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Background: Ulcerative colitis (UC) is a multifactorial chronic inflammatory

bowel disease (IBD) that affects the large intestine with superficial mucosal

inflammation. A dysbiotic gut microbial profile has been associated with UC.

Our study aimed to characterize the UC gut bacterial, fungal, and metabolic

fingerprints by omic approaches.

Methods: The 16S rRNA- and ITS2-based metataxonomics and gas

chromatography–mass spectrometry/solid phase microextraction (GC–MS/

SPME) metabolomic analysis were performed on stool samples of 53 UC

patients and 37 healthy subjects (CTRL). Univariate and multivariate approaches

were applied to separated and integrated omic data, to define microbiota,

mycobiota, and metabolic signatures in UC. The interaction between gut

bacteria and fungi was investigated by network analysis.

Results: In the UC cohort, we reported the increase of Streptococcus,

B ifidobac te r i um , En t e robac te r i a ceae , TM7-3 , Granu l i c a t e l l a ,

Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus, Peptoniphilus,

Gemellaceae, and phenylethyl alcohol; and we also reported the decrease of

Akke rmans i a ; Rum inococcaceae ; Ruminococcus ; Gemmige r ;

Methanobrevibacter; Oscillospira; Coprococus; Christensenellaceae;

Clavispora; Vishniacozyma; Quambalaria; hexadecane; cyclopentadecane; 5-

hepten-2-ol, 6 methyl; 3-carene; caryophyllene; p-Cresol; 2-butenal; indole, 3-

methyl-; 6-methyl-3,5-heptadiene-2-one; 5-octadecene; and 5-hepten-2-one,

6 methyl. The integration of the multi-omic data confirmed the presence of a

distinctive bacterial, fungal, and metabolic fingerprint in UC gut microbiota.
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Moreover, the network analysis highlighted bacterial and fungal synergistic and/

or divergent interkingdom interactions.

Conclusion: In this study, we identified intestinal bacterial, fungal, and metabolic

UC-associated biomarkers. Furthermore, evidence on the relationships between

bacterial and fungal ecosystems provides a comprehensive perspective on

intestinal dysbiosis and ecological interactions between microorganisms in the

framework of UC.
KEYWORDS

inflammatory bowel disease, ulcerative colitis, dysbiosis, gut microbiota, gut
metabolism, intestinal biomarkers, multi-omic integrated approaches
1 Introduction

The human gut microbiota, mycobiota, metabolome, and their

interactions contribute to gastrointestinal (GI) health and immune

system homeostasis (Strati et al., 2021). An alteration in the

composition or function of the intestinal microbiota establishes a

dysbiotic state of the gut (Sovran et al., 2018; Lee et al., 2022), which

is associated with several human diseases, including inflammatory

bowel diseases (IBDs) (Lee et al., 2022).

IBDs are multifactorial diseases whose etiopathogenesis resulted

from the complex interactions among immune system

dysregulation, genetic and environmental factors, and intestinal

homeostasis disorders (Wijmenga, 2005; Knights et al., 2014). Based

on disease manifestation, IBD is classified into two major subtypes:

ulcerative colitis (UC) and Crohn’s disease (CD) (Xavier and

Podolsky, 2007). In particular, UC, the most common form of

IBD, affects the large intestine (colon and rectum) with mucosal

inflammation that can lead to complications (i.e., ulceration, severe

bleeding, toxic megacolon, and fulminant colitis) (Chang, 2020).

UC is associated with several risk genic loci (Anderson et al., 2011)

involved in epithelial barrier dysfunction, apoptosis and autophagy,

and transcriptional and adaptive immune dysregulation (Danese

and Fiocchi, 2011). CD results in transmural ulceration of any

portion of the GI, most often affecting the terminal ileum and colon

(Xavier and Podolsky, 2007).

Both CD and UC are characterized by chronic inflammation of

the GI tract, caused by an abnormal immune response to a dysbiotic

gut microbiota marked by an overgrowth of harmful bacteria and

concomitant depletion of beneficial members (McDowell et al.,

2023). This dysbiotic condition plays a pivotal role in the triggering

and maintenance of intestinal inflammatory processes in these

diseases (Bryan et al., 2016; Zheng and Wen, 2021; Wiredu

Ocansey et al., 2023).

Moreover, it is noteworthy to consider the effects of the changes

in the composition of intestinal mycobiota in these patients. Some

studies have reported low levels of Saccharomyces cerevisiae and
02
high levels of Candida albicans in UC patients compared with

healthy subjects (Sokol et al., 2017; Imai et al., 2019; Chen et al.,

2022). Furthermore, the Basidiomycota/Ascomycota ratio was high

in UC patients during flares but normal in remission, suggesting

their involvement in the inflammatory processes (Sokol et al., 2017;

Imai et al., 2019; Chen et al., 2022).

As a result of microbiota and mycobiota dysbiosis, broad

changes in gut microbial metabolism have been reported in IBD

patients with dysbiosis (Heinken et al., 2021). For example,

alterations in fecal bile acids (BAs) and in inflammatory

responses have been demonstrated in UC patients as a result of

the dysregulation of the gut microbiota (Gallagher et al., 2021;

Sultan et al., 2021; Yang et al., 2021). Furthermore, the increase of

fecal amino acids in UC has been correlated with intestinal

dysbiosis and malabsorption caused by persistent intestinal

inflammation (Marchesi et al., 2007).

There are several studies that have dealt with defining the role of

the intestinal microbiota in IBDs with single omics approaches,

while there are still few integrated omics studies that offer a holistic

point of view on this topic.

The purpose of this study was to define the gut bacterial, fungal,

and metabolomic profiles of UC patients, by an innovative and

complete biocomputational approach. Moreover, by the integration

of these omic profiles, we targeted the identification of disease-

associated biomarkers. Finally, by the ecological interkingdom

connection study, we aimed to establish synergistic and/or

divergent interactions between bacteria and fungi and their role

in intestinal dysbiosis.
2 Materials and methods

2.1 Patients and samples

In this study, patients in the active stage of UC, according to the

Mayo clinical score, were enrolled at the Internal Medicine and
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Gastroenterology Division at Fondazione Policlinico Universitario

“A. Gemelli” IRCCS Hospital.

The inclusion criteria were as follows: diagnosis of UC, mild to

moderate active disease (Mayo clinical score, MCS ≤4) or moderate

to severe active disease >4, naive to biologic therapies or having

failed no more than one line of biologic treatment, and candidate to

second-generation therapies. The exclusion criteria were the

presence of infectious, ischemic, and actinic colitis or other

significant comorbidities.

Healthy subjects, selected for gender and age matching with UC

patients, were enrolled at the Human Microbiome Unit of Bambino

Gesù Children’s Hospital in Rome, during an epidemiological

survey. Subjects with a family history of autoimmune or IBD

diseases, with gastrointestinal diseases, and using either

antibiotics or pre-/probiotics in the previous 2 months from

enrollment were excluded. Fecal samples were collected and

stored to generate a reference sample biobank of healthy subjects

(BBMRI Human Microbiome Biobank, OPBG).

This study was approved by the Ethics Committee of

Fondazione Policlinico Universitario “A. Gemelli” IRCCS

Hospital (Protocol 25062019 n.884) and of Bambino Gesù

Chi ld ren ’ s Hosp i t a l , IRCCS (hea l thy sub j ec t s : No .

1113_OPBG_2016), and was conducted in accordance with the

Principles of Good Clinical Practice and the Declaration of

Helsinki. All participants provided written informed consent for

participation in this study.
2.2 16S rRNA and ITS2 loci sequencing

For bacterial metagenomic analysis, 200 mg of stools were

submitted to DNA extraction by QIAmp Fast DNA Stool mini kit

(Qiagen, Germany), according to the manufacturer’s instructions.

A 16S rRNA gene fragment, comprising the V3 and V4

hypervariable regions, was amplified using primers reported in

the MiSeq rRNA Amplicon Sequencing protocol (Illumina, San

Diego, CA, USA).

The approach used for fungal metagenomic analysis started

with the lysis step obtained by the incubation of 200 mg of stools

resuspended in 500 ml of lysis solution (50 mM of Tris [pH 7.5], 10

mM of EDTA, 28 mM of 2-mercaptoethanol, 10 U/ml of lyticase)

(Merck KGaA, Darmstadt, Germany) at 37°C for 30 min in

agitation at 850 rpm. After the lysis step, DNA extraction was

obtained as described above.

The ITS2 region of approximately 350 bp was amplified using the

primers ITS2 5′-GTGARTCATCGAATCTTT-3′ and 5′-
GATATGCTTAAGTTCAGCGGGT-3′ (Lemoinne et al., 2020; Del

Chierico et al., 2024) under the following conditions: 94°C for 2min, 35

cycles of 15 s at 94°C, 52°C for 30 s, and 72°C for 45 s. The PCR

products were purified using AMPure XP Beads (Beckman Coulters,

Brea, CA, USA). A second step of PCR was performed with Illumina-

adapted ITS2 primers: 5′-TCGTCGGCAGCGTCAGATGTGTATAA
GAGACAGGTGARTCATCGAATCTTT-3′ and 5′-GTCTCGTGGG
CTCGGAGATGTGTATAAGAGACAGATATGCTTAAGTTC

AGCGGGT-3′, following the previously reported PCR conditions

applied for 15 cycles.
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After a second step of DNA purification, an amplicon PCR

indexing step was performed (Nextera XT Index Kit, Illumina) (Del

Chierico et al., 2024).

Both bacterial and fungal final libraries were quantified by Quant-

iT™ PicoGreen® dsDNA assay kit (Thermo Fisher Scientific,

Waltham, MA, USA), pooled, and sequenced on an Illumina

MiSeq™ platform, according to the manufacturer’s specifications.

For all amplification steps, negative and positive controls were used

to exclude eventual internal and external contaminations for both 16S

rRNA and ITS2 sequencing approaches.

All raw sequencing reads are available at the NCBI BioProject

database (PRJNA996768 and PRJNA996917) (https ://

submit.ncbi.nlm.nih.gov/subs/sra/).
2.3 16S rRNA and ITS2 data analyses

Bioinformatics analysis was performed by QIIME2 v.2022.2

software (Bolyen et al., 2019), using DADA2 (Callahan et al., 2016)

plugin for quality check, trimming of forward and reverse fastq files,

denoising, chimera filtering, and merging reads. The representative

sequences of each amplicon sequence variant (ASV) produced with

a cutoff of 99% similarity were annotated by using a naive Bayes

classifier against the Greengenes reference database (v13.8, http://

www.greengenes.secondgenome.com) (DeSantis et al., 2006) for

bacteria and the UNITE ITS dynamic database (v9.0, https://

unite.ut.ee) (Nilsson et al., 2019) for fungi.

Statistical analyses were performed with R software v4.0.4. For

a- and b-diversity analyses, rarefaction was applied on the feature

table with absolute frequency, filtering out 16,140 and 2,870 ASVs

for 16S and ITS2, respectively. Statistical analyses on a-diversity
indices were performed using the non-parametric Mann–Whitney

and Kruskal–Wallis tests. The PERMANOVA test was applied to b-
diversity matrices. For further analyses, a raw feature table was

normalized with the cumulative sum scaling (CSS) method

(Paulson et al., 2013).
2.4 Metabolomic profiling determination

To characterize and quantify volatile organic compounds (VOCs),

119 stool samples were analyzed with gas chromatography (GC)

combined with mass spectrometry (MS) coupled with solid-phase

microextraction (SPME) (Douny et al., 2019). The carboxen-

polydimethylsiloxane-coated fiber (CAR-PDMS) (85 mm) and the

manual solid-phase microextraction (SPME) (Supelco Inc.,

Bellefonte, PA, USA) were exposed to each sample, for 45 min. The

latter was then inserted into the GC injection port for the desorption

phase of the samples for 10 min, and GC–MS analyses were carried out

using the Agilent Technologies 7890B GC coupled to a 5977A mass

selective detector by operating in electron impact mode, equipped with

an Agilent DB-HeavyWaX (60 m length, 0.25 mm ID, 0.25 µm)

capillary column. All processes were performed under the same

conditions reported by Vernocchi et al. (2020).

A match probability of 80%, or greater, was used for VOC

identification followed by manual visual inspection of the fragment
frontiersin.org
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patterns when necessary. Furthermore, 4-methyl-2-pentanol (final

concentration, 400 ppm) was used as an internal standard (IS) in all

analyses to quantify the compounds via interpolation of the relative

areas in comparison to the IS area (expressed as mg/kg).

VOCs were identified by using a two-step process: the peak

spectrum was tested against the NIST (NIST version 2005, NIST

14MS database; National Institute of Standards and Technology,

Rockville, MD, USA) mass spectral library database and literature

(Garner et al., 2007), and thereafter, in case further confirmation is

needed for the NIST identification, it was confirmed by comparing

the retention times of the peaks of interest vs. retention times

obtained for the reference standards.
2.5 Statistical analysis and omic
data integration

ASVs (bacteria: present less than 25% of THE total samples and

with relative abundance <0.01; fungi: present less than 25% of the total

samples) and metabolites (present less than 10% of the total samples)

were filtered out.

Metadata distribution was analyzed by the Shapiro–Wilk test.

Gender, age, and clinical features (i.e., corticosteroid therapy,

previous therapy, and failure to previous therapies) were evaluated as

confounding factors by microbiomeMarker v1.6.0 R package. Age was

tested further with the PERMANOVA test by adonis2 function of

Vegan v2.6 R package and by linear discriminant analysis (LDA) effect

size (LEfSe) (Segata et al., 2011) to exclude it as a confounding factor.

To evaluate the differences in the microbiota, mycobiota, and

metabolic profiles between the control (CTRL) and UC patient

groups, univariate and multivariate approaches have been applied:

linear discriminant analysis effect size, principal component

analysis (PCA), and partial least squares-discriminant analysis

(PLS-DA). Bacteria function profile was predicted with the

Phylogenetic Investigation of Communities by Reconstruction of

Unobserved States of Correlation 2 (PICRUSt2) software (Douglas

et al., 2020) on 16S rRNA metagenomic data. The p-values were

corrected by the Benjamini and Hochberg method to control the

false discovery rate (FDR). In all statistical analyses, differences with

an adjusted p-value <0.05 were considered significant.

Correlation networks between bacterial and fungal

communities were built using Spearman’s correlation by means of

the graph and corrr R packages (v1.74.0 and v0.4.4, respectively).

PCA was applied to bacterial, fungal, and metabolite matrices.

Then, differential -omic features were screened using variable

importance in the projection (VIP) values >1 of the first two

principal components of the PLS-DA model and compared with

those obtained by differential log fold change of univariate analysis

by the Mann–Whitney U test.

The integration of multiple omic data was performed with

multivariate approaches: unsupervised ComDim (Common

Dimension) multiblock method (Qannari et al., 2000),

unsupervised multiblock principal component analysis (MBPCA)

(Tchandao Mangamana et al., 2019), and supervised multiblock

partial least squares-discriminant analysis (MBPLS-DA)

(Brandolini-Bunlon et al., 2019). Each omic matrix (data blocks)
Frontiers in Cellular and Infection Microbiology 04
was normalized with Frobenius’s method, to harmonize

concentration values of metabolites with the relative abundance of

microorganisms (Curtasu et al., 2020). Finally, all matrices were

joined into a final unique matrix to perform multivariate analyses.

MBPLS-DA was validated with the area under the receiver operating

characteristic (AUROC) curve, RMSE, Q2, and R2 values.
3 Results

3.1 Characteristics of the overall cohort

In this observational study, 53 patients with UC and 37 healthy

subjects (CTRL) were enrolled. The cohort characteristics are

reported in Table 1.
3.2 Gut microbiota was independent from
gender, age, and clinical characteristics

By metataxonomic analysis of fecal samples, we obtained 10,729

bacterial and 1,484 fungal ASVs.

We tested gender, age, and some clinical variables as confounding

factors in our analyses. No differences in gut microbiota taxa and

metabolite distribution were observed for gender, corticosteroid

therapy, previous therapy, and failure of previous therapy

(Supplementary Table 1). On the contrary, age resulted as a

confounding factor for gut microbiota analysis (p-value = 0.032).

Then, we performed the beta-diversity analysis on the microbial,

fungal, andmetabolic variables of subjects grouped bymedian age (46

years) by the Bray–Curtis algorithm. The PERMANOVA test applied

to the dissimilarity matrix showed no statistical significance between

the two groups (p-value > 0.05) (Supplementary Figure 1). This result

was also confirmed by the LEfSe univariate analysis that revealed no
TABLE 1 Characteristics of the UC and CTRL groups.

Characteristics UC (n = 53) CTRL (n = 37)

Gender, N (%)

Male 25 (47.2%) 17 (46%)

Female 28 (52.8%) 20 (54%)

Age (years)

Mean ± SD 40.47 ± 14.14 50.70 ± 14.80

Disease duration (years)

Mean ± SD 8.83 ± 7.19 –

Clinical features

Corticosteroid therapy, N (%) 41 (77.3%) –

Previous therapy, N (%) 21 (39.6%) –

Failure to previous therapies,
N (%)

18 (33.9%) –
SD, standard deviation.
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differences in bacterial, fungal, and metabolomic distribution by

median age (FDR > 0.05) (Supplementary Table 2).
3.3 Gut bacterial and fungal dysbiosis
in UC

Comparing UC and CTRL, the a-diversity analysis, calculated on

the bacterial composition, revealed no statistically significant

differences between UC and CTRL (Supplementary Figure 2A), while
Frontiers in Cellular and Infection Microbiology 05
a significant decrease of the Shannon–Wiener index, calculated on the

fungal dataset, was found (p-value = 0.01) (Supplementary Figure 2B).

The b-diversity analysis based on the Bray–Curtis algorithm

revealed two distinct clusters for UC and CTRL (PERMANOVA p-

value < 0.05) (Supplementary Figures 2C, D) and an increase of

intragroup distance in UC than in CTRL (p-value = 0.0001), for

both bacterial and fungal ecosystems (Supplementary Figures 2E, F).

To investigate the differences in gut microbiota and mycobiota

composition between UC and CTRL, we applied multivariate and

univariate approaches (Figure 1).
B

C

D

E

F

G

H

A

FIGURE 1

Compositional analysis at the genus level of UC and CTRL gut microbiota (left panel) and mycobiota (right panel). Unsupervised multivariate analysis
[principal component analysis (PCA) plot] (A, E); supervised multivariate analysis plot [partial least squares-discriminant analysis (PLS-DA)] (B, F) and
loading variables plot (filtered for VIP > 1 and for fungi, for loading coefficient > 0.1) (C, G). Bacterial PLS-DA is characterized by root mean square
error (RMSE) = 0.336, R2 value = 0.544, and Q2 = 0.418. Fungal PLS-DA is characterized by RMSE = 0.226, R2 = 0.761, and Q2 value = 0.168. LDA
plots on LEfSe univariate analysis (D, H). Bacterial taxa enriched in UC patients have negative LDA scores (orange), while bacterial and fungal taxa
enriched in CTRL have positive scores (blue).
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By the fusion of these results, we assigned Streptococcus,

Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella,

Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus,

Peptoniphilus, and Gemellaceae to UC and Akkermansia,

Ruminococcaceae, Ruminococcus, Gemmiger, Methanobrevibacter,

Oscillospira, Coprococus, and Christensenellaceae to CTRL gut

microbiota (Figures 1A–D).

For fungi, PCA identified Didymellaceae, Saccharomycetales,

Malassez ia , Wickerhamomyces , Cutaneotr i chosporon ,

Saccharomyces, Clavispora, Alternaria, and Candida as major

fungal markers (Figure 1E). PLS-DA analysis revealed the

distinctive fecal fungal markers associated with UC (Figures 1F,

G). Univariate analysis showed a predominance of fungal markers

such as Clavispora, Vishniacozyma, and Quambalaria in the CTRL

group compared to the UC group, confirming a remarkable

d i ff erence in the feca l mycobio ta be tween the two

groups (Figure 1H).

The area under the ROC curve (AUROC) was 0.9393 for

bacteria and 0.9951 for fungi, indicating that the applied models

have high accuracy in group classifications (Supplementary

Figures 3, 4, respectively).

The global composition of the gut microbiota of the study

cohorts, represented by the distribution of the ASVs at the phylum,

family, and genus levels, is shown in Supplementary Figure 5.

Compared with healthy subjects, the following bacterial markers

were more representative in the microbiota of UC patients:

Actinobacteria, Proteobacteria, and Bacteroidetes at the phylum

leve l (Supplementary Figure 5A) ; Ruminococcaceae ,

Enterobacteriaceae, Bifidobacteriaceae, and Streptococcaceae at

the family level (Supplementary Figure 5B); and Streptococcus,

Faecalibacterium, Bifidobacterium, and Bacteroides at the genus

level (Supplementary Figure 5C). Furthermore, the fungi

Ascomycota, Chytridiomycota (Supplementary Figure 5D),

Saccha romyce t a c eae , P l eo sporaceae , D idyme l l a ceae

(Supplementary Figure 5E), and Saccharomyces, Malassezia, and

Alternaria (Supplementary Figure 5F) were the main components

of the gut mycobiota in UC patients.

To assess the microbial metabolic pathways, inferred by 16S

rRNA sequences, we performed the prediction of pathways of the

two cohorts, shown in the LDA plot (Supplementary Figure 6).

Twenty pathways, belonging to nine defined metabolic classes and

one undefined one, have been associated with the UC profile. Of

these, the following pathways were increased in UC: amino acid

biosynthesis, aspartate superpathway, carbohydrate degradation,

enzyme cofactor biosynthesis, fermentation to lactate,

fermentation to lactate/acetate, generation of precursor

metabolites and energy, generation of precursor metabolites and

energy, purine nucleotide biosynthesis, purine nucleotide de-novo

biosynthesis, and terpenoid biosynthesis.
3.4 Bacterial and fungal
interkingdom interactions

To gain insight into the relationship between taxa from different

kingdoms and to gain a more comprehensive understanding of the
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microbial ecosystems, we applied the interkingdom correlation

network analyses to the bacterial and fungal profiles in both

cohorts (Figures 2A, B).

The UC cohort network was characterized by eight nodes

connected by five edges, a relative connectedness of 0.625, and an

average number of neighbors of 2.25 (Figure 2A). The CTRL cohort

network was characterized by 63 nodes connected by 82 edges, a

relative connectedness of 1.30, and an average number of neighbors

of 3.6 (Figure 2B). All significant correlations between bacteria and

fungi are listed in Supplementary Table 3.
3.5 Distinctive metabolome in UC

We identified 95 filtered molecules by the metabolomic analysis

of fecal samples. PCA analysis revealed the presence of two distinct

metabolic profiles in UC patients and CTRLs, consisting mainly of

24 metabolic markers (Figure 3A).

The PLS-DA analysis showed a low RMSE value (0.329),

indicating a high accuracy of the model in predicting the subject

classification and highlighting more molecules associated with

CTRLs with UC (Figures 3B, C). The VIP features are shown in

Supplementary Figure 7A, and the AUROC was 0.9944

(Supplementary Figure 7B). Finally, the univariate analysis

confirmed the results reported by the multivariate approaches

(Figure 3D). The combination of multivariate and univariate test

results highlighted the increase of phenylethyl alcohol and the

decrease of cyclopentadecane; 5-octadecene; 5-hepten-2-ol, 6

methyl; 6-methyl-3,5-heptadiene-2-one; hexadecane; 2-butenal;

caryophyllene; indole, 3-methyl-; 3-carene; p-Cresol; and 5-

hepten-2-one, 6-methyl- in UC.
3.6 Different integrative multi-omic
approaches confirm the presence of a
typical shape and function of UC
gut microbiota

To reduce the complexity of these multi-omic results, we finally

applied three integrative multi-omic approaches to the three omic

datasets. The first two were predictive analyses, based on an

unsupervised MBPCA and a supervised MBPLS-DA, able to

predict discriminant variables (loadings), maintaining multi-omic

data separated. The third one was an exploratory approach, carried

out by multivariate unsupervised ComDim, in which the three omic

matrices were integrated before the analysis. As reported in

Figure 4A, the MBPCA identified two distinct gut bacterial,

fungal, and metabolic profiles in UC and CTRL.

The MBPLS-DA analyses identified loadings for each sample set

(Figures 4B, C). Regarding UC, the MBPLS-DA revealed an increase

of Bifidobacterium; Streptococcus; TM7-3; 1-hexanol, 2-ethyl-;

phenol; benzaldehyde; methyl isobutyl ketone; and 2-heptanone,

4-methyl.

In CTRL, we found the increase of Akkermansia; Gemmiger;

Coprococcus; Ruminococcaceae; Christensenellaceae; Clavispora;

Vishniacozyma ; cyclopentadecane; 3-carene; 1-tridecene;
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hexadecane; indole, 3-methyl; hexanoic acid ethyl ester;

caryophyllene; alpha-pinene; anethole; 2-butenal; p-Cresol;

pentadecanal; 2-tetradecene; and 1-heptanol. The RMSE and R2

values were 0.128 and 0.935, respectively, indicating a high

performance of this model. The bar plot of VIPs from MBPLS-

DA is shown in Figure 4D. The ROC analysis (Figure 4E) revealed

an AUROC value of 0.9947, indicating a high accuracy of the

prediction model.

The application of the ComDim analysis on the three omic

matrices integrated confirmed the presence of two distinct UC and

CTRL profiles, characterized by bacterial, fungal, and metabolic

markers (Figures 5A, B).
4 Discussion

While several studies have investigated the gut microbiota

composition in the UC context analyzing omic datasets

singularly, we aimed to elucidate, for the first time, the gut

bacterial, fungal, and metabolomic profiles of UC patients with

innovative biocomputational approaches based on multivariate

models applied on separated and integrated omic datasets. With
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this statistical design, we were able to show a string and well-defined

gut microbial and metabolomic fingerprint in UC condition.

Before exploring the gut microbiota composition between UC

and CTRL, we excluded age, gender, corticosteroid therapy,

previous therapy, and failure to previous therapies as confounders

of our analyses.

Consistent with the scientific literature that reports a dysbiotic

profile of UC patients with lower gut ecology than CTRL (Xu et al.,

2022; Zuo et al., 2022), our results showed a lower UC fungal a-
diversity than CTRL, indicating a lower richness and evenness of

fungal ecology. This finding was confirmed by the results of the

network analysis, in which the UC gut microbiota showed less

complexity than those of the CTRL, with a reduced number of

intra- and interconnections between bacteria and fungi, probably

due to the proinflammatory UC gut microenvironment affecting the

microbes and vice versa.

By the combination of multivariate and univariate test results,

we showed in UC gut microbiota the increase of Streptococcus,

Bifidobacterium, Enterobacteriaceae, TM7-3, Granulicatella,

Peptostreptococcus, Lactobacillus, Veillonella, Enterococcus,

Peptoniphilus, and Gemellaceae and the decrease of Akkermansia,

Ruminococcaceae, Ruminococcus, Gemmiger, Methanobrevibacter,
A

B

FIGURE 2

Bacterial and fungal interkingdom correlation network in UC (A) and CTRL (B). Each node represents bacteria (orange circles) and fungi (blue circles).
Green and red edges indicate positive and negative correlation values, respectively. Only correlations statistically significant (p-value < 0.05)
are reported.
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Oscillospira, Coprococus, and Christensenellaceae. These results

agree with other studies describing the composition of the gut

microbiota in IBD and specifically in UC, reinforcing the evidence

that bacterial intestinal dysbiosis is a strong signature of this disease.

Today, microbial biomarkers are proposed for monitoring and

evaluating disease activity, predicting recurrence or response to

treatment, and treating diseases (Guo et al., 2022; Zheng et al., 2022;

Huang et al., 2023).

There is increasing evidence of the relevance of fungal dysbiosis

in the pathogenesis of IBD (Sokol et al., 2017; Gu et al., 2019;

Balderramo et al., 2023). Fungi can exert direct proinflammatory

effects or modify the bacterial composition via interkingdom,

opening the possibility of modulating fungal microbiota as a

therapeutic approach (Sokol et al., 2017).
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In our study, we showed a decrease in Clavispora ,

Vishniacozyma, and Quambalaria in the CTRL group with UC.

Clavispora, a member of the Saccharomyces genus, exerts a positive

effect on the gut by the production of the anti-inflammatory

interleukin (IL)-10 (Meng et al., 2022). Moreover, Clavispora and

Vishniacozyma were negatively correlated with Sutterella in CTRL,

suggesting a negative effect of these two fungi on Sutterella growth.

Low levels of Sutterella in the gut microbiota have been associated

with gut immune homeostasis and high levels of IgA, which protect

the gut against pathobiont invasion (Kaakoush, 2020). Interestingly,

in our study, the UC gut microbiota was enriched with Sutterella.

This microorganism seems capable of degrading IgA molecules,

activating the pattern recognition receptors (PRRs), and producing

IL-8, creating a pathological gut microenvironment (Kaakoush,
B C

D

A

FIGURE 3

Multivariate and univariate analyses on metabolic profiles of UC and CTRL. The biplot shows the first 24 loadings predicted by PCA analysis (A). The
second biplot shows the sample clustering calculated with PLS-DA analysis [blue dots (CTRL) and orange triangles (UC)] (B). The barplot describes
the value of loadings in each group, which are calculated by PLS-DA analysis and filtered for loading coefficient >0.1 and VIP value >1 (C). Root
mean square error (RMSE) = 0.329, R2 = 0.526, and Q2 value = 0.382. Univariate plot based on log2 fold change values (D). The Mann–Whitney test
confirms that phenylethyl alcohol is increased in the UC group.
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B

C D

E

A

FIGURE 4

Integrated multi-omic analyses confirm the presence of a typical shape and function of UC gut microbiota. Multiblock principal component analysis
(MBPCA) plot (A), loadings plot (filtered for loading coefficient > 0.1) (B), and multiblock partial least squares-discriminant analysis (MBPLS-DA) plot
(C). Root mean square error (RMSE) = 0.128, R2 = 0.935, and Q2 value = 0.567. VIP values are reported on the horizontal axis (D). ROC analysis of
the MBPLS-DA model (E). The value of AUROC = 0.9947 indicates a high accuracy of the prediction model.
BA

FIGURE 5

Bacterial, fungal, and metabolic markers in UC and CTRLs. Biplots show the result of ComDim analysis. Teal circles represent the UC patients and
red circles represent CTRL subjects (A). Bacterial, fungal, and metabolic markers are labeled in red, green, and blue, respectively (B).
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2020). Furthermore, in the CTRL network, Sutterella was also

negatively correlated with Rhizophydium. We can speculate that

fungi could either directly or indirectly reduce Sutterella levels,

indicating their possible use as probiotics to modulate the presence

of bacterial pathobionts in the intestine. Another evidence

supporting the influence of fungi on pathobiont increase was

represented by the positive correlation between Rhizophydium

and Haemophilus in the UC network. The last, together with

Veillonella, is known to be associated with disease progression

and clinical severity in UC (Basha et al., 2023). Moreover, in our

UC cohort, Cryptococcus and Prevotella were positively correlated,

reinforcing the evidence that Cryptococcus neoformans and

Prevotella could contribute to intestinal dysbiosis (Li et al.,

2023a). In particular, the genus Prevotella, already identified as a

UC biomarker (Zois et al . , 2010), exhibits enhanced

proinflammatory properties, releasing inflammatory mediators

and promoting mucosal Th17 immune responses and neutrophil

recruitment (Larsen, 2017). In fact, Prevotella produces mucin-

degrading sulfatases (Wright et al., 2000) and contributes to chronic

inflammation by altering the barrier function of epithelial cells in

active UC (Tsai et al., 1992, Tsai et al., 1995; Lucke et al., 2006),

affecting disease outcomes (Larsen, 2017).

In IBD patients, high levels of fungi with potential

proinflammatory effects such as Candida and Malassezia and low

levels of fungi with anti-inflammatory effects such as Saccharomyces

were reported (Krawczyk et al., 2023). In our study, Saccharomyces

was effectively present in the CTRL network and positively

correlated with Parabacteroides. Regarding Malassezia, it was

present in both networks and was positively correlated with

Acinetobacter, which is a known IBD biomarker (Yang et al.,

2021) . Malassezia is a l ipid-dependent opportunist ic

basidiomycetous yeast that is capable of epithelial barrier

d i s rup t ion , inflammatory fac tor accumula t ion , and

proinflammatory cytokine production (Nelson et al., 2021;

Balderramo et al., 2023).

These findings suggest that the interaction between gut bacteria

and gut fungi is important in the pathology of UC in particular and

of IBD in general. However, whether it is bacterial dysbiosis that

favors fungal growth or whether it is the expansion of fungal

populations that leads to bacterial dysbiosis remains to be

fully elucidated.

In terms of metabolic fingerprint, through the combination of

multivariate and univariate test results, we showed the increase of

phenylethyl alcohol and the decrease of cyclopentadecane; 5-

octadecene; 5-hepten-2-ol, 6 methyl; 6-methyl-3,5-heptadiene-2-

one; hexadecane; 2-butenal; caryophyllene; indole, 3-methyl; 3-

carene; p-Cresol; and 5-hepten-2-one, 6 methyl in the UC gut.

Phenylethyl alcohol is produced by fungi such as C. albicans (Han

et al., 2013) and Saccharomyces (Lu et al., 2023) as well as by

bacteria such as Bifidobacterium (Yan et al., 2022). Interestingly, our

results showed high levels of phenylethyl alcohol and its producers

in UC. Among the metabolites higher in the CTRL, p-Cresol is a

methyl phenol produced via microbial degradation of tyrosine and

other aromatic amino acids (Hinai et al., 2019). In our study, we

observed that pathways involved in the biosynthesis of aromatic
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amino acids, such as tyrosine and phenylalanine, were more

enriched in the gut microbiota of UC patients than CTRLs,

suggesting a negative correlation between the production of p-

Cresol and the aromatic amino acid biosynthesis in the gut

microbiota of UC patients. However, p-Cresol was also suggested

as a biomarker of protein intake (Patel et al., 2012). Surprisingly,

indole, 3-methyl-, which is a metabolic product of bacterial

tryptophan (Trp) metabolism and is involved in gut dysbiosis,

was found to be more abundant in the gut microbiota of CTRLs

than in UC patients. However, the occurrence of indole, 3-methyl-

in the gut depends on many factors, such as the high intake of Trp-

containing proteins, polyphenols, and dietary fiber (Zgarbová and

Vrzal, 2023). The combination of polyphenol and fiber

fermentation in the colon contributes to a reduction in bacterial

populations and an increase in the production of harmful

metabolites, including indole, 3-methyl- (Zgarbová and Vrzal,

2023). Furthermore, caryophyllene was also observed to be more

abundant in the gut microbiota of CTRLs, and it has been reported

in a recent paper as a metabolite with potential benefits in anti-

inflammatory responses (Li et al., 2023b). High levels of enones (i.e.,

5-hepten-2-ol, 6-methyl-; 6-methyl-3,5-heptadiene-2-one; and 5-

hepten-2-one, 6-methyl-) may be related to the host dietary habits

rather than specific bacterial metabolism (Escobar Rodrıǵuez et al.,

2021). Among the metabolites higher in the CTRL, 3-carene shows

anti-inflammatory properties, by slowing down bacterial growth

and leading to bacterial metabolic dysfunction and cell membrane

disruption (Shu et al., 2019; Wang et al., 2022). In addition, we

observed new metabolites that were decreased in the gut microbiota

of UC patients, such as cyclopentadecane, 5-octadecene,

hexadecane, and 2-butenal, which have not been previously

reported in IBD.

Finally, given the high complexity of our large-scale omic

datasets, we applied different integrated biostatistical approaches

that allowed data dimension reduction, sample clustering, and the

association among variables with different numerical scales, useful

in UC-associated biomarker prediction. In particular, we applied

two unsupervised models (i.e., ComDim and MBPCA) based on an

exploratory approach to describe the clustered distribution of UC

and CTRL subjects and a supervised model (i.e., MBPLS-DA) to

emphasize the most important omic signatures that highlighted the

differences between UC and CTRL groups. Compared with the

unsupervised models, the MBPLS-DA performed a prediction with

prior knowledge of the subjects’ groups and thus showed more

clustering of the UC and CTRL groups.

Our results are novel and promising, but there are some

limitations in our study. Even if our patient cohort is well

homogeneous for clinical features and the CTRL cohort matches

for age and gender with patients, the two cohorts were relatively small.

Further studies on larger cohorts would undoubtedly reduce the error

rate, produce stronger correlations, and validate the compositional

and functional gut microbiome profiles characterizing UC.

In conclusion, we are the first to apply both a separate and an

integrated omics approach. We have defined a distinctive gut

microbiota, mycobiota, and metabolic signature that advances our

knowledge of the etiopathogenesis of UC. The multivariate models
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applied on multi-omic datasets allowed us to have a holistic view of

the gut environment in UC. Moreover, we are confident that the

proposed statistical approach, based on the coupling of separated

and integrated omic datasets, is an innovative way to uncover novel

gut microbiota-related biomarkers. Finally, exploiting the gut

bacteria and fungi ecological networks provided a comprehensive

perspective on intestinal dysbiosis.
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