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Bunyaviruses are a large group of important viral pathogens that cause significant

diseases in humans and animals worldwide. Bunyaviruses are enveloped, single-

stranded, negative-sense RNA viruses that infect a wide range of hosts. Upon

entry into host cells, the components of viruses are recognized by host innate

immune system, leading to the activation of downstream signaling cascades to

induce interferons (IFNs) and other proinflammatory cytokines. IFNs bind to their

receptors and upregulate the expression of hundreds of interferon-stimulated

genes (ISGs). Many ISGs have antiviral activities and confer an antiviral state to

host cells. For efficient replication and spread, viruses have evolved different

strategies to antagonize IFN-mediated restriction. Here, we discuss recent

advances in our understanding of the interactions between bunyaviruses and

host innate immune response.
KEYWORDS

bunyaviruses, innate immunity, interferon, interferon-stimulated gene, antagonism
Introduction

The Bunyavirales order contains a large group of medically relevant, emerging and re-

emerging RNA viruses known as bunyaviruses. The order includes more than 500 viruses that

are transmitted by arthropod vectors includingmosquitoes, sandflies and ticks or rodents and

infect a variety of mammals, insects and plants (Elliott, 2014; Abudurexiti et al., 2019). As of

December 2023, the Bunyavirales order comprises 14 families (https://ictv.global/taxonomy),

of which 5 families (Arenaviridae, Hantaviridae, Nairoviridae, Peribunyaviridae, and

Phenuiviridae) contain viral pathogens that can cause significant diseases in human, such

as fever, hemorrhagic disease, encephalitis, and severe respiratory disease (Elliott, 1997). Some

of these viruses include Hantaan virus (HTNV) and Andes virus (ANDV) in the

Hantaviridae family; Crimean-Congo hemorrhagic fever virus (CCHFV) in the
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Nairoviridae family; Bunyamwera virus (BUNV), La Crosse virus

(LACV) and Oropouche virus (OROV) in the Peribunyaviridae

family; Guertu virus (GTV), Heartland virus (HRTV), severe fever

with thrombocytopenia syndrome virus (SFTSV) and Rift Valley

fever virus (RVFV) in the Phenuiviridae family. Several members in

the Arenaviridae family are highly pathogenic viruses that are

transmitted by rodents. In this review, we mainly focus on vector-

borne bunyaviruses.

Bunyavirus replication occurs in the cytoplasm, making these

viruses sensitive to several cytosolic innate immune sensors. Upon

binding to viral ligands, these sensors initiate downstream

interferon (IFN) signaling pathways to block viral infection. In

response, viruses have evolved a variety of strategies to antagonize

host innate immunity and facilitate their spread in the host cells.

Here, we review how host innate immune system detects and

restricts bunyavirus infection and discuss the mechanisms by

which bunyaviruses counteract host IFN response.
The genome organization and life
cycle of bunyavirus

The genome of bunyavirus consists of three single-stranded,

negative-sense RNA segments: large (L), medium (M) and small

(S) segment. All bunyaviruses encode four structural proteins: the

RNA-dependent RNA polymerase (L) on L segment, the envelope

glycoproteins (Gn and Gc) on M segment and the nucleocapsid

protein (N) on S segment. In addition, some bunyaviruses can encode

several nonstructural proteins, including NSm on M segment and

NSs on S segment (Hulswit et al., 2021). The structural proteins of

bunyavirus are required for viral entry, genome replication and

assembly while nonstructural protein NSs is involved in the

antagonism of host immune response (Elliott and Weber, 2009).

The infection cycle of bunyavirus begins with the binding of

viral envelope glycoproteins Gn and Gc to cellular receptors on the

host cell surface. The receptor engagement triggers the

internalization of virus into endosomes via endocytosis in a

clathrin-dependent or clathrin-independent manner. The acidic

environment of the endosomes induces the conformational

changes of viral glycoproteins, leading to the endosomal fusion.

The membrane fusion is mediated by the viral envelope

glycoprotein Gc. Gc is a class II membrane fusion protein that

harbors three domains (I, II and III). These domains form fusion

loops to insert into cellular membrane and drive virus-cell fusion

(Hellert et al., 2023). The fusion of viral and cell membranes forms a

fusion pore to allow the release of viral RNA into the cytoplasm of

host cells. The viral negative-sense genomic RNA is first transcribed

into mRNAs by viral L protein. These viral mRNAs are

subsequently translated into viral proteins using host cell

translation machinery. Once viral proteins are synthesized, viral

RNA replication begins. Viral genomic RNA serves as a template to

synthesize the complementary positive-sense antigenomic RNA,

which is then used to generate progeny negative-sense genomic

RNA. The newly synthesized viral RNA and viral proteins are

assembled at the Golgi apparatus. Subsequently, the progeny virions
Frontiers in Cellular and Infection Microbiology 02
are transported by the secretory vesicles to the cells surface, where

they are released into the extracellular space via exocytosis (Walter

and Barr, 2011; Boshra, 2022).
Induction of IFN by
bunyavirus infection

Upon viral infection, the host innate immune response is initiated

by recognition of virus-associated molecules, known as pathogen-

associated molecular patterns (PAMPs), via host-encoded pattern

recognition receptors (PRRs) (Kawai and Akira, 2006; Iwasaki, 2012).

Those viral components including genomic DNA or RNA and double-

stranded RNA (dsRNA) intermediates produced during viral

replication can be detected by diverse PRRs depending on their

subcellular location. In the cytoplasm, retinoic acid-inducible gene I

(RIG-I)-like receptors (RLRs) are the major PRRs that sense RNA virus

infection (Chan and Gack, 2016). RLRs are composed of three

members: RIG-I, melanoma differentiation-associated protein 5

(MDA5) and laboratory of genetics and physiology 2 (LGP2). All

RLRs have a central helicase domain and a carboxy-terminal domain

(CTD), both of which are required for RNA binding. In addition, RIG-I

and MDA5 contain two amino-terminal caspase activation and

recruitment domains (CARDs) that are involved in signal

transduction. RIG-I has been shown to sense short dsRNA that

contains triphosphate (PPP) and uncapped diphosphate (PP) groups

at the 5’ end of viral RNA while MDA5 detects long dsRNA structures.

LGP2 that lacks a CARD domain was found to regulate the sensing

activities of RIG-I and MDA5 (Liu and Gack, 2020; Rehwinkel and

Gack, 2020). Upon binding to their RNA ligands, RIG-I and MDA5

interact with adaptor protein mitochondrial antiviral-signaling protein

(MAVS). MAVS triggers the activation of TANK-binding kinase 1

(TBK1) or IkB kinase complex, leading to the phosphorylation of IFN

regulatory factor 3 (IRF3) and IRF7, and nuclear factor-kB (NF-kB),
respectively. The activated IRF3, IRF7 and NF-kB then translocate into

nucleus and induce the transcription of type I and type III IFNs as well

as other pro-inflammatory cytokines and chemokines (Thompson

et al., 2011; Jensen and Thomsen Allan, 2012).

RLRs play a critical role in immune recognition of bunyavirus

infection. RIG-I was shown to be the major PRR that sensed the

infection of LACV, RVFV and SFTSV to induce innate immune

response, as evidenced by decreased IFNs and ISGs induction in

RIG-I-depleted cells (Habjan et al., 2008; Verbruggen et al., 2011;

Weber et al., 2013; Min et al., 2020). Enzymatic degradation of viral 5’-

PPP RNA abolished RIG-I-mediated IFN induction, suggesting that

viral 5’-PPP RNA is the ligand of RIG-I activation during these virus

infection (Habjan et al., 2008; Min et al., 2020). Furthermore, RIG-I

was found to directly bind to N proteins of LACV and RVFV and

recognize N-associated viral 5’-PPP RNA to activate early IFN response

(Weber et al., 2013). Although viral 5’-PPP RNA has been considered

as the major PAMP that activates RIG-I signaling, some bunyaviruses

that do not have 5’-PPP in their genomic RNA still triggered RIG-I-

dependent IFN response, suggesting that these viruses may contain

additional PAMPs that function as RIG-I ligands (Lee et al., 2011).

Indeed, the dsRNA-like secondary structures of HTNV N RNA was
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shown to activate RIG-I during viral replication (Lee et al., 2011;

Spengler et al., 2015). HTNV also induced the expression of long

noncoding RNA NEAT1 to promote RIG-I signaling in response to

viral infection (Ma et al., 2017). Interestingly, CCHFV that harbors 5’-

monophosphate RNA was able to stimulate IFN signaling in a RIG-I

dependent manner (Spengler et al., 2015). However, the role of these

putative PAMPs in RIG-I-mediated immune response needs to be

further investigated. In addition to RIG-I, other PRRs includingMDA5

and Toll-like receptor 3 (TLR3) have been shown to be involved in the

immune sensing of SFTSV and HTNV, respectively (Handke et al.,

2009; Min et al., 2020).

Although cytosolic DNA sensor cyclic GMP-AMP synthase

(cGAS) and its adaptor protein stimulator of interferon genes

(STING) are considered as key immune molecules to sense DNA

viruses, recent studies suggest that STING plays a role in the infection

of RNA viruses, including bunyaviruses. STING was found to be

involved in nuclear scaffold attachment factor A (SAFA)-mediated

immune response against SFTSV infection (Liu et al., 2021).

Furthermore, STING was activated during HTNV infection,

triggering autophagy to block viral infection. Interestingly, RIG-I

but not cGAS was required for HTNV-induced STING activation,

suggesting a crosstalk between RNA and DNA sensing pathways to

detect bunyavirus infection (Wang et al., 2023).
Restriction of bunyavirus infection by
interferon-stimulated genes

The induction of ISGs is one of the major responses to IFN

signaling. Upon production, type I and type III IFNs bind to their
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receptors IFNAR1/IFNAR2 or IFNLR1/IL-10R2, respectively, and

trigger the phosphorylation of Janus kinase 1 (JAK1) and tyrosine

kinase 2 (TYK2), leading to the phosphorylation of signal

transducers and activators of transcription 1 and 2 (STAT1 and

STAT2). The phosphorylated STAT1 and STAT2 recruit IRF9 to

form the IFN-stimulated gene factor 3 (ISGF3). The ISGF3

subsequently translocates to the nucleus and binds to IFN-

stimulated response elements (ISRE) in the upstream promoter

regions of ISGs, resulting in the induction of more than 300 ISGs

(Schneider et al., 2014; Schoggins, 2019). Many of these ISGs have

antiviral activities and can block the infection of a wide range of

viruses. Indeed, a number of ISGs were found to suppress

bunyavirus infection at different stages of viral life cycle,

including viral entry, translation and replication (Figure 1). Not

surprisingly, bunyaviruses can directly target antiviral ISGs to

overcome their restriction. Here, we describe several ISGs that

play an antiviral role during bunyavirus infection.

IFN-induced protein with tetratricopeptide repeats 1 (IFIT1):

The human IFIT family is comprised of 4 members (IFIT1, IFIT2,

IFIT3 and IFIT5) and has been shown to play a role during viral

infection (Terenzi et al., 2008; Fensterl and Sen, 2010; Pichlmair

et al., 2011; Kimura et al., 2013). Using affinity purification followed

by mass spectrometry, Pichlmair et al. identified IFIT proteins as

binding partners of 5′-PPP RNA, a viral PAMP that can be

recognized by host immune sensors to initiate IFN signaling

pathways (Pichlmair et al., 2011). The authors found that IFIT1

and IFIT5 directly bound to 5′-PPP RNA while IFIT2 and IFIT3

indirectly associated with 5′-PPP RNA via an IFN-dependent

complex consisted of IFIT1, IFIT2 and IFIT3. This provided the

first hint that IFIT proteins may be involved in immune response
FIGURE 1

Inhibition of bunyavirus infection by host antiviral ISGs. The life cycle of bunyavirus is initiated by the binding of viral glycoproteins to cellular
receptors on the cell surface. The virus is then internalized by endocytosis, followed by trafficking within endosomes, where the endosomal fusion
occurs. The fusion between viral and cell membranes allows the release of viral genome into the cytoplasm. The negative-sense genomic RNA is
first transcribed into mRNA, which is used as a template for viral protein synthesis. Viral genomic RNA then functions as a template to synthesize
positive-sense antigenomic RNA for genome replication. The newly synthesized viral genomic RNA and viral proteins are assembled and processed
at the Golgi. The mature viral particles are released from the infected cells via exocytosis. Host-encoded ISGs can block bunyavirus infection at
different steps of viral life cycle. Created with BioRender.com.
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against viruses generating 5′-PPP RNA. Indeed, loss of IFIT proteins

promoted the infection of several viruses containing 5′-PPP RNA,

including RVFV, vesicular stomatitis virus (VSV) and influenza A

virus (IAV) but had no effect on encephalomyocarditis virus

(EMCV) that lacks 5′-PPP RNA in its life cycle (Pichlmair et al.,

2011). These data suggest that IFIT proteins function as restriction

factors against viruses harboring 5′-PPP RNA. However, the precise

molecular mechanism of how IFIT proteins target 5′-PPP RNA to

block viral infection is not fully understood.

IFN-induced transmembrane proteins (IFITMs): To date, five

members of human IFITM family have been characterized: IFITM1,

IFITM2, IFITM3, IFITM5 and IFITM10. Three of them (IFITM1,

IFITM2, IFITM3) are IFN inducible and can restrict the entry of a

broad range of enveloped and nonenveloped viruses (Brass et al.,

2009; Huang et al., 2011; Anafu et al., 2013; Bailey et al., 2014).

Mudhasani et al. demonstrated that depletion of IFITM2 and

IFITM3 but not IFITM1 resulted in enhanced RVFV infection,

indicating that IFITM2 and IFITM3 are antiviral against RVFV

(Mudhasani et al., 2013). The authors performed a series of

experiments and found that IFITM2 and IFITM3 blocked RVFV

membrane fusion with the endosomes but did not affect viral

receptor binding, internalization or replication. They also

extended the antiviral activity of IFITMs into other bunyaviruses,

including LACV, HTNV, and ANDV. In contrast to RVFV,

IFITM1 was found to block LACV, HTNV and ANDV to a

comparable level as IFITM2 and IFITM3. Most importantly, a

high frequency of single nucleotide polymorphism (SNP) rs12252

of IFITM3 with impaired antiviral function against HTNV was

found in severe hemorrhagic fever with renal syndrome (HFRS)

patients. These data highlight a critical role of IFITM3 in disease

severity in HFRS (Xu-Yang et al., 2017). Interestingly, CCHFV and

several strains of arenaviruses were resistant to IFITMs restriction

(Mudhasani et al., 2013; Stott-Marshall and Foster, 2022). Future

studies are needed to determine the specificity of IFITMs against

different bunyaviruses.

IFN-stimulated gene 20 (ISG20): ISG20 is a member of 3′ to 5′
exonuclease superfamily that has been shown to suppress the

replication of diverse RNA and DNA viruses (Espert et al., 2003;

Zhou et al., 2011; Liu et al., 2017). Using gain-of-function genetic

screening with lentiviral vectors encoding 488 ISGs from humans and

rhesus macaques, Feng et al. identified ISG20 as a restriction factor

that blocked BUNV replication (Feng et al., 2018). To explore the

spectrum of ISG20 antiviral activity, the authors screened a panel of

bunyaviruses and observed that ISG20 inhibited most viruses tested,

but had no effect on phleboviruses, including RVFV, HRTV and

SFTSV. Depletion of endogenous ISG20 led to increased viral

infection in the absence of IFN treatment, suggesting that the basal

level of ISG20 was sufficient to restrict BUNV. ISG20 was shown to

block viral replication by degrading viral genes (Espert et al., 2003).

Indeed, the gene expression of all three BUNV segments was

inhibited by ISG20. The antibunyaviral activity of ISG20 depended

on its exonuclease function because the catalytically defectivemutants

abolished their antiviral effect. Although multiple mutations have

been identified in the genome of BUNV that was resistant to ISG20,

the mechanisms by which BUNV counteracts ISG20 restriction

remain to be elucidated (Feng et al., 2018).
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Moloney leukemia virus 10 protein (MOV10): MOV10 was

originally identified as a host protein that blocked Moloney

murine leukemia virus infection in mice (Mooslehner et al.,

1991). MOV10 is a 5’ to 3’ RNA helicase that is involved in

many cellular processes related to RNA metabolism (Nawaz et al.,

2022). MOV10 was also found to play a role in innate immune

response against viral infection via modulation of IFN signaling

(Cuevas et al., 2016; Yang et al., 2022). Using affinity purification

coupled with mass spectrometry, MOV10 was identified as an

interactor of SFTSV N protein in an RNA-independent manner

(Mo et al., 2020). In addition to SFTSV, MOV10 was shown to

associate with the N proteins of two related bunyaviruses: HRTV

and GTV. Depletion of MOV10 promoted viral infection of

SFTSV, HRTV and GTV, suggesting an antiviral role of MOV10

against these viruses. Interestingly, the antiviral function of

MOV10 was independent of its helicase activity and IFN

signaling. Rather, MOV10 interacted with N-arm domain of

SFTSV N protein via its N-terminus and blocked N protein

polymerization and the interactions of N protein and viral RNA

as well as viral polymerase, therefore disrupting the assembly of

viral ribonucleoprotein (RNP). These data suggest that MOV10

functions as a restriction factor against bunyaviruses tested.

However, given the low sequence identity of N protein found in

bunyaviruses, it is currently unknown whether and how MOV10

restricts the infection of other bunyaviruses (Mo et al., 2020).

Myxovirus resistance protein A (MxA): Human MxA and MxB

(known as Mx1 and Mx2, respectively in rodent) belong to the

dynamin-like large guanosine triphosphatases (GTPases) that are

involved in intracellular vesicle trafficking (Haller et al., 2007).

Mouse Mx1 has been originally linked to conferring resistance to

IAV in a IFN-dependent manner (Haller et al., 1979). Later studies

revealed that Mx proteins from humans and rodents have broad

antiviral activities against a wide range of viruses, including

bunyaviruses (Haller et al., 2015). Ectopic expression of MxA

blocked LACV and RVFV infection at an early stage of viral life

cycle (Frese et al., 1996). Mechanistically, MxA was demonstrated to

interact with LACV N protein at COP-I positive vesicular-tubular

membranes of ER-Golgi intermediate compartment via its C-

terminal domain, leading to the sequestration of N protein that is

required for viral genome replication (Kochs et al., 2002; Reichelt

et al., 2004). Both GTP binding and hydrolysis in N-terminal

domain were found to be required for MxA relocalization to

target bunyavirus N protein and block viral infection (Dick et al.,

2015; Mckellar et al., 2023). Furthermore, MxA was shown to block

the primary transcription of RVFV, therefore inhibiting viral RNA

synthesis (Habjan et al., 2009a). In addition to LACV N protein, a

recent study showed that MxA interacted with SFTSV N protein to

disrupt the interaction of N protein and viral polymerase and

suppress RNP activity (Chang et al., 2024). The MxA-mediated

restriction was also extended to other bunyaviruses including

Puumala and Tula hantaviruses and other species (Kanerva et al.,

1996). Similar to human MxA, bat MxA was shown to impair the

activity of RVFV polymerase using a minigenome system (Fuchs

et al., 2017). Interestingly, rat Mx2, but not rat Mx1 blocked LACV

and RVFV (Sandrock et al., 2001; Stertz et al., 2007). Importantly,

MxA restricted LACV infection in the MxA-transgenic mice
frontiersin.org
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without IFN receptors, indicating a role of MxA in blocking viral

infection in vivo (Hefti et al., 1999). Together, these data suggest an

evolutionarily conserved role of Mx proteins in host defense

against bunyaviruses.

Protein kinase R (PKR): PKR is an IFN-induced dsRNA-

dependent serine/threonine-protein kinase that is involved in host

innate immunity against viral infection (Dauber and Wolff, 2009).

Upon viral infection, PKR can be activated by viral dsRNA, leading

to the phosphorylation of the alpha subunit of eukaryotic

translation initiation factor 2 (eIF2a) to block the synthesis of

both cellular and viral proteins (Garcıá et al., 2006). While both

wild-type (WT) and NSs-deleted (DNSs) BUNV were able to trigger

PKR activation and induce eIF2a phosphorylation to a similar level,

the expression of PKR in HEK293 cells inhibited WT BUNV but

had moderate effect on DNSs BUNV (Streitenfeld et al., 2003;

Carlton-Smith and Elliott, 2012). In contrast, loss of PKR

potently increased the infection of DNSs RVFV but not WT

RVFV, suggesting that NSs protein of RVFV may antagonize

PKR restriction. Indeed, RVFV NSs was shown to promote the

degradation of PKR in a proteasome-dependent manner, therefore

suppressing eIF2a phosphorylation (Ikegami et al., 2009; Habjan

et al., 2009b). The NSs-mediated downregulation of PKR appears to

be in a virus-dependent manner, because LACV NSs had no effect

on PKR expression (Habjan et al., 2009b). Importantly, PKR

knockout mice were more susceptible to BUNV and RVFV than

WT mice, suggesting that PKR is antiviral against BUNV and

RVFV in vivo (Streitenfeld et al., 2003; Habjan et al., 2009b). In

addition to NSs-induced downregulation of PKR, bunyaviruses

employ other strategies to counteract PKR restriction and inhibit

PKR-dependent stress granule formation (Christ et al., 2020). For

example, ANDV N protein was found to inhibit PKR dimerization

and autophosphorylation (Wang and Mir, 2015). Mechanistically,

ANDV N protein interacted with P58IPK, an endogenous PKR

inhibitor, and recruited P58IPK to the 40S ribosomal subunit to

suppress PKR activation (Wang et al., 2021).

Virus inhibitory protein, endoplasmic reticulum-associated,

interferon-inducible (Viperin): Viperin is a radical S-adenosyl-l-

methionine (SAM) domain-containing enzyme that has been

implicated in the restriction of a broad range of RNA and DNA

viruses (Shen et al., 2014; Van Der Hoek et al., 2017; Ghosh and

Marsh, 2020). Using HEK293 cells expressing individual ISGs,

Viperin was identified as an ISG that potently blocked both WT

and DNSs BUNV infection (Carlton-Smith and Elliott, 2012). The

basal expression level of Viperin in most cell types is low but it can

be induced by IFN treatment or viral infection (Helbig et al., 2013).

Interestingly, DNSs BUNV but not WT BUNV was able to induce

Viperin expression, suggesting a role of NSs in counteracting IFN

signaling to induce antiviral ISGs. Viperin has been reported to

impact many stages of viral life cycle, including transcription,

replication, assembly and release (Wang et al., 2007; Helbig et al.,

2011; Bernheim et al., 2021). In addition, Viperin’s enzymatic

product 3′-deoxy-3′,4′-didehydro-CTP (ddhCTP) is also involved

in Viperin-mediated restriction by functioning as a chain

terminator for RNA-dependent RNA polymerase of flaviviruses

(Gizzi et al., 2018). Although the enzymatic function of Viperin was

found to be required to inhibit BUNV infection, the precise
Frontiers in Cellular and Infection Microbiology 05
mechanism of its antiviral activity remains elusive (Carlton-Smith

and Elliott, 2012).
Antagonism of type I IFN response
by bunyavirus

To overcome IFN-meditated restriction and spread in the host

cells, bunyaviruses have evolved effective strategies to block IFN

production or downstream IFN signaling. Two attenuated RVFV

strains MP12 and clone 13 that contain mutations in NSs were

shown to strongly induce the expression of IFN-a and IFN-b and

were virulent only in IFN-a/IFN-b receptor knockout mice. In

contrast, RVFV virulent strain ZH548 was unable to stimulate IFNs

and efficiently replicated in both IFN-competent and IFN-deficient

mice. This study provided the first hint that RVFV NSs may be an

IFN antagonist and contribute to RVFV virulence and pathogenesis

(Bouloy et al., 2001). Indeed, WT RVFV but not RVFV lacking NSs

inhibited the expression of IFN-a2, IFN-b and TNF-a, confirming

the role of RVFV NSs in antagonizing host immune response

(Mcelroy and Nichol, 2012). In addition to RVFV NSs, the NSs

proteins of other bunyaviruses including BUNV, LACV, OROV,

HRTV and SFTSV have been shown to antagonize IFN pathways

(Bridgen et al., 2001; Blakqori et al., 2007; Qu et al., 2012; Tilston-

Lunel et al., 2016; Taniguchi et al., 2022). Here, we discuss the

molecular strategies employed by bunyaviruses to counteract type I

IFN response (Figure 2).
Inhibition of host cellular transcription

Bunyavirus NSs-mediated inhibition of IFN production has

been linked to its ability to suppress the transcription of host

cellular RNA. Indeed, RVFV NSs was found to interact with p44

subunit of host transcription factor TFIIH and cause the

sequestration of p44 and XPB subunits of TFIIH in the nuclear

filament to disrupt the assembly of TFIIH, leading to the inhibition

of host RNA synthesis (Le May et al., 2004). In addition to p44 and

XPB subunits, RVFV NSs associated with p62 subunit of TFIIH via

its WXaV motif and promoted the proteasomal degradation of p62

by interacting with E3 ubiquitin ligase FBXO3 (Kalveram et al.,

2011; Kainulainen et al., 2014; Cyr et al., 2015). Moreover, RVFV

NSs specifically blocked IFN-b gene expression in the absence of

interfering with other IFN transcription factors including IRF3 and

NF-kB (Billecocq et al., 2004). Mechanically, RVFV NSs interacted

with SAP30, a member of Sin3A/NCoR/HDACs repressor

complexes and associated with transcription factor YY1 that is

involved in the regulation of IFN-b gene expression. In RVFV

infected cells, NSs, SAP30 and other repressor proteins were

recruited into IFN-b promoter via YY1 and suppressed IFN-b
transcription (Le May et al., 2008).

Similar to RVFV, BUNV NSs protein was found to potently

antagonize IFN induction (Bridgen et al., 2001; Weber et al., 2002).

BUNV NSs was shown to either directly inhibit RNA polymerase II

phosphorylation or indirectly disrupt RNA polymerase II function
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by interacting with MED8, a host protein that regulates RNA

polymerase II-mediated transcription, resulting in the suppression

of host gene expression (Thomas et al., 2004; Léonard et al., 2006;

Van Knippenberg et al., 2010). Moreover, LACV NSs interfered

with RNA polymerase II by promoting the proteasomal degradation

of its RPB1 subunit through E3 ubiquitin ligase Elongin C (Blakqori

et al., 2007; Verbruggen et al., 2011; Schoen et al., 2020).
Suppression of RIG-I-mediated
sensing pathway

RIG-I is the major immune sensor to detect bunyavirus infection.

In response, bunyavirus can target and interfere with RIG-I or other

downstream signaling molecules to block type I IFN induction. Indeed,

HRTVNSs has been shown to associate with TBK1 and disrupt TBK1-

IRF3 interaction, leading to the suppression of IRF3 activation and IFN

production (Ning et al., 2017). Moreover, SFTSV NSs was found to

interact with several key components of RIG-I-mediated sensing

pathway including RIG-I, TBK1, IKKϵ, IRF7 and TRIM25, an E3

ubiquitin ligase that is required for RIG-I activation, and cause the

sequestration of these proteins from cytoplasm into viral inclusion

bodies, therefore inhibiting IFN signaling transduction (Qu et al., 2012;

Ning et al., 2014; Santiago et al., 2014; Hong et al., 2019; Min et al.,

2020). In line with these studies, NSs mutant that was deficient for the

formation of viral inclusion bodies lost its ability to restrict IFN

production, highlighting a role of SFTSV NSs-induced inclusion

bodies in the antagonism of IFN response (Ning et al., 2014). SFTSV
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NSs was also shown to block the phosphorylation and dimerization of

IRF3 via interaction with LSm14A, a host protein involved in IRF3

activation (Zhang et al., 2021). In addition to NSs protein, other

bunyaviral proteins can counteract innate immunity. For example,

HTNV Gn protein was reported to induce mitophagy to promote

MAVS degradation, leading to the inhibition of type I IFN response

(Wang et al., 2019). Furthermore, ectopic expression of SFTSV N

protein was shown to inhibit IFN-b promoter activation (Qu et al.,

2012). However, the inhibitory effect of SFTSVN on IFN production in

the context of viral infection needs to be further investigated.

Many proteins in host innate immune sensing pathways are

regulated by post-translational modifications including

ubiquitination and ISG15-mediated ISGylation. Ubiquitination is

required for the activation of multiple key signaling molecules such

as RIG-I, MAVS, TBK1, and IRF3 (Hu and Sun, 2016). Cellular

ubiquitination is highly regulated by deubiquitinases (DUBs) via

removing ubiquitin from target proteins. DUBs are classified into

five families and one of these families is called Ovarian tumor

proteases (OTU) (Komander et al., 2009). Interestingly, in addition

to eukaryotic proteins, OTU was found in several viral proteins,

suggesting that virus may utilize its DUB to interfere with host

ubiquitination and disrupt RIG-I-dependent IFN signaling. Indeed,

CCHFV L protein was shown to contain an OTU domain that

encodes a cysteine protease with DUB activity (Makarova et al.,

2000; Bailey-Elkin et al., 2014). Overexpression of CCHFV L

protein decreased the ubiquitination and ISGylation of cellular

proteins and attenuated both ISG15- and NF-kB-mediated

antiviral response (Frias-Staheli et al., 2007). Furthermore, using
FIGURE 2

Antagonism of IFN induction and IFNAR signaling by bunyavirus. RIG-I is the major immune sensor to detect bunyavirus infection by recognition of
viral 5’-PPP RNA and other viral RNA species in the cytoplasm. Upon binding to viral RNA ligands, RIG-I multimerizes and interacts with adaptor
protein MAVS, leading to the activation of TBK1 and IKKϵ. TRIM25-mediated Lys 63-linked ubiquitination is critical for RIG-I activation. TBK1 and IKKϵ
then phosphorylate the transcription factors IRF3 and IRF7. The phosphorylated IRF3 and IRF7 translocate into nucleus and activate IFN transcription
to produce IFN. Type I IFN binds to IFN receptor IFNAR on the cell surface and triggers the phosphorylation of kinases JAK1 and TYK2. JAK1 and
TYK2 then phosphorylate the transcription factors STAT1 and STAT2. The activated STAT1 and STAT2 recruit IRF9 and translocate into nucleus to
induce the transcription of hundreds of ISGs. This confers an antiviral state to the host cells. Bunyaviruses have evolved multiple mechanisms to
antagonize IFN production and IFNAR signaling. Created with BioRender.com.
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reverse genetics, CCHFV variant that was deficient for DUB activity

was shown to promote immune response, further confirming the

role of CCHFV OTU as an IFN antagonist in the context of viral

infection (Scholte et al., 2017). Intriguingly, a synthetic ubiquitin

variant with high-affinity binding to CCHFV OTU domain was

found to not only relieve OTU-mediated immune antagonism but

also inhibit viral infection by blocking viral RNA synthesis,

demonstrating that CCHFV OTU can function as a therapeutic

target to control viral infection (Scholte et al., 2019).
Antagonism of IFNAR signaling

IFNs bind to their receptors on the cell surface and activate

JAK/STAT signaling pathway, leading to the transcription of

hundreds of ISGs to block viral infection. Bunyaviruses have

developed mechanisms to overcome IFNAR signaling to prevent

the induction of antiviral ISGs. SFTSV NSs has been shown to

interact with STAT2 and relocalize STAT1 and STAT2 into viral

inclusion bodies to block the phosphorylation and subsequent

nuclear translocation of STAT proteins, resulting in the

suppression of ISG expression (Ning et al., 2015; Chen et al.,

2017). In addition to sequestering STAT proteins and dampening

their phosphorylation, SFTSV infection led to the downregulation

of STAT1. However, the mechanisms by which SFTSV decreases

STAT1 protein abundance remain elusive (Ning et al., 2019).

Similar to SFTSV NSs, HRTV NSs interacted with STAT2 and

impaired the phosphorylation and nuclear translocation of STAT2,

suggesting a conserved function of bunyavirus NSs proteins in

antagonizing IFNAR signaling (Feng et al., 2019).
Concluding remarks

IFN-mediated innate immunity is critical for the control of

bunyavirus infection and has been linked to viral pathogenesis and

disease progression in patients infected with bunyaviruses. Indeed,

the serum IFN-b level of SFTS patients was negatively correlated

with serum viral load and the dysregulated IFN responses including

impaired expression of IFN-b and TLR3 were observed in fatal

SFTS patients (Song et al., 2017). Additionally, the polymorphisms

of human genes involved in the innate immune system, including

RIG-I, MAVS and several TLRs were found to be associated with

critical illness in RVFV infected individuals (Hise et al., 2015).

As a major response to IFN signaling, hundreds of ISGs are

produced. Although several ISGs have been shown to have antiviral

activities against bunyaviruses in cell culture-based assays, their roles

in the restriction of viral infection in vivo and viral pathogenesis need

to be further determined by using the relevant animal models.

Furthermore, how human polymorphisms of these ISGs contribute

to disease severity caused by bunyavirus infection is largely unknown.

Another challenge is how to translate our knowledge of these antiviral
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ISGs into the strategies to design and develop antiviral agents. One

approach is to screen small drug-like molecules that can induce

certain ISGs at the transcriptional level to block viral infection in the

absence of global IFN induction. This method could avoid the

potential side effects caused by IFN treatment clinically.

Although bunyaviruses are highly diverse genetically, they have

evolved to employ common strategies to antagonize IFN response.

NSs protein of bunyavirus is one of such IFN antagonists and has

been extensively investigated. Virus lacking NSs was found to be a

strong IFN inducer and has less virulent compared to WT strain,

therefore having the potential for a vaccine candidate. Indeed,

RVFV clone 13 that has large natural deletion in the NSs gene

was shown to be efficacious and safe as a live-attenuated candidate

vaccine for different species such as sheep, goats, and cattle (Dungu

et al., 2010). The efforts that have been made to improve the efficacy

and safety of the vaccine candidates by deleting virulence factors

including NSs gene using reverse genetics will eventually contribute

to the development of human vaccines against RVFV and other

bunyaviruses. A more detailed understanding of host innate

immunity-mediated restriction of virus and the mechanisms of

viral immune evasion will not only further our knowledge of virus

pathogenesis, but also facilitate the development of antivirals and

vaccines to combat viral infection.
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