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Helicobacter pylori (H. pylori) eradication is pivotal for alleviating gastric mucosal

inflammation and preventing the progression of gastric diseases. While antibiotic-

based therapies have achieved significant success inH. pylori eradication, challenges

such as antibiotic resistance, drug toxicity, side effects, nonadherence, inapplicability,

and disruption of gastrointestinal microflora have emerged. Updated therapies are

urgently needed to suppress H. pylori. Nature has provided multitudinous

therapeutic agents since ancient times. Natural products can be a potential

therapy endowed with H. pylori eradication efficacy. We summarize the basic

information, possible mechanisms, and the latest research progress of some

representative natural products in H. pylori eradication, highlighting their safety,

accessibility, efficiency, and ability to overcome limitations associated with antibiotic

application. This review highlights the potential therapeutic advantages of

incorporating ethnomedicine into anti-H. pylori regimens. The findings of this

review may provide insights into the development of novel natural products and

expand the therapeutic options available for H. pylori eradication.
KEYWORDS

Helicobacter pylori, eradication, antibiotic resistance, ethnomedicine, natural products,
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1 Introduction

Helicobacter pylori (H. pylori) infection is a major cause of gastric mucosa injury.

Approximately 1% of infected individuals will progress to gastric cancer (de Vries et al., 2008).

Therefore, the WHO classified H. pylori as a class I carcinogen in 1994 (Cancer, 1994).

According to statistics, approximately half of the world’s population is affected by H. pylori

infection, which accounts for 15% of the global cancer burden (Shah et al., 2021). Therefore,

this pathogen exerts a profound influence on society and the economy, and it is crucial to find

an effective method forH. pylori eradication to avoid potential accompanying diseases. Some

risk factors have been reported to be associated with H. pylori infection, such as smoking,
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unboiled water and uncooked food intaking, poor socioeconomic

conditions, and early childhood exposure to the bacterium (Leja et al.,

2019; Yuan et al., 2022). Antibiotic combination therapy is needed to

eradicate H. pylori, for example, the standard PPI-clarithromycin-

containing triple therapy and bismuth quadruple therapies

(Malfertheiner et al., 2017). However, in the context of a global

increase in antibiotic consumption, antibiotic resistance of H. pylori

has reached a crisis point, which poses a severe threat to the current

regimens (Fallone et al., 2016). Consequently, clarithromycin-

resistant strains of H. pylori were recognized by the WHO in 2017

as one of 12 priority pathogens in urgent need of novel antibiotics or

alternatives (Tacconelli et al., 2018). As a result, new therapeutic

therapies are imperative.

Complementary and alternative treatments with features of

lower toxicity and low cost are attractive, and natural compounds

have long been viewed as vital candidates for anti-H. pylori

regimens. Researchers in gastroenterology or bacteriology

domains have shown remarkable interest in the antimicrobial

activities of natural products, especially for the possible lessened

likelihood of developing genetic resistance. With a view to

identifying more medicinal natural products and their synthetic

variations, it is ideal to take a deep look into ethnomedicine, for

example, traditional Chinese medicine (TCM). Numerous in vitro

and in vivo studies have been conducted to investigate the

therapeutic effect of ethnomedicine and their corresponding

natural products against H. pylori. For incidence, the in vitro

efficacy of artemisone and artemisinin derivatives against H.

pylori was demonstrated in the work by Sisto et al (Sisto et al.,

2016), while it also indicated a synergistic effect combined with

standard drugs. In addition, Krzyzek et al. identified myricetin as a

natural substance that hampers the morphological transition of H.

pylori from spiral to coccoid forms and therefore increases

susceptibility to antibiotics (Krzyżek et al., 2021). Confronting the

antibiotic resistance affecting H. pylori eradication, such studies

elucidate applicable natural products as alternative therapies. Great

progress has been made in this field, but few natural product-based

regimens have been recommended by clinical guidelines, and the
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mechanisms behind ethnomedicine are still not clearly explained.

Consequently, the keywords “H. pylori”, “natural products” and

“ethnomedicine” were comprehensively searched in PubMed, Wed

of Science databases, China National Knowledge Infrastructure

(CNKI), and Scopus databases. The publications were screened

and those related to the theme of this review were included. Based

on these relevant studies, we summarized the general situation and

possible therapeutic mechanisms of natural products potentially

with anti-H. pylori properties to serve as a reference for the

development of novel drugs and expand therapeutic options

against the bacterium (Figure 1).
2 Physiological properties and
pathogenic mechanisms of H. pylori

H. pylori is a gram-negative, spiral, and microaerophilic

bacterium that was discovered by Australian scientists Warren

and Marshall in 1982 (Marshall and Warren, 1984). While the

majority of bacteria are incapable of colonizing in such an acidic

environment, H. pylori has evolved unique features that allow it to

thrive in the exclusive ecological niche of the human stomach

(Ansari and Yamaoka, 2019). These features include its mobility,

helical shape, and ability to produce large amounts of urease, which

neutralizes gastric hydrochloric acid by hydrolyzing urea into

bicarbonate and ammonia (Solnick and Schauer, 2001).

Furthermore, H. pylori possesses a chemotaxis system that

enables it to detect pH gradients as well as sheathed polar flagella,

which aid in reaching less acidic gastric mucosal surfaces

(Roszczenko-Jasińska et al., 2020). Once there, adhesins such as

blood-antigen binding protein A (BabA) facilitate the attachment of

the bacteria to gastric epithelial cells (Sousa et al., 2022). In addition

to factors involved in establishing infections, many clinical isolates

of H. pylori produce virulence factors such as VacA, CagA, and

cagPAI within the host cell cytoplasm. These factors play significant

roles in immune evasion and disease induction (Sukri et al., 2020).

Infected gastric tissues also exhibit elevated levels of reactive oxygen
FIGURE 1

Current challenges of H. pylori eradication and the potential role of natural products in eradicating H. pylori.
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species (ROS), leading to gastric inflammation with the production

of various mediators (Kang and Kim, 2017).

3 General status, treatment
guidelines, and current challenges
of H. pylori eradication

H. pylori eradication is reported to help alleviate mucosal

inflammation, restore normal mechanisms governing acid

secretion, and stop the progression of gastric diseases (Sugano

et al., 2015). Accordingly, the present consensus among all major

gastroenterological societies is that H. pylori infection should be

eradicated in individuals who tested positive unless there are

compelling reasons (Sugano et al., 2015; Matsumoto et al., 2019;

Shah et al., 2021). Since the microorganism was discovered, a wide

variety of therapeutic strategies have been proposed to tackle H.

pylori, such as clarithromycin triple therapy, bismuth or

nonbismuth-based quadruple therapy, and rifabutin-based triple

therapy (Cardos et al., 2021).

The option of eradication regimes should be determined according

to the geographical area, in the context of regional differences in

antibiotic resistance patterns, as well as the different common host

genotypes of drug-metabolizing enzymes of the local population. In

regions with low clarithromycin resistance (<15%), the Maastricht

consensus report still endorses standard triple therapy as the primary

treatment option (Malfertheiner et al., 2017), which consists of a

proton pump inhibitor (PPI), amoxicillin, and clarithromycin or

metronidazole. However, the regime is inapplicable in high

clarithromycin resistance regions without preceding antimicrobial

susceptibility testing. Metronidazole is an ideal substitute for

clarithromycin in regions with low to intermediate metronidazole

resistance rates (Malfertheiner et al., 2017). When high resistance to

both antibiotics is observed, bismuth quadruple or nonbismuth

quadruple, concomitant (PPI, amoxicillin, clarithromycin,

and nitroimidazole) therapies are favorable options instead (Sugano

et al., 2015; Malfertheiner et al., 2017).

Despite the significant progress made by antibiotic-based

therapies, the present regimens are faced with a series of challenges,

for example, high resistance to antibiotics, nonadherence, drug

toxicity and side effects, and disturbance of gastrointestinal

microflora (Matsumoto et al., 2019).

Increasing bacterial resistance to commonly used antimicrobial

agents is one of the most common reasons for eradication failure,

which has reached alarming levels worldwide and severely threatens

the efficacy of treatment. Based on a systematic review and meta-

analysis involving 65 countries, the incidence of primary and secondary

resistance to clarithromycin, metronidazole, and levofloxacin is greater

than 15% in mostWHO regions (Savoldi et al., 2018). This threshold is

commonly used to select alternative treatment regimens (Savoldi et al.,

2018). Likewise, a recent prospective study covering 18 European

countries also showed alarming H. pylori resistance to commonly

used antibiotics and revealed a positive correlation between macrolide

and quinolone consumption and corresponding H. pylori resistance
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(Megraud et al., 2021). Accordingly, the last few decades have

witnessed the unacceptable fact that H. pylori eradication rates of

standard triple therapies experienced a sharp decrease from 80-90% in

the 1990s to below 70%, and other regimens also encounter similar

hurdles (O'Morain et al., 2018). To maximize the eradication rate and

ensure the prudent use of antibiotics, individual antibiotic susceptibility

testing seems to be a feasible solution, which is especially

recommended in cases needing salvage therapies (O'Morain et al.,

2018). Moreover, it is beneficial to collect regional antibiotic

consumption data and clinical outcomes to provide local resistance

reports and update guidelines for infection (Matsumoto et al., 2019).

In addition to the emergence of antibiotic-resistant strains, the

possible adverse effects and nonadherence of some patients also

impose restrictions on the utilization of conventional antibiotic-

based eradication therapies. Antibiotics, especially at high dosages,

may induce many side effects. For example, antibiotics are known to

affect the balance of gut microbiota through both direct and indirect

mechanisms. While eradicating targeted pathogens, antibiotics also

discriminately kill or inhibit subsets of commensal microbes or

disrupt the homeostasis of the symbiosis and codependency

relationships among different subsets of gut microbiota (Zhang

et al., 2019). In addition, some individuals may experience adverse

reactions, including nausea, allergic reactions to antibiotics, and

severe complications (liver and/or kidney dysfunction) (Takeuchi

et al., 2014). The level of patient compliance is another crucial

contributing factor for treating the infection, which can be

influenced by barriers such as physical intolerance of medication,

lack of understanding of the prescription, and high pill burden

(Shah et al., 2021). The threshold of adherence for successful

eradication varies depending on individual factors, but it was

demonstrated that patients need to hold to at least >60% to >90%

of the prescribed course to guarantee the eradication rate (Shah

et al., 2021). Furthermore, host genetic polymorphisms of drug-

metabolizing enzymes also account for the eradication failure of H.

pylori infection. The metabolism-enhancing phenotypes of

CYP2C19 are responsible for the rapid metabolism of some PPIs

and thus influence the reduction in intragastric acidity. The optimal

intragastric pH for H. pylori replication is between 6 and 8; thus,

alkalizing the gastric environment can increase susceptibility to

antibiotics in populations with metabolism-enhancing phenotypes

of CYP2C19 (Safavi et al., 2015; Shah et al., 2021).

Due to the current persistence and rise of antibiotic resistance

and other restrictions on current therapies, traditional antibiotic-

based therapies have been severely weakened, and the development

of novel and more effective antimicrobial compounds and novel

strategies is drawing increasing attention worldwide (Matsumoto

et al., 2019). However, owing to the complex biology of the

pathogen, the high cost of research and the lack of financial

support, the discovery and development of new therapeutics is

not without challenges. To reduce the cost of developing new

candidates for H. pylori eradication, it is beneficial to attach

importance to the exploitation of natural product libraries and

conduct thorough ethnobotanical and ethnomedical analyses,

which may offer valuable inspiration for new treatments.
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4 Natural products effects
in H. pylori eradication and their
healing mechanisms

4.1 The role of natural products
and ethnomedicine

In light of the challenges faced by currently used H. pylori

antibiotic-based eradication therapies, research on alternative

treatment approaches is gaining popularity. With vast resources,

nature has provided multitudinous therapeutic agents since ancient

times and is seen as a promising source in the search for new

compounds endowed with anti-H. pylori potential.

Ethnomedicine is the study of naturally obtained drugs based

on traditional knowledge and practices of various ethnic groups (Lai

et al., 2022), usually supported by ancient medical classics or passed

down orally over generations. Generally, acquired from empirical

observations and beliefs of indigenous peoples, the theoretical

systems of ethnomedicine differ from scientific medicine, and

some are still currently inexplicable by science. Nevertheless,

ethnomedicine has been indispensable in health maintenance in

households for centuries and is still widely used for primary health

needs in extensive regions (Buenz et al., 2018).

Natural products are a series of bioactive chemical compounds

produced by living organisms from nature, usually serving as the

primary and secondary metabolites in biochemical pathways (Katz

and Baltz, 2016). Typical examples of natural products include

alkaloids, flavonoids, saponins, terpenes, etc. Although not

universally recognized, natural products are widely acknowledged

as the active components of numerous ethnomedicines, and the

pertinent cutting-edge research findings have input vigor into the

domain of drug discovery and development.

Several natural products and ethnomedicine have demonstrated

antimicrobial activity through diverse scientific research as well as

multiple generations of medical practice. Even before the discovery

of H. pylori, a wide range of plants and substances have been

employed to address gastric symptoms that are currently considered

to be associated with the infection of this pathogen (Takagi and

Harada, 1969; Escobedo-Hinojosa et al., 2012). Today, with a more

in-depth knowledge of H. pylori after decades of exploration,

ethnomedicine is still being used as a guide for the search for

effective natural products and treatment approaches to cope with

the infection (Vale and Oleastro, 2014), and some patent medicines

have already been recommended as supplements in clinical

guidelines. For example, traditional Chinese medicine and Kampo

are recommended as treatment options by countries with prevalent

use of traditional medicine (Helicobacter pylori Study Group, 2022;

Miwa et al., 2022). The bioactivity of some natural products in

inhibition of H. pylori has been summarized in Table 1.

4.2 The mechanisms of natural products in
H. pylori eradication

Natural products are usually divided into two categories: primary

metabolites and secondary metabolites. Including carbohydrates,
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lipids, proteins, and nucleic acids, primary metabolites are

indispensable and directly involved in the life cycle of organisms

(Chaturvedi and Gupta, 2021). Few of them, however, demonstrate

pharmacologic actions against microorganisms. Several

polysaccharides have exhibited antiadhesive properties against H.

pylori, likely by inhibiting the crucial docking process of adhesins of

H. pylori and gastric epithelium (Gottesmann et al., 2020).

In contrast, secondary metabolites are compounds that are not

needed for life, usually not only possessing a wide range of biological

functions but also having special mechanisms of action (Li et al.,

2021). The scientific community has invested significant expectations

in the utilization of secondary metabolites, and a large number of

studies have been performed to reveal the pharmacological value of

these compounds. We summarized the basic information and

possible mechanisms of some representative secondary metabolites

for H. pylori eradication (Table 2 and Figure 2). The section below

describes the latest research progress of secondary metabolites for H.

pylori eradication.

4.2.1 Terpenoids
Terpenes are a large class of plant secondary metabolites formed

with five-carbon isoprene (C5H8), and classifications of terpenoids

are based on the number of isoprene units in their structure

(Khan et al., 2018). As widely diffused chemicals in plants, many

types of terpenoids have been shown to have anti-H. pylori properties,

and here, we will update the reports of the antimicrobial effects of

some terpenoids.

Monoterpenoids are a series of natural products that possess

two isoprenes in their molecules, which are the prevailing

components of the essential oils of pine, lemon, thyme, tea tree, etc.,

and many of them have demonstrated gastroprotective activity in vivo

as well as antimicrobial properties in vitro (Rozza et al., 2011). Typical

examples with anti-H. pylori properties include limonene and b-
pinene, which are predominant components in Citrus lemon

(Rutaceae) essential oil and have been demonstrated to exert

antibacterial effects in vitro. Limonene was shown to elevate mucus

secretion by ensuring adequate PGE2 levels, thus limiting the

colonization of H. pylori and isolating gastric mucosa from ulcerative

factors (Moraes et al., 2009). Additionally, monoterpenes demonstrate

anti-inflammatory capacity by regulating oxidative stress and the

inflammatory response of gastric mucus. Consequently, the

expression of MPO, NF-kB, and proinflammatory cytokines such as

TNF-a, IL-6, and IL-1b is decreased, while that of IL-10 is increased (de
Souza et al., 2019). b-Pinene can also promote mucus production,

relieve oxidative stress and inflammation and inhibit Nf-kb expression
to exert its gastroprotective properties (de Souza et al., 2019). Similarly,

a-pinene manifests gastroprotective properties with modulation of

oxidative stress and PGE2 and histamine levels in vivo (Al-Sayed et al.,

2021). b-Myrcene also possesses the capacity to block the growth of H.

pylori, and the corresponding MIC of the monoterpene is 500 mg/mL

(Wei and Shibamoto, 2010). For gastroprotective effects, b-myrcene

prevents gastric damage by the marked upregulation of antioxidant

enzyme activity, with decreased activity of superoxide dismutase (SOD)

and increased levels of glutathione peroxidase (GPx), glutathione

reductase (GR), and total glutathione (Bonamin et al., 2014).

Moreover, terpenoid phenols, thymol and carvacrol, are reported
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antimicrobial agents with MIC ranges of 64-128 µg/mL and 16-64 µg/

mL (Grande et al., 2021). A specific concentration of carvacrol or

thymol is observed to cause an increase in membrane fluidity, leakage

of essential ions, and limited ATP synthesis in pathogens, which is

partly due to the hydrophobic character and may also be attributed to

the presence of a hydroxyl group and a system of delocalized electrons

in their structures, causing a decrease in the membrane pH gradient

and thus interfering with ATP synthesis (Ultee et al., 2002).

Additionally, the inhibition of carbonic anhydrase (CA), a series of

enzymes that catalyze the equilibrium between CO2 hydration, may

also play a crucial role in the antibacterial mechanism of the two

terpenoids. H. pylori CAs are pivotal in the modulation of pH

hemostasis, the integrity of the bacterial membrane, and the ability

to produce biofilms, which are promising druggable targets in

eliminating pathogenic microorganisms (Grande et al., 2021). Last,

Eugenol is thought to be one of themost active natural products against

H. pylori, with MICs ranging from 23.0 to 51.0 µg/mL (Elbestawy et al.,
Frontiers in Cellular and Infection Microbiology 05
2023). Previous studies indicate that eugenol possesses antibiofilm

activities against H. pylori and can downregulate the expression of

virulence factors, while eugenol can also relieve H. pylori-related

gastritis by its anti-inflammatory activities (Hu et al., 2018).

Sesquiterpenoids are another group of predominant secondary

metabolites in various plant essential oils. For instance, over 70% of the

components present in cedarwood essential oil are sesquiterpenoids,

including a-, b-cedrene, thujopsene, cedrol, and cuparene, and the

compound group displayed excellent efficacy in inhibiting urease

activity and H. pylori growth (Korona-Glowniak et al., 2020), which

may indicate that the anti-H. pylori activity of sesquiterpenoids.

Additionally, with a similar structure to the major components in

cedarwood essential oil, patchouli alcohol, a tricyclic sesquiterpenoid,

exhibited antimicrobial properties toward Streptococcus mutans via the

inhibition of DNA polymerase in a previous study (Takao et al., 2012),

which may also offer a clue for the anti-H. pylori activity

of sesquiterpenoids.
TABLE 1 Summarization of the bioactivities of natural products in H. pylori inhibition.

Compounds
name

MIC
(mg/mL)

MBC
(mg/mL)

H. pylori strains Reference

Limonene 75 / ATCC 43504 (Rozza et al., 2011)

199.2 / ATCC 43504 (Villa-Ruano et al., 2018)

b-pinene 500 / HATCC 43504 (Rozza et al., 2011)

296.9 / ATCC 43504 (Villa-Ruano et al., 2018)

a-pinene / 100 P1 (Bergonzelli et al., 2003)

b-Myrcene 500 / ATCC 43504 (Bonamin et al., 2014)

Thymol 64-128 / Eight strains of H. pylori (one reference and seven clinical isolates) (Sisto et al., 2021)

Carvacrol 16–64 32–64 Nine strains of H. pylori (one reference strain and eight
clinical isolates)

(Sisto et al., 2020)

Eugenol 23.0-51.0 / H. pylori isolates and standard strain NCTC 11637 (Elbestawy et al., 2023)

Glycyrrhetinic acid 50 / 29 different H. pylori strains (Krausse et al., 2004)

Kaempferol >600 / ATCC 43504 and 26695 (Escandón et al., 2016)

Chalcone
(Xinjiachalcone A)

12.5-50 / Seventeen H. pylori strains including clinical ones (Bodet et al., 2014)

Myricetin 160 320 ATCC 700824, 51932 (Krzyżek et al., 2021)

Taxifolin 625 / ATCC 43629 (Stenger Moura
et al., 2021)

Tellimagrandin I 12.5 / NCTC 11638, ATCC 43504, A-13, A-19 (Funatogawa et al., 2004)

Tellimagrandin II 6.25-12.5 / NCTC 11638, ATCC 43504, A-13, A-19 (Funatogawa et al., 2004)

Curcumin 30 40 ATCC 700392 (Darmani et al., 2020)

Berberine 25 / NCTC 26695 and SS1 (Wu et al., 2023)

Coptisine 16-32 32-64 ATCC 43504,700392 and PMSS1 (Tang et al., 2023)

Palmatine 50 / NCTC 26695 and SS1 (Wu et al., 2023)

32-64 64-128 ATCC 43504,700392 and PMSS1 (Tang et al., 2023)

Sanguinarine 6.25–50 / A total of 14 clinical isolates (Mahady et al., 2003)

Piperine 125 / 60190, NTCC 11637 and Tx30a (Tharmalingam
et al., 2014)
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TABLE 2 Summarization of the basic information and possible mechanisms of some representative secondary metabolite for H. pylori eradication.

Compounds name Reported from
(plant name)

Mechanisms Reference

Terpenoids

Thymol Thymus kotschyanus Ability of pH hemostasis
modulation↓;
damage H. pylori;
membrane integrity;
ATP synthesis↓;
ability of biofilm production↓.

(Grande et al., 2021; Sisto et al., 2021)

carvacrol Origanum vulgare Ability of pH hemostasis
modulation↓;
damage H. pylori;
membrane integrity;
ATP synthesis↓;
ability of biofilm production↓.

(Oliveira et al., 2012; Sisto et al., 2020; Grande
et al., 2021)

Eugenol Eugenia caryophillis Antibiofilm↓;
gene expression of
virulent factors↓;

(Wei and Shibamoto, 2010; Hu et al., 2018;
Elbestawy et al., 2023)

Polyphenols

kaempferol kaempferol galanga Stability of membrane↓. (Yang et al., 2022)

chalcone species of the Leguminosae, Asteraceae
and Moraceae families

Interactions between H. pylori and
gastric epithelium↓;
motility↓;
urease↓;

(Michalkova et al., 2023)

myricetin Myrica Immune system detection↑;
antibiotic sensitivity↑;
biofilm↓.

(Krzyżek et al., 2021)

Tellimagrandin I Cornus canadensis damage H. pylori;
membrane integrity;

(Funatogawa et al., 2004)

Curcumin Turmeric Urease↓;
immunomodulation↑.

(De et al., 2009; Khonche et al., 2016; Judaki
et al., 2017; Shetty et al., 2021)

(Continued)
F
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Similarly, triterpenoids have also gained attention for their various

biological functions, including anti-inflammatory, antitumor, antiviral

and antimicrobial activities (Dzubak et al., 2006). Triterpene glycosides

(saponin) are good examples of anti-H. pylori activity of triterpenoids.

For instance, glycyrrhizic acid is a representative triterpenoid saponin

enriched in Glycyrrhiza glabra, whose major metabolite, glycyrrhetinic

acid, was reported to exhibit rapid anti-H. pylori property in vitro

(Wittschier et al., 2009). Glycyrrhetinic acid is reportedly in possession

of cytotoxic effects and can impairH. pylori growth. Nevertheless, some

studies have indicated that long-term intake of saponin may lead to an

increased risk of gastric lesions (Périco et al., 2015). Therefore, the use

of saponin-rich plants as an antiulcer ethnomedicine should be under

careful consideration.
Frontiers in Cellular and Infection Microbiology 07
Tetraterpenoids are terpenoids that consist of a C40 structure,

and carotenoids are a well-known subclass of tetraterpenoids that

possess potent antioxidant properties. Previous research has explored

the potential of some carotenoids in the treatment ofH. pylori-related

gastric diseases, including b-carotene (Bae et al., 2021), astaxanthin
(Davinelli et al., 2019; Kim and Kim, 2021; Lee et al., 2022), and

lycopene (Jang et al., 2012; Kim et al., 2018a). Carotenoids can be

divided into two groups by the presence of oxygen, namely,

xanthophylls and carotenes, and here, we will present b-carotene
and astaxanthin as representatives. Abundant in orange-colored

fruits and vegetables, b-carotene is a well-known carotenoid with

marked antioxidant capacity, which may be structurally ascribed to

the numerous conjugated double bonds (Kang and Kim, 2017).
TABLE 2 Continued

Compounds name Reported from
(plant name)

Mechanisms Reference

Alkaloids

sanguinarine Zanthoxylum nitidum Urease↓;
cell lysis.

(Thawabteh et al., 2019; Lu et al., 2022)

coptisine Rhizoma Coptidis Urease↓;
Cag expression↓;
DNA fragmentation↑;
phosphatidylserine exposure↑;
membrane stability↓.

(He et al., 2022b; Tang et al., 2023)

Piperine black pepper Motility↓;
H. pylori adhesion↓.

(Tharmalingam et al., 2014)
FIGURE 2

Mechanisms of secondary metabolites for H. pylori eradication.
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b-carotene intake can suppress NADPH oxidase and stimulate

antioxidant enzyme activity, thus contributing to the suppression of

H. pylori-induced ROS generation as well as the level of iNOS and

COX-2 expression. As a result, b-carotene exerts its anti-

inflammatory effects by suppressing ROS-mediated inflammatory

signaling (including MAPKs and NF-kB), which functions in the

prevention of inflammatory damage (Jang et al., 2009; Park et al.,

2019; Bae et al., 2021). However, previous studies have mainly

focused on the ability of b-carotene to modulate gastric

carcinogenesis, and existing evidence has not shown explicit

antimicrobial activity of b-carotene against H. pylori, which needs

further exploration. In addition, astaxanthin is a xanthophyll

carotenoid commonly found in crustaceans such as shrimp, crabs,

and lobster (Davinelli et al., 2019), which is reported to have 10-fold

stronger antioxidant activity than b-carotene. In vivo, a study using

BALB/cA mice showed that an astaxanthin-rich algal meal could

inhibit the colonization of H. pylori and suppress inflammation in

gastric tissues of H. pylori-infected mice (Bennedsen et al., 2000;

Naguib, 2000; Wang et al., 2000). Similarly, astaxanthin demonstrates

its ability to prevent oxidative stress-mediated inflammation through

ROS reduction (Kim et al., 2018b). Some research also illustrated that

astaxanthin could induce a shift in the Th1/Th2 response pattern,

thus enhancing the clearance of H. pylori (Davinelli et al., 2019).

Additionally, a significant ability to inhibit H+, K+-ATPase was

observed in astaxanthin esters, indicating a possible mechanism of

H. pylori inhibition and a potent future of astaxanthin modification

(Kamath et al., 2008).

4.2.2 Polyphenols
Polyphenols are another ubiquitous spectrum of natural

products abundant in green tea, propolis, cranberry, etc (Gao

et al., 2021; Ngan et al., 2021; Widelski et al., 2022), and can be

grouped into classes such as flavonoids and tannoids. Structurally,

polyphenols possess several hydroxyl groups on aromatic rings,

which contribute to their antioxidant properties to reduce ROS

production (Bonacorsi et al., 2012). Several investigations into the

mechanisms of anti-H. pylori capacities have shown that

polyphenols may lead to a decrease in urease activity, inhibition

of cytotoxic activity as well as its binding with the gastric mucosa,

and the rupture of outer membrane (Burger et al., 2002; Lin et al.,

2005; Yahiro et al., 2005; Nohynek et al., 2006). According to a

previous study, polyphenols as an adjuvant in the treatment of H.

pylori infection can significantly improve the eradication rate

(Wang et al., 2023; Wu et al., 2023), while no evidence has been

found to suggest an increased risk of side effects. Consequently,

polyphenols are suggested as an alternative treatment approach for

H. pylori infection.

Among the polyphenol family, flavonoids are one of the most

important and vast groups of compounds with a basic skeleton

comprising two benzene rings linked through a heterocyclic ring,

involving over 9000 species of molecules (Gonzalez et al., 2021).

Many flavonoids have been shown to possess promising

antimicrobial capacity against H. pylori, including kaempferol,

chalcone, myricetin, taxifolin, and other compounds with proven

validity (Krzyżek et al., 2021; Stenger Moura et al., 2021; Yang et al.,
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2022; Michalkova et al., 2023). Flavonoids contribute to several

antibacterial mechanisms, such as the inhibition of crucial enzymes

for colonization, survival, and reproduction (Asha et al., 2013;

Steinmann et al., 2013; Egas et al., 2018), and interference with

the fluidity and stability of the cytoplasmic membrane (Tsuchiya

and Iinuma, 2000; Yang et al., 2022). In addition, flavonoids can

engage in the modulation of several intracellular pathways, such as

MAPK and NF-kB, thus attenuating the level of pro-inflammatory

cytokines induced by H. pylori infection and improving gastric

inflammation status (Wang and Huang, 2013). In addition to their

antimicrobial and anti-inflammatory effects, flavonoids are capable

of acting synergistically with antibiotics commonly utilized in the

treatment of H. pylori infection (Krzyżek et al., 2021).

Tannoids (or tannins) are naturally occurring plant polyphenolic

substances that bind to proteins, amino acids, alkaloids, and precipitate

them and are highly expected antimicrobial biomolecules (Kurhekar,

2016), and previous studies have demonstrated the in vitro anti-H.

pylori activity of the compounds (Wang, 2014; Cardoso et al., 2018).

According to Funatogawa et al.’s work, monomeric hydrolyzable

tannoids inclusive of tellimagrandin I and II exhibit strong

antibacterial activity by damaging the membrane of H. pylori

(Funatogawa et al., 2004). In addition, tannoids can also serve as

inflammatory mediators by reducing nitric oxide levels and exerting

anti-inflammatory activity on gastric mucosa (Cardoso et al., 2018).

Curcumin, the principal ingredient isolated from turmeric, has

been used in many Asian regions as an herbal remedy for various

diseases (Kwiecien et al., 2019). In vivo, an experiment in a mouse

model has proven a notably reduced number of H. pylori colonizing

mucosa, whichmay be attributed to decreased activity of lipid peroxide,

MPO and urease and increased level of immunomodulation (De et al.,

2009). Recent evidence offered by randomized clinical trials also

revealed that triple therapy with curcumin can improve symptoms of

dyspepsia, attenuate oxidative stress, and prevent mucosa against

inflammation, and some showed that adjunctive therapy with

curcumin can improve the eradication rate of H. pylori (Khonche

et al., 2016; Judaki et al., 2017). Additionally, the good interaction

between curcumin and targeted virulence factors such as Urea/b
subunits is implicated in the prevention of H. pylori survival and

colonization (Shetty et al., 2021). However, the oral bioactivity of

curcumin as an alternative remedy for H. pylori elimination is

weakened by its limited aqueous solubility and retention time, for

which an effective delivery system is needed to ensure enough

therapeutic window at the site of infection, and chitosan (CS)

polymer may be a practical solution (Ejaz et al., 2022).

4.2.3 Alkaloids
Alkaloids are a wide range of naturally occurring molecules that

contain at least one nitrogen atom and several hydrogen-carbon

groups in their structures, forming heterocyclic rings. To date, over

10,000 kinds of alkaloids have been identified among 300 plant

families (Mahapatra et al., 2019). A variety of compounds in

alkaloid families have shown multiple therapeutic effects, for

example, their antitumor, antimicrobial, anti-inflammatory and

antidiabetic properties (Wu et al., 2018). Numerous previous

studies have noted diverse representatives of pharmaceutically
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used alkaloids, among which some are recognized as promising

antimicrobial agents, such as berberine, coptisine, palmatine, and

quinolone alkaloids (Hamasaki et al., 2000; Wen et al., 2022). Some

studies have focused on the mechanisms of anti-H. pylori

properties, which will be discussed in the following section.

The inhibition of urease activity is a common mechanism of

alkaloids against H. pylori. According to the significant reduction in

anti-urease activity after adding sulfhydryl-containing reagents or

competitive Ni2+-binding restrainers, sanguinarine (a natural alkaloid

enriched in Zanthoxylum nitidum) is supposed to suppress urease by

targeting Ni2+ and thiol (Lu et al., 2022). Similarly, coptisine could

also interact with both active center Ni2+ and sulfhydryl groups in

amino acid residues to inhibit urease activity (He et al., 2022b). In

addition to urease inhibition, coptisine also demonstrates various

antibacterial mechanisms, including decreasing Cag expression and

inducing DNA fragmentation (Tang et al., 2023). Moreover, many

alkaloids, such as coptisine and squalamine, can cause disruption of

the cell membrane of H. pylori, which is especially beneficial for

synergistic therapy with commonly used antibiotics (such as

amoxicillin), providing extra portals for some compounds to enter

the bacteria (Krzyzek et al., 2021; Tang et al., 2023). Piperine, an

alkaloid present in black pepper, has shown a diminution ofH. pylori

motility as well as adhesion to gastric cells, contributing to the

suppression of H. pylori growth (Tharmalingam et al., 2014).

Like other natural products, alkaloids can also exert

diverse anti-inflammatory effects, including the reduction of

certain proinflammatory cytokines (IL-2, IL-6, IL-17, CXCL1)

(Tang et al., 2023), the regulation of macrophage activity

(Yang et al., 2021), and the modulation of inflammatory signaling

pathways (Alam et al., 2019; Haftcheshmeh et al., 2022). In addition

to anti-inflammatory properties, some studies have investigated the

gastroprotective effects of alkaloids and reported improvements in

the ulcer area of rats, with increased prostaglandin E2 (PGE2) as well

as decreased platelet-activating factor (PAF) (Wang et al., 2017). All

of these features may relieve the symptoms and health hazards

induced by H. pylori.
5 The Merits of ethnomedicine
and further perspectives

Given that only a limited fraction of plant species have been

scientifically studied, there still lies great potential in discovering

new promising drugs, which are likely to be included in

ethnomedicine and are perceived to be an ideal substitute or

supplement for current recommended treatment.

Ethnomedicine distinguishes itself from traditional therapies by

its accessibility, relatively affordable price and widespread availability.

In addition, many consumers perceive herbal medicine as a more

natural and thus safer option than synthetic drugs to address diseases,

particularly in regions where traditional medicine has been widely

practiced for a long time. Although herbal medicine cannot

necessarily avoid adverse effects, evidence has proven the safety

advantages of natural products over the traditional therapies of

combining multiple antibiotics (Deng et al., 2022; Liu et al., 2022).

Some studies have investigated the efficacy and safety of the
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combination of standard therapy and some ethnomedicine

medications, which was demonstrated to have a higher eradication

rate and fewer side effects than using an antibiotic-based regimen

(Bao et al., 2022). In addition to the eradication efficiency,

combination medication possesses the superiority of relieving the

symptoms ofH. pylori-associated gastritis, with the concept of overall

adjustment and multitargeting curative effects (Li et al., 2021).

Moreover, another appealing reason for adding ethnomedicine to

treatments is that pharmaceutical synergism may lessen the

likelihood of antibiotic resistance, which can also be attributed to

the multiple target effects of ethnomedicine (Ngo et al., 2013; Li et al.,

2021). Ultimately, the use of ethnomedicine has noteworthy value in

the H. pylori eradication of specific populations. For example, it is

relatively inappropriate to employ conventional antibiotic-based

regimens in vulnerable elderly individuals who would be unable to

endure the possible adverse effects of high-dose antibiotics and acid

suppression. Thus, ethnomedicine, with milder side effects, is

regarded as an ideal therapeutic solution.

Apart from the aforementioned advantages from the patients’

perspective, the screening process for new pharmaceuticals also gains

from the higher success rate of natural product libraries and the

information provided by ethnomedicine. Natural products already

possess biological functions since they are mainly primary and

secondary metabolites, which leads to a higher possibility of

discovering biologically appropriate compounds in natural product

libraries than exploring traditional combinatorial chemistry

(Sukuru et al., 2009; Buenz et al., 2018). The screening of

polyketide metabolites is a good illustration of the efficiency with a

hit rate of 0.3% (more than 20 commercial drugs in just over 7000

known structures), while the hit rate for HTS of synthetic compound

libraries is less than 0.001% (Weissman and Leadlay, 2005).

Additionally, with its empirical knowledge and historical trials, the

ethnomedicine system may also facilitate the identification of

bioactive compounds by indicating possible screening directions

(Buenz et al., 2018).

With the advances of new technologies such as virtual screening,

bioinformatics, and artificial intelligence, bioprospecting is currently

equipped with innovative powerful tools and undergoing rapid

evolution. For instance, in the work of He et al., virtual screening

and molecular modeling were utilized to identify ligands that interact

with CagA protein to discover potential natural compound

candidates (He et al., 2022a). Bioinformatics approaches, including

genomics, proteomics, and metabolomics, are also widely

implemented in natural product biosynthesis and production, and

some researchers bet on artificial intelligence projects for drug

innovation inspiration (Ngo et al., 2013; Merwin et al., 2020; Zhang

et al., 2020).

While ethnomedicine may provide valuable insights into

potential natural remedies or complementary approaches, there

are several challenges associated with the development of

ethnomedicine as a treatment for H. pylori. It has been generally

accepted that the premise of TCM treatment is syndrome

differentiation, which is the cornerstone of treatment. However,

due to the complexity of TCM syndrome types, it is difficult to

develop a widely accepted TCM syndrome type differentiation

system at present (Li et al., 2021; Elbehiry et al., 2023). Thus, it is
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necessary to summarize the experience from current clinical

practice and integrate experts’ opinions to form consensus about

syndrome differentiation for H. pylori-associated diseases. In

addition, basic animal experimental studies were also limited by

the complexity of TCM syndrome types. Currently, most animal

experimental studies on disease-syndrome combinations only have

a single syndrome type, which is inconsistent with the complex

syndrome type of TCM that is more common in clinical practice.

Future studies should explore and develop new research models

containing complex disease-syndrome combinations to be in line

with the current majority clinical practice. Furthermore, the

combination of natural products and Western medicine is

becoming increasingly common in modern clinical research. This

approach can achieve the goal of increasing efficiency and reducing

toxicity, highlighting the advantages of combination therapy.

Phytochemicals from ethnomedicine formulas and their

compositional herb medicines exhibit great potential for the

development of novel anti-H. pylori drugs. However, the current

investigation of the combination of natural products and Western

medicine for treating H. pylori is still insufficient. Researchers

should try to combine some herbal monomers that have clear

chemical structures or active ingredients in formulas to develop

novel drugs for treating H. pylori infection based on the

compatibility principle of ethnomedicine prescriptions (Li et al.,

2021). Last, the effectiveness and safety of natural products can vary

significantly (Périco et al., 2015), and it is important to consider

potential interactions with other medications and any possible side

effects. There is currently little clinical trial data regarding their

safety and efficacy. Therefore, more multicenter, double-blind,

randomized, and controlled clinical trials should be conducted to

validate the effectiveness and safety of these natural product

prescriptions in the treatment of H. pylori. Well-designed clinical

trials and experimental studies would be beneficial for facilitating a

better understanding of the mechanism of natural products and

promoting the modernization of natural products in the treatment

of H. pylori-associated diseases (Yang et al., 2023).
6 Summary

Confronting the challenge presented by H. pylori antibiotic

resistance, ethnomedicine is a particularly noteworthy choice of

complementary therapy. The scientists and practitioners should

continue working collaboratively to bring this ancient wisdom up-

to-date and make full use of it in H. pylori eradication. In this

review, we comprehensively summarized the anti-H. pylori function

and mechanisms of natural products, and analyzed the therapeutic

advantages of incorporating ethnomedicine into anti-H. pylori

regimens, including safety, accessibility, efficiency and restriction

of antibiotic resistance. Natural products can also provide clues for

novel antimicrobial drug discovery. This review can provide

insights into the development of natural products and expand the

therapeutic options available for H. pylori eradication. However,
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there is still some limitation. The language of the included studies

was limited to English, so some potential eligible studies published

in other languages might be neglected.
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