4.2.1 PCR
The nanH3 gene expression could be used for PCR detection of

BV as its level differs in normal microbiota and BV cervicovaginal

fluid samples (Novak et al., 2023). PCR detection of nanH2 or

nanH3 has a sensitivity of 80.95% and a specificity of 78.26% in

differentiating between Lactobacillus-dominance and BV, as

determined by Nugent scoring (Robinson et al., 2019). However,

the test only detects sialidase produced by G.vaginalis, limiting its

applicability to other BV pathogens.

4.2.2 Fluorescence
Fluorescence could also be used to visualize sialic acids on cell

membranes. The first test developed and adopted for BV diagnosis

was turn-on tetravalent sialic acid-coated tetraphenylethene

luminogen (Liu et al., 2018). Later on, a biochemiluminescent

sialidase assay using a firefly luciferin derived substrate was

developed, in which luciferins released by cleavage of the

substrate subsequently oxidize and generate a light signal

indicating relative sialidase concentration (Wu et al., 2019). More

recently, a novel boron and nitrogen codoped fluorescent carbon

dots (BN-CDs) was developed based on fluorescence spectrometry,

in which sialidases can restore the fluorescence by interfering with

the selective recognition interaction between the sialic acid and

phenylboronic acid groups on the surface of BN-CDs, limiting

fluorescence emission (Liu et al., 2023). The probe is comparable to

Amsel criteria in its diagnosis of BV, indicating promising use for

clinical diagnosis and therapy (Liu et al., 2023).

4.2.3 Immunosensing
A new microfluidic paper-based analytical tool based on a

monoclonal antibody that has a high specificity for sialidase

recognition for BV diagnosis was described (Avila-Huerta et al.,

2023). Taking advantage of a surface coated with graphene oxide as

a fluorescence quencher, they developed a Y-shaped strip,

consisting of an entrance, a control, and a test zone (Avila-Huerta

et al., 2023). The apparatus can achieve a prompt and sensitive

response within 20 minutes for the identification of BV, making it

economically accessible and convenient for large scale use (Avila-

Huerta et al., 2023).
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TABLE 1 Sialidase-based tests for BV and their clinical diagnostic performance.

Methods Technique Diagnostic Criteria References Sample
Size

Sensitivity Specificity Positive
Predictive
Value

Negative
Predictive
Value

BVBlue test
(Myziuk et al., 2003)

Chromogenic test Sialidase activity≥7.8 U the
Nugent
scoring

57 91.7% 97.8% 91.7% 97.8%

the
Amsel
criteria

50.0% 100% 100% 88.2%

BVBlue test
(Bradshaw
et al., 2005)

the
Nugent
scoring

288 88% 95% / /

the
Amsel
criteria

88% 91% / /

BVBlue test
(Permsak et al., 2005)

the
Nugent
scoring

173 94% 96% 86% 98%

BVBlue test
(Madhivanan
et al., 2014)

the
Nugent
scoring

266 38% 95% 90% 54%

the
Amsel
criteria

323 51% 94% 82% 78%

BVBlue test
(Foessleitner
et al., 2021)

the
Nugent
scoring

200 81% 100% 100% 98.1%

A sensitive
colorimetric bioactive
paper
(Zhang and
Rochefort, 2013)

Colorimetric
biosensor

The changes of paper color
from white to dark purple

/ / / / / /

PCRs of nanH2 or
nanH3
(Robinson
et al., 2019)

PCR The dictation of nanH2 or
nanH3 gene

the
Nugent
scoring

67 80.95% 78.26% / /

A turn-on tetravalent
sialic acid-coated
tetraphenylethene
luminogen (TPE4S)
(Liu et al., 2018)

Fluorescence response Based on the relative
fluorescence intensities (I/
I0) monitored at 510 nm
of experimental groups (I)
and control group (I0)
added 20 mM TPE4S, the
samples are graded as
normal (grade 1, 0< I/I0 ≤
5), sialidase weak positive
(grade 2, 5< I/I0 ≤ 10), and
sialidase strong positive
(grade 3, I/I0 > 10).

BVBlue test 150 92.5% 91.8% / /

A
biochemiluminescent
sialidase assay
(Agarwal et al., 2020)

Biochemiluminescence A cutoff value of 400,000
relative light units when a
Helios 2000 luminometer
is used.

the
Amsel
criteria

423 95.40% 94.94% 83% 98.76%

Boron and nitrogen
codoped fluorescent
carbon dots (BN-
CDs)
(Liu et al., 2023)

Fluorescence
spectrometry

Sialidase
concentration>1.25 U/mL

the
Amsel
criteria

6 / / / /

Nanophotonic
sialidase
immunoassay
(Rodrıǵuez-Nava
et al., 2021)

Immunosensing Sialidase
concentration>25.194
ng/mL

the
Amsel
criteria

162 96.29% 96.29% 92.86% 98.11%

(Continued)
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Another research team recently designed and manufactured a

monoclonal antibody (mAb) targeted against G.vaginalis sialidases

(Cortés-Sarabia et al., 2020). They further developed a single-step

quantitative biosensing system for BV diagnosis, using graphene

oxide-coated microwells and mAb-decorated quantum dots

(Rodrıǵuez-Nava et al., 2021). Sialidase activity in vaginal swab

samples detected by this method has a 96.29% specificity and

96.29% sensitivity, using Amsel criteria for the identification of

BV (Rodrıǵuez-Nava et al., 2021).
4.3 Sialidase and treatment of BV

With the understanding of the molecular mechanism of sialidases

and its association with the pathogenesis of BV, sialidases can be used

as not only a promising diagnostic marker but also a pharmaceutical

target through activity blockage using inhibitors (Keil et al., 2022).

Sialidase inhibitors include transition-state analogue inhibitors,

mechanism-based inhibitors, suicide substrate inhibitors, product

analogue inhibitors, and natural product inhibitors (Keil et al., 2022),

which can act on virus, bacteria, human and protozoa sialidases.

Numerous natural compounds have been identified and examined

for their ability to inhibit sialidases from human, bacteria and influenza

viruses. As for bacteria sialidases, three novel compounds as potent

inhibitors are isolated from Lespedeza bicolor and effect in a dose-

dependent manner, among them the best inhibitor has an IC50

(represents the compound concentration that causes 50% enzyme

activity loss) of 0.09 mM (Woo et al., 2011). A recent discovery is a

curcumin analogue against S.pneumoniae Nan A, whose IC50 value is

0.2 ± 0.1 mM, exhibiting a 3-fold increase in inhibitory efficacy

compared to curcumin (Kim et al., 2018). Natural products provide

us with an alternate source for creating novel bacterial sialidases

inhibitors and treating sepsis caused by bacteria infections, which are

worth exploring for BV treatment. In our discussion of potential

treatment options for BV, with G.vaginalis being the major

pathogen, we will be focusing on bacterial sialidase inhibitors (Keil

et al., 2022) and salic acid analogs (Agarwal and Lewis, 2021).

4.3.1 Sialidase inhibitors
Among them the most studied is the influenza virus sialidase

inhibitors. Influenza sialidase (usually called neuraminidase) is

required for the infection cycle to continue because it releases the

freshly generated virus from the host cell, contributing to its

spreading and preventing self-aggregation of the viral particles

(Glanz et al., 2018). Currently, there are three antiviral drugs that
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target the glycoprotein neuraminidase on the surface of the

influenza virus, including oseltamivir, zanamivir, and peramivir.

They are essentially transition-state analogue inhibitors and work

by inhibiting the neuraminidase enzyme’s activity and preventing

the virus from exiting the infected cells (Javanian et al., 2021).

As bacterial and viral sialidases share the same sialic acid

interaction sites, the ASP boxes (Roggentin et al., 1989), influenza

virus sialidase inhibitors can be used to block the bacterial sialidase

active site and prevent the formation of biofilms (Hayden et al.,

1999). Evidence shows that influenza virus sialidase inhibitors

oseltamivir and peramivir can block P.aeruginosa biofilm

formation in a dose-dependent manner (Soong, 2006). Similarly,

the desialylation of sIgA during incubations with BV samples and

can be inhibited by deoxy-dehydro-sialic acid (DDSia), a synthetic

sialidase inhibitor (Lewis et al., 2012). Zanamivir impairs the

virulence of the BV-associated pathogen G.vaginalis through a

reduction of 30% in G.vaginalis sialidase activity and 50% in its

ability to invade host cells (Govinden et al., 2018). It’s interesting

that the medicine for influenza treatment associates with BV.

Anyway, they provide us with a new prospective to treat BV,

despite neuraminidase inhibitor sensitivity varies throughout

mammalian, microbial, and viral neuraminidases.

4.3.2 Sialic acid analogs
The two major forms of sialic acid in mammals, N-

acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid

(Neu5Gc), differ by a single oxygen atom, with Neu5Ac being the

most prevalent form of sialic acid in mammalian cells (Schauer and

Kamerling, 2018). The enzyme needed to synthesize Neu5Gc from

Neu5Ac is called CMP-N-acetylneuraminic acid (CMP-NeuAc)

hydroxylase, which is inactive in human, so Neu5Gc is a non-

human derived sialic acid (Lewis et al., 2013). Once Neu5Ac is

released by sialidases in the vagina, transport, uptaking and

catabolism of them are proceeded within cells. The intracellular

process is mediated by Neu5Ac lyase/aldolase and the substrates are

catalyzed into N-acetylmannosamine (ManNAc) and pyruvate

without accumulation (Lewis et al., 2013). An inherent biological

mechanism for regulating enzyme processes is feedback inhibition

through end-product inhibition of upstream enzymes. Through

feedback inhibition, free Neu5Ac is a weak inhibitor of sialidases

(Schauer and Kamerling, 1997). While a high-affinity transport

mechanism in G.vaginalis has a preference for Neu5Ac, G.vaginalis

sialidase does not appear to have strong preferences between

Neu5Ac and Neu5Gc as substrates (Byers et al., 1999). This

means that the uptake and breakdown of sialic acids are
TABLE 1 Continued

Methods Technique Diagnostic Criteria References Sample
Size

Sensitivity Specificity Positive
Predictive
Value

Negative
Predictive
Value

A novel microfluidic
paper-based
analytical device
(Avila-Huerta
et al., 2023)

Immunosensing Sialidase
concentration>25.1ng/mL

the Nugent
scoring&the
Amsel
criteria

14 / / / /
fr
/: the data was not provided.
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substrate-dependent and occur far more slowly and incompletely,

when there is a substantial concentration of Neu5Gc (Figure 2).

Later a study confirmed that G.vaginalis could liberate free Neu5Ac

from IgA but fails to consume them with the presence of Neu5Gc,

which further indicates Neu5Gc’s potential as an inhibitor to reduce

Neu5Ac transport into G.vaginalis (Lewis et al., 2013). These

findings are consistent with a prior discovery that in the

bacterium S.oralis, Neu5Gc inhibits the uptake of Neu5Ac (Byers

et al., 1999). Despite that Neu5Gc shows sialidase inhibitory

activity, its effects for anti-BV are not verified and its effectiveness

and safety still need experimental verification.
5 Conclusion

This study explores the role of sialidases in vaginal dysbiosis,

pathogenesis of BV, and promising diagnostic and treatment options

for BV. Although the composition and dynamics of the human vaginal

microbiome are being studiedmore andmore, we still know little about

the mechanisms underlying the development of vaginal dysbiosis and

the critical factors that influence it. As a main virulence factor of

Gardnerella spp. and an important glycoside hydrolase enzyme,

sialidases cleave sialic acid from terminal glycans, also known as

desialylation. The process facilitates the destruction of mucosal

defense barrier, as well as bacterial adhesion, colonization, and

invasion into the vaginal epithelia through provision of nutrient

sources, exposure of receptor binding sites, biofilms formation, and

immunity regulation. However, not all G.vaginalis strains can produce

sialidases and the contribution of sialidases to BV is just part of the

pathogenesis ofG.vaginalis. There are still other BVAB, virus, and even

the human body itself can produce sialidases. Moreover, the use of
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sialidases as a biomarker for predicting treatment outcomes and the

prognosis of BV still needs to be tested in clinical studies. Future

research should focus on understanding the pathogenesis of sialidases

produced by different strains ofG.vaginalis and other sources, as well as

the association between sialidases and the persistence and recurrence of

BV, to provide new insights to improve diagnosis and treatment of BV.
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FIGURE 2

Gardnerella vaginalis captures free Neu5Ac hydrolyzed by sialidases, pumps them into the cell by a transporter, and then catalyze them into ManNac
and pyruvate by intracellular aldolase/lyase. Exogenous Neu5Gc is a kind of sialic acid analogues, which inhibits G.vaginalis transporter and results in
extracellular Neu5Ac accumulation. Neu5Ac is a weaker inhibitor of sialidases base on feedback mechanism. Neu5Ac, N-acetylneuraminic acid;
Neu5Gc, N-glycolylneuraminic acid; ManNac, N-acetylmannosamine.
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