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aegypti in Metropolitan Manila,
Philippines using locally
designed primers
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and Kozo Watanabe1*

1Molecular Ecology and Health Laboratory, Center for Marine Environmental Studies (CMES), Ehime
University, Matsuyama, Japan, 2Graduate School of Science and Engineering, Ehime University,
Matsuyama, Japan
Background: The Philippines bears health and economic burden caused by high

dengue cases annually. Presently, the Philippines still lack an effective and

sustainable vector management. The use of Wolbachia, a maternally

transmitted bacterium, that mitigate arbovirus transmission has been

recommended. Cytoplasmic incompatibility and viral blocking, two

characteristics that make Wolbachia suitable for vector control, depend on

infection prevalence and density. There are no current Wolbachia release

programs in the Philippines, and studies regarding the safety of this

intervention. Here, we screened for Wolbachia in Aedes aegypti collected from

Metropolitan Manila, Philippines. We designed location-specific primers for qPCR

to test whether this improvedWolbachia detection in Ae. aegypti.We explored if

host sex and Wolbachia strain could be potential factors affecting

Wolbachia density.

Methods: Ae. aegypti mosquitoes (n=429) were screened for natural Wolbachia

by taqman qPCR using location-specific Wolbachia surface protein primers

(wspAAML) and known 16S rRNA primers. Samples positive for wspAAML

(n=267) were processed for Sanger sequencing. We constructed a

phylogenetic tree using IQ-TREE 2 to further characterize Wolbachia present

in the Philippine Ae. aegypti. We then compared Wolbachia densities between

Wolbachia groups and host sex. Statistical analyses were done using GraphPad

Prism 9.0.

Results: Wolbachia prevalence for 16S rRNA (40%) and wspAAML (62%)

markers were high. Wolbachia relative densities for 16S rRNA ranged from

−3.84 to 2.71 and wspAAML from −4.02 to 1.81. Densities were higher in male

than female mosquitoes. Wolbachia strains detected in Ae. aegypti clustered

into supergroup B. Some 54% (123/226) of these sequences clustered under

a group referred to here as “wAegML,” that belongs to the supergroup B,

which had a significantly lower density than wAegB/wAlbB, and

wAlbA strains.
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Conclusion: Location-specific primers improved detection of natural Wolbachia

in Ae. aegypti and allowed for relative quantification. Wolbachia density is

relatively low, and differed between host sexes and Wolbachia strains. An

economical way of confirming sporadic or transient Wolbachia in Ae. aegypti is

necessary while considering host sex and bacterial strain.
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1 Introduction

The Philippines continues to experience the health burden

caused by high dengue cases, ranking number one in Asia with

17,630 deaths last March 2021 (Edillo et al., 2015, 2022; Ong et al.,

2022). The persistent high cases annually prompted the Philippine

government to establish the National Dengue Prevention and

Control Program with vector surveillance and management as

one of the key targets (Dengue Prevention and Control Program |

Department of Health website, n.d.). Aedes aegypti mosquito is the

primary vector of Dengue in the Philippines owing to its

adaptability in changing environments (Edillo et al., 2022). To

mitigate infections, recommendations for vector management

including the reduction of breeding sites, and improvement of

water systems have been proposed. More importantly, Ong et al.

(2022) highlighted the need for a more sustainable approach

involving the use of the bacterium Wolbachia (Ong et al., 2022).

Currently, the Philippines still lacks local studies that could provide

a baseline information for assisting future mass release

implementations (Ong et al., 2022).

Wolbachia was discovered in Culex pipiens (Hertig and

Wolbach, 1924) and may induce cytoplasmic incompatibility

(CI), wherein gametes fail to produce viable offspring owing to

incompatibleWolbachia infection (Yen and Barr, 1973).Wolbachia

also naturally infect arthropods such as Drosophila spp (Min and

Benzer, 1997; Brownlie et al., 2009; McMeniman et al., 2009;

Osborne et al., 2009), Anopheles spp (Walker et al., 2021), and

Aedes albopictus (Dutton and Sinkins, 2004; Yang et al., 2021).

Different Wolbachia strains, i.e. wMelpop, wMel, and wAlbB, from

these natural hosts can exert life-shortening effects (Min and

Benzer, 1997; McMeniman et al., 2009), or confer nutritional

benefits (Brownlie et al., 2009), efficient maternal transmission

(Liu and Li, 2021), and antiviral protection (Osborne et al., 2009;

Liu and Li, 2021; Reyes et al., 2021). CI, maternal transmission, and

the antiviral effects of Wolbachia against arthropod-borne viruses

all contribute to the efficiency of the mass release of Wolbachia-

transinfected Ae. aegypti (Indriani et al., 2020; Ahmad et al., 2021).

Currently, only D. melanogaster-derived wMel and Ae. albopictus-

derived wAlbB are used in release programs (Indriani et al., 2020;

Ahmad et al., 2021; Ross et al., 2022). Release programs can either
02
result in mosquito population suppression or replacement (Ross

et al., 2020). The former involves the release of Wolbachia-infected

males that induce CI with wild female mosquitoes, whereas both CI-

inducing male mosquitoes and females carrying a pathogen-

blocking strain that is maternally transmitted are released in the

latter (Ross et al., 2020).

Unlike other host species, studies on Ae. aegypti have mostly

revealed the absence of naturalWolbachia (Gloria-Soria et al., 2018;

Goindin et al., 2018). Novel Wolbachia transinfection in

mosquitoes facilitates population suppression and replacement

(Ross et al., 2020). However, the occasional presence of

Wolbachia in Ae. aegypti populations without any preceding

Wolbachia have been reported. These were found in the USA

(Coon et al., 2016), Mexico (Kulkarni et al., 2019), Panama

(Bennett et al., 2019), India (Balaji et al., 2019), Malaysia (Teo

et al., 2017), Thailand (Thongsripong et al., 2018), China (Zhang

et al., 2022), Taiwan (Chao and Shih, 2023), and Philippines

(Carvajal et al., 2019; Regilme et al., 2021; Muharromah et al.,

2023). Thus, understanding biological factors that may influence

the variable presence of natural Wolbachia in Ae. aegypti is

necessary. More so, finding an economical way to improve

detection of Wolbachia could help initial surveillance in countries

where mass release programs could be implemented. This is

particularly important in low-income countries like the

Philippines, gravely affected by arboviral diseases.

Natural Wolbachia hosts are characterized by consistently high

Wolbachia prevalence (Inácio da Silva et al., 2021). Culex pipiens,

Culex quinquefasciatus, Ae. albopictus, Anopheles moucheti, and

Anopheles demeilloni can exhibit 90% to 100% Wolbachia

prevalence (Bergman and Hesson, 2021; Inácio da Silva et al.,

2021). In Anopheles gambiae and Ae. aegypti, prevalence is

relatively low and can vary from 8–24% and 4.3–58%, respectively

(Inácio da Silva et al., 2021). The detection of natural Wolbachia in

Ae. aegypti remains inconclusive. The reported presence of

Wolbachia in the said mosquito host seems to be sporadic,

transient, and low in prevalence making it difficult to quantify.

Thus, more studies regarding prevalence, biological factors, and

mechanisms are needed to understand the nature of natural

Wolbachia sporadically found in different populations of

Ae. aegypti.
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In general,Wolbachia prevalence and density influence maternal

transmission fidelity and pathogen blocking extent (Ikeda et al., 2003;

Unckless et al., 2009; Hoffmann et al., 2014; López-Madrigal and

Duarte, 2019; Liu and Li, 2021; Shropshire et al., 2021; Walker et al.,

2021). Achieving high and stable Wolbachia introgression into

communities via transinfected Ae. aegypti depends on the number

of mosquitoes that become infected with the endosymbiont (Indriani

et al., 2020; Ahmad et al., 2021). Other hosts like Drosophila spp. and

the moth Ephestia kuehniella exhibit varying CI levels relative to

Wolbachia density; i.e., mostly high CI with high density (Hoffmann

et al., 1986; Bourtzis et al., 1996; Ikeda et al., 2003; Unckless et al.,

2009; Turelli et al., 2018). However, one study found that high wMel

density in Drosophila simulans did not translate into elevated CI but

strengthened host immune expression (Shropshire et al., 2021).

Density also has been linked to virus inhibition (Bian et al., 2010;

Frentiu et al., 2010; Lu et al., 2020). For example, higher wAlbB and

wMelpop-CLA densities in Ae. albopictus was correlated with

stronger blocking in vitro (Frentiu et al., 2010; Lu et al., 2020).

Likewise, Ae. aegypti mosquitoes transinfected with wAlbB inhibited

dengue replication and transmission by regulating immunity and

longevity, respectively (Bian et al., 2010).

Wolbachia density is host sex-dependent. Density is reported

higher in adult female than male hosts, as observed in D. simulans as

well as the planthoppers Laodelphax striatellus and Sogatella furcifera

(Noda et al., 2001; Correa and Ballard, 2012). Wolbachia densities are

also more stable in female than male insect hosts and decline with age

in males (Noda et al., 2001; Unckless et al., 2009; Correa and Ballard,

2012). However, males exhibit higherWolbachia density than females

in some insects such as Diaphorina citri (Hoffmann et al., 2014).

Wolbachia density and prevalence in host sex also vary with strain in

Ae. albopictus (Tortosa et al., 2010; Yang et al., 2022). wAlbB density

was higher in males than females, whereas wAlbA density was higher

in females than males. Wolbachia wAlbA density in male Ae.

albopictus also decreased with age (Tortosa et al., 2010). Further, a

higher prevalence of wAlbA and wAlbB coinfection was observed in

females than males, in which infection prevalence varied according to

wAlb strain (Tortosa et al., 2010; Yang et al., 2022).

Wolbachia density is also determined by Wolbachia strain.

Different Wolbachia strains vary in density (Dutton and Sinkins,

2004; Hu et al., 2020), viral inhibition (Osborne et al., 2009;

Martinez et al., 2017), and CI (Liang et al., 2020) strength in

hosts. For instance, wAlbB resides in Ae. albopictus at a higher

density than wAlbA (Dutton and Sinkins, 2004; Hu et al., 2020).

Further, Wolbachia strains wMel, wAu, wRi, and wNo that exist at

high density in D. simulans confer viral protection, unlike wHa

(Osborne et al., 2009). Lastly, strains wMelpop, wMel, and wAlbB

exhibit stable and high-density infection in transinfected Ae.

aegypti, despite being transferred from their natural hosts D.

melanogaster and Ae. albopictus (McMeniman and O’Neill, 2010;

Fraser et al., 2017; Ross, 2021).

Currently, information on the presence of naturalWolbachia in

Ae. aegypti varies and knowledge on density in relation to biological

factors is limited (Teo et al., 2017; Bennett et al., 2019; Carvajal

et al., 2019). Detection of Wolbachia also differs among states and

cities within a country (Chen et al., 2016; Schuler et al., 2018; Zhang

et al., 2022). Previous studies on prevalence have used general
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primers based on Wolbachia sequences from established natural

hosts (Teo et al., 2017; Bennett et al., 2019; Carvajal et al., 2019;

Kulkarni et al., 2019); thus primers currently used may not detect

rare and low-density strains (Marcon et al., 2011; Simões et al.,

2011). These limitations suggest that validation methods are

necessary to perform initial surveillance targeting specific local

Wolbachia populations. Lastly, Wolbachia density in naturally

infected hosts is regulated by multiple factors; e.g., host genotype

(Mouton et al., 2006), host sex (Tortosa et al., 2010; Mejia et al.,

2022), and Wolbachia strain (Dutton and Sinkins, 2004; Hu et al.,

2020). However, no study has clarified the biological factors that

affect Wolbachia density in Ae. aegypti.

The present study aims to investigate if locally designed primers

for qPCR could help validate the presence and density of natural

Wolbachia in local mosquito populations. We also determined if

density could be influenced by host sex and Wolbachia strain. We

did this by utilizing locally designed Wolbachia surface protein

(wsp) primers suitable for Ae. aegypti collected from Metro Manila,

Philippines. We then used these primers to quantify Wolbachia

density in 429 individual mosquitoes and compared against a

known general primer used for conventional PCR. Next, we

examined Wolbachia density between Wolbachia host sex and

strains in Ae. aegypti populations. We hypothesized that the

presence of sporadic, low density natural Wolbachia in Ae.

aegypti can be detected and quantified by using primers designed

for local mosquito populations and that Wolbachia density differs

depending onWolbachia host sex and strain. An economical way to

conduct initial surveillance ofWolbachia in Ae. aegypti is necessary

especially in low-income countries like the Philippines, where an

effective vector control strategy is needed.
2 Materials and methods

2.1 Mosquito sample collection

We used DNA samples extracted from Ae. aegypti adult

mosquitoes collected in the National Capital Region (Manila) of

the Philippines; these samples were previously used forWolbachia

detection via conventional PCR (Carvajal et al., 2019) and

ddRAD-Seq (Muharromah et al., 2023). Wolbachia was detected

in 11.9% (80/672) of these samples by PCR (Carvajal et al., 2019)

and sequence reads of 26,299 (wAlbA) and 43,778 (wAlbB) were

mapped across the entire Wolbachia genome out of 146,239,637

filtered reads obtained by ddRAD-Seq (Muharromah et al., 2023).

Thus, the samples were considered suitable for validating primer

incompatibility. Each individual mosquito was previously

screened and processed for DNA extraction as described by

Carvajal et al. (2019). The total DNA of individual mosquitoes

was extracted using a Blood and Tissue DNEasy Kit (Qiagen,

Hilden, Germany) according to the manufacturer’s protocol with

slight modifications (Crane, 2013). All samples were stored as

DNA at −80°C for long term preservation. Of 672 individual

mosquitoes used by Carvajal et al. (2019), we selected 429 samples

based on sufficient volume and DNA concentration for

downstream assays.
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2.2 Wolbachia detection via
conventional PCR

Data on conventional PCR results were obtained from the study

of Carvajal et al. (2019) (Supplementary Data) and used as a

baseline reference in the present study in relation to Wolbachia

prevalence and density detected with the newly designed primers.

Briefly, Carvajal et al. (2019) used two known markers targeting the

16S rRNA gene, which has a slow evolutionary rate, and another

marker targeting the highly variable Wolbachia surface protein

(wsp), which is suitable for strain identification (O’Neill et al.,

1992; Zhou et al., 1998). The sequences of 16S rRNA and wsp

Wolbachia-specific primers were as follows: Wspecf (5′-GAA GAT

AAT GAC GGT ACT CAC-3′) and Wspecr (5′-AGC TTC GAG

TGA AAC CAA TTC-3′) (O’Neill et al., 1992); wsp 81F (5′-TGG
TCC AAT AAG TGA TGA AGA AAC-3′) and wsp 691R (5′-AAA
AAT TAA ACG CTA CTC CA-3′) (Zhou et al., 1998). PCR

thermocycling conditions were conducted according to the

published protocol (Carvajal et al., 2019).
2.3 Primer design for wsp based on local
wsp sequences

Most wsp primers designed for Wolbachia detection are strain-

specific (Zhou et al., 1998; Dutton and Sinkins, 2004). Thus, we

developed new primers specific for our local samples to consider for

primer incompatibility and to quantify Wolbachia density. First, we

obtained 118 wsp sequences from the Ae. aegypti samples of Carvajal

et al. (2019) (GenBank popset 1712729902). Next, a multiple

sequence alignment was performed using MUSCLE, and the results

were visualized in Codon Code Aligner version 1.2.4 (https://

www.codoncode.com/aligner/). The consensus sequence produced

from the alignment was then inputted into Primer-BLAST (Ye et al.,

2012) to design wsp primers targeting the Ae. aegypti samples.

Primer-BLAST generated five primer pairs (Supplementary

Table 1), which were first validated via gradient conventional PCR

using a known Cx. quinquefasciatus positive sample. Among the

primer pairs, primers wspAAML 01 and wspAAML 05 were selected

for further optimization because they exhibited the correct band size

of target markers without nonspecific binding in the sample

(Supplementary Figure 1). To select the most suitable wspAAML

primer pair for downstream analysis, we determined the optimized

annealing temperature and primer concentration for both pairs

(Supplementary Figure 2). We selected wspAAML 05, given that its

PCR efficiency (Supplementary Figure 3) fell within the standard

MIQE guideline of ≥90% (Bustin et al., 2009).
2.4 Natural Wolbachia infection validation
using TaqMan qPCR and strain
identification via sequencing

To quantify Wolbachia density, Taqman qPCR targeting both

16S rRNA and wspAAML was conducted.Wolbachia quantification

was performed using a well-established primer set targeting the 16S
Frontiers in Cellular and Infection Microbiology 04
rRNA marker (16SF 5′-AGT GAA GA A GGC CTT TGG G-3′;
16SR 5′-CAC GGA GTT AGC CAG GAC TTC-3′) but with a

modification of the fluorescent dye of the probe (Fraser et al., 2020).

Instead of LC640, we used TET as the reporter dye and BHQ1 as its

quencher (5′TET-CTG TGA GTA CCG TCA TTA TCT TCC TCA

CT-BHQ13′). Wolbachia was also confirmed using the newly

designed Wolbachia surface protein (wsp) primers (wspAAML F

5′-AGC ATC TTT TAT GGC TGGT GG-3′; wspAAML R 5′- AAT
GCT GCC ACA CTG TTT GC-3′; wspAAML probe 5′FAM-ACG

ACG TTG GTG GTG CAA CAT TTG C-TAMRA3′) with the Ae.

aegypti ribosomal protein S17 (RPS17) gene as a reference gene

(17SF 5′-TCC GTG GTA TCT CCA TCA AGC T-3′; 17SR 5′- CAC
TTC CGG CAC GTA GTT GTC-3′; 17S probe 5′HEX- CAG GAG

GAG GAA CGT GAG CGC AG-BHQ13′) (Frentiu et al., 2010). In

total, 429 individual mosquitoes were screened for the presence of

Wolbachia using qPCR with a cut-off Cq value of 35. The cut-off

value was set from a qPCR experiment of Cx. quinquefasciatus

samples representing true natural Wolbachia infection and three

replicates of the no-template control for each target gene; negative

detections of no template controls were confirmed using gel

electrophoresis showing no bands, hence no true amplification

(Supplemental Figure 4).

All singleplex PCR reactions were performed in a final volume

of 10 µl containing 5 µl of 2x iTaq Universal Probes Supermix (Bio

Rad) with 0.3 µM RPS17 primers, 0.2 µM 16S rRNA primers, or 0.5

µM wsp primers and 0.2 µM, 0.15 µM, or 0.3 µM of their

corresponding TaqMan probes, respectively, with nuclease-free

water added to reach the final volume. The following thermal

profile was used for both RPS17 and 16S rRNA with a CFX96

touch deep well real-time PCR detection system (Bio-Rad Tokyo,

Japan): an initial polymerase activation at 95°C for 30 s followed by

40 cycles of denaturation at 95°C for 5 s, and combined annealing/

extension at 60°C for 10 s. The wsp thermal profile included an

initial polymerase activation at 95°C for 2 min followed by 40 cycles

of denaturation at 95°C for 5 s, and combined annealing/extension

at 58.8°C for 30 s. Each PCR amplification included a Wolbachia-

infected Cx. quinquefasciatus positive control and a no-template

control. Wolbachia density was derived from the Cq values

expressed as the relative density of wspAAML normalized to

single-copy RPS17 (Livak and Schmittgen, 2001). This was used

to compare density between host sex and Wolbachia strains.

Relative densities reported in this study were log-transformed

(log10). Following detection, qPCR-confirmed wspAAML-positive

products were cleaned using a mixture of alkaline phosphatase

(TaKaRa) and exonuclease I (TaKaRa). The cleaned samples were

subjected to Sanger sequencing for strain identification.
2.5 Wolbachia phylogeny

Wolbachia phylogeny was inferred using the maximum-

likelihood criterion. For this analysis, we used Ae. aegypti samples

in which the wsp gene was detected via qPCR (n = 226). We also

obtained additional wsp sequences from other host species, e.g.,

Aedes spp., Anopheles spp., Culex spp., and others indicated as

reference sequences (n = 511), from NCBI GenBank (Table 1). In
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total, 737 wsp sequences were aligned using MUSCLE in

CodonCode Aligner version 1.2.4 (https://www.codoncode.com/

aligner/) and then trimmed to a final length of 103 nucleotide

bases. The sequences containing 103 nucleotide bases correspond to

the homologous region across all sequences. Using DNASp version

6.12.03 (Rozas et al., 2017), we obtained 102 haplotypes, and we

subjected the representative sequences of each haplotype to

phylogenetic analysis. Tree reconstruction was conducted using

only wsp given the high evolutionary rate of the gene; i.e., its

suitability for strain identification (Zhou et al., 1998; Ren et al.,

2020). IQ-TREE 2 (http://iqtree.org) (Minh et al., 2020) was used

where the appropriate substitution model was first identified

through ModelFinder implemented as a function of the software

(Kalyaanamoorthy et al., 2017), from which TPM2+G4 was selected

as the best-fit model. We set the ultrafast bootstrap approximation

(UFBoot) in IQ-TREE to 1,000 iterations, the minimum correlation

coefficient to 0.99, and the other parameters to their default settings

(Hoang et al., 2018). For visualization and annotation, we used

iTOL (https://itol.embl.de/) (Letunic and Bork, 2021).
2.6 Statistical analysis

Mann Whitney tests were used to determine statistical

differences between Wolbachia densities of male and female

mosquitoes as well as those between the densities of samples

detected as positive or negative using conventional PCR. To

compare densities between Wolbachia strains, Dunn’s multiple

comparison test was performed. Statistical calculations were

conducted in GraphPad Prism version 9.2.0 for Windows
Frontiers in Cellular and Infection Microbiology 05
(www.graphpad.com), and p -values of ≤0.01 or ≤0.0001 were

considered statistically significant.
3 Results

3.1 Validation of natural Wolbachia
infection in Ae. aegypti

Screening of Wolbachia in Ae. aegypti using 16S rRNA and wsp

qPCR revealed an overall prevalence of 40% (172/429) and 62%

(267/429) in the mosquito population, respectively (Table 2).

Wolbachia density expressed in logarithmic scale refers to the

relative abundance of the target gene normalized to the reference

gene, RPS17 (Livak and Schmittgen, 2001). Thus, the median

relative Wolbachia density was −1.99 and −2.09 for 16S rRNA

and wspAAML qPCR assays, respectively. The relative Wolbachia

densities of 16S rRNA- and wspAAML-positive samples ranged

from −3.84 to 2.17 and −4.02 to 1.81, respectively.

Comparing our qPCR results with the conventional PCR results

of Carvajal et al. (2019), we found that 91% (40/44) of the mosquitoes

positive for 16S rRNA in conventional PCR showed the same result in

our qPCR, whereas only 9% equivalent to 4 out of 44 of the mosquito

samples previously detected as positive by standard PCR were

detected as negative via qPCR. Of the 385 samples confirmed as

negative for 16S rRNA via conventional PCR, 34% (132/385) were

positive according to qPCR, whereas 66% (253/385) were consistent

with negative conventional PCR detection. Regarding wsp, 100% (57/

57) of mosquito samples that were positive according to conventional

PCR were also positive in our qPCR. Conventional PCRwsp-negative

samples exhibited an infection prevalence of 57% positive (213/372)

and 43% negative (159/372) detection according to qPCR.

In an attempt to explain the contrasting negative conventional

PCR and positive qPCR Wolbachia detection results, we compared

the relative Wolbachia densities expressed in logarithmic scales,

between samples found to be either Wolbachia-negative or positive

via conventional PCR by Carvajal et al. (2019) (Figure 1). We found

an approximately 30-fold higher relative Wolbachia density in 16S

rRNA (median = −0.8250) and wspAAML (median = −0.8550)

Wolbachia-positive mosquitoes compared with the conventional

PCR-negative samples for 16S rRNA (p < 0.001; median = −2.325)

and wsp (p < 0.001; median = −2.250). Finally, it is worth

mentioning that in qPCR alone, only 21% (91/429) of samples

were positive for both 16S rRNA and wspAAML markers.
3.2 Natural Wolbachia density differs
according to host sex

For both 16S rRNA and wspAAML qPCR assays, Wolbachia

densities were ≥10-fold higher in male than female Ae. aegypti (p ≤

0.01 for both; Figure 2). In the 16S rRNA marker, male mosquitoes

(n = 69) exhibited relative Wolbachia densities between −3.57 and

2.17 with a median value of −1.67, whereas females (n = 103)

exhibited a relativeWolbachia density range from −3.84 to 1.82 and
TABLE 1 Reference sequences for Wolbachia supergroups.

Supergroup Group
Wolbachia
host species

GenBank
No.

A

wMel Drosophila melanogaster AF020072

wAlbA Aedes albopictus AF020058

wMors Glossina morsitans AF020079

wRi Drosophila
simulans (Riverside)

AF020070

wUni Muscidifurax uniraptor AF020071

wHa Drosophila sechellia AF020068

wPap Phlebotomus papatasi AF020082

B

wPip Culex pipiens AF020061

wPip Culex quinquefasciatus AF020060

wAlbB Aedes albopictus AF020059

wAegB Aedes aegypti MF999264

wMa Drosophila simulans AF020069

Outgroup Brugia pahangi AY527207
The table provides the different reference sequences used for phylogenetic analysis. Each
sequence represents a specific host and supergroup.
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a median value of −2.31. Regarding the wspAAML marker, male

mosquitoes (n = 109) exhibited relative Wolbachia densities

between −3.53 and 1.81 with a median value of −1.88, whereas

females (n = 158) exhibited a range from −4.02 to 1.28 and a median

value of −2.24. Although Wolbachia density was higher in male Ae.

aegypti than in females, the prevalence of infection was higher

among females (16S rRNA = 24%, wspAAML = 36.8%) than males

(16S rRNA = 16%, wspAAML = 25%), regardless of the marker used

for detection via qPCR (Table 2).
3.3 Phylogenetic analysis of Wolbachia
strains in Ae. aegypti

For phylogenetic analysis, we used 226 wspAAML sequences

obtained from 267 wsp-positive Ae. aegypti samples collected from

Metro Manila (AAML). We excluded 41 samples due to low

sequencing quality and an inability to repeat sequencing owing to

an inadequate volume of DNA. According to the maximum-

likelihood phylogenetic tree, 83% (187/226) of wspAAML

sequences in the AAML samples clustered into supergroup B,
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whereas only 15% (34/226) of wsp sequences clustered into

supergroup A (Figure 3). The bootstrap values (≥75%; indicated

on the external tree branches) supported the divergence of three

clusters between supergroups A and B.

Under supergroup A, a clear cluster similar to the strain wAlbA

was observed. Two wsp sequences of Ae. aegypti did not exhibit a

clear delineation with any Wolbachia reference sequence. Numerous

weak bootstrap support values (≤74%) were observed in deep nodes

within supergroup A, indicating high genetic diversity. Under

supergroup B, the wspAAML sequences of Ae. aegypti samples

were nested within Wolbachia cluster wAegB/wAlbB together with

other wsp sequences derived from Ae. albopictus or Culex spp. We

found 12 wspAAML sequences of Ae. aegypti samples that fall under

the wPip strain. However, another cluster was solely composed of

wspAAML sequences found in the AAML samples (n = 123). For

clarity, we hereafter refer to this AAML group (shaded in red in

Figure 3) as the “wAegML” cluster. The twoWolbachia strains under

supergroup B, i.e., wAegB/wAlbB and wAegML, share the same

branch as wPip, which was consistent with the grouping previously

established by Zhou et al (Zhou et al., 1998). The 12 sequences

clustering with wPip share similarity with wAegML group and
A B

FIGURE 1

Wolbachia density of qPCR-positive Ae. aegypti grouped according to conventional PCR results. Individual mosquitoes detected as either positive for
16S rRNA (n =172) or wspAAML (n = 267) via qPCR were grouped based on Wolbachia detection results according to conventional PCR (cPCR).
Relative Wolbachia density is expressed as the ratio of the target gene to single-copy RPS17 in logarithmic scale. (A) Using 16S rRNA primers, cPCR
positive (n = 40) and negative (n = 132) samples had a median relative Wolbachia density of −0.8250 and −2.325, respectively. (B) Using wspAAML
primers, cPCR positive (n = 54) and negative (n = 213) samples had a median relative Wolbachia density of −0.8550 and −2.250, respectively.
**** indicates a significant difference between cPCR-positive and cPCR-negative Ae. aegypti at p ≤ 0.0001..
TABLE 2 Infection prevalence of natural Wolbachia in Ae. aegypti based on conventional PCR (cPCR) and qPCR.

Wolbachia-positive/total (% positive)

16S rRNA wsp

Female Male Total Female Male Total

cPCR
23/429
(5.4)

21/429
(4.9)

44/429
(10.3)

28/429
(6.5)

29/429
(6.8)

57/429
(13.3)

qPCR
103/429
(24.0)

69/429
(16.0)

172/429
(40.0)

158/429
(36.8)

109/429
(25.4)

267/429
(62.2)
The table shows a comparison of Wolbachia-positive samples detected using conventional PCR and qPCR.
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wAegB/wAlbB strain. We also noted that fivewsp sequences from the

Ae. aegypti samples formed a distinct cluster that did not fall under

any of the supergroups considered; thus, these samples possibly

belong to supergroups other than A and B.

Lastly, Wolbachia density of the wAegML group was less

than either wAegB/wAlbB or wAlbA in Ae. aegypti (Dunn’s test,

p <0.0001; Figure 4). However, Wolbachia density did not differ

between wAegB/wAlbB and wAlbA strains in Ae. aegypti (Dunn’s

test, p >0.0001).
4 Discussion

The presence of natural Wolbachia in Ae. aegypti has been

investigated in different countries. Based on these reports, Ae.

aegypti is either absent or when present, exists sporadically and in

low prevalence (Coon et al., 2016; Teo et al., 2017; Gloria-Soria

et al., 2018; Goindin et al., 2018; Thongsripong et al., 2018; Balaji

et al., 2019; Bennett et al., 2019; Carvajal et al., 2019; Zhang et al.,

2022; Muharromah et al., 2023). Particularly in the Philippines,

Wolbachia has been detected in cities within Metropolitan Manila

finding a relatively low prevalence for both 16S rRNA (13.2%) and

wsp markers (16.8%) by conventional PCR (Carvajal et al., 2019).

More recently, natural Wolbachia detected in Ae. aegypti from the

same mosquito population has been validated by ddRAD-

sequencing. Sequence reads of 26,299 (wAlbA) and 43,778

(wAlbB) were mapped across the entire Wolbachia genome out of

146,239,637 filtered reads obtained (Muharromah et al., 2023).

There are currently no Wolbachia mass release programs being

implemented in the Philippines but its potential as a vector control

method has been proposed (Ong et al., 2022). Hence, an economical

way of conducting an initial surveillance to characterize not just the

presence but also the density of natural Wolbachia in Ae. aegypti is

warranted. In the present study, we used locally designed primers

(wspAAML) to validate the presence of natural Wolbachia in Ae.
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aegypti that resulted to a higher prevalence of Wolbachia infection

in wsp compared to the conventional PCR method used by Carvajal

et al. We also found a high detection rate of Wolbachia, although

to a lesser extent, using an established 16S rRNA primers. We

found that relative Wolbachia density varied between host sex and

Wolbachia phylogenetic groups in natural Ae. aegypti populations.

The Wolbachia strains found present in Ae. aegypti were closely

related to strains found in Ae. albopictus. We identified one cluster

in the phylogenetic tree referred to as wAegML that was present in

lower density but in higher prevalence in Ae. aegypti.

Wolbachia is ubiquitous in numerous host species (Noda et al.,

2001; Kyei-Poku et al., 2005; Ros et al., 2009; Hughes et al., 2011)

but its presence in mosquitoes vary. Presence of natural Wolbachia

is usually high among Culex spp. and Ae. albopictus which are hosts

regarded as naturally infected. On the other hand, Anopheles

gambiae (8%-24%) and Ae. aegypti (4.3%-58%) exhibit variable

prevalence results that differs according to geographical location

(Inácio da Silva et al., 2021). In the present study, Ae. aegypti

collected from Metro Manila, Philippines demonstrated natural

Wolbachia prevalence of 40.0% and 62.2% when targeting 16S

rRNA and wsp, respectively. This finding is consistent with other

studies that detected natural Wolbachia in Ae. aegypti (Coon et al.,

2016; Teo et al., 2017; Thongsripong et al., 2018; Balaji et al., 2019;

Bennett et al., 2019; Carvajal et al., 2019; Kulkarni et al., 2019;

Muharromah et al., 2023). Given the high prevalence rate of natural

Wolbachia detected here, we suggest that the use of location-specific

primers for qPCR increased the sensitivity of our detection method.

In a previous study, our laboratory performed conventional

PCR-based detection ofWolbachia infection in Ae. aegypti collected

from the current study location, finding a relatively low prevalence

considering both 16S rRNA (13.2%) and wsp markers (16.8%).

Contrastingly, a study conducted by Gloria-Soria et al. (2018)

revealed the absence of Wolbachia in 117 Ae. aegypti mosquitoes

collected from Cebu province, Philippines (Gloria-Soria et al.,

2018). In both studies, conventional PCR was used. Although the
A B

FIGURE 2

Presence of natural Wolbachia between male and female Ae. aegypti. Mosquitoes that were Wolbachia-positive according to TaqMan qPCR were
classified as either male (16S rRNA = 69, wspAAML = 109) or female (16S rRNA = 103, wspAAML = 158). Relative Wolbachia density is shown as the
ratio of the target gene to RPS17 in logarithmic scale. The 95% confidence interval of the median is indicated by the blue and violet lines. Relative
densities are shown for (A) 16S rRNA and (B) wspAAML markers. In both (A, B), Wolbachia density differed significantly according to host sex. **p
≤ 0.01.
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primers used can amplify multipleWolbachia strains, they were not

designed using natural Wolbachia populations from Ae. aegypti

mosquitoes in the local regions. Additionally, the difference in the

prevalence of natural Wolbachia in Metropolitan Manila (Carvajal

et al., 2019; Muharromah et al., 2023) and Cebu, Philippines

(Gloria-Soria et al., 2018) further supports the fact that the

presence of natural Wolbachia is variable and sporadic. The same

situation occurs in China where infection prevalence between

prefectures differed from 0 to 41.7% (Zhang et al., 2022).

Different Wolbachia primers used for PCR assays vary in terms

of efficiency and coverage. The performance of 13 Wolbachia

primer pairs was previously assessed using samples from a wide

range of hosts representing supergroups A-F. The results varied,

even among primers targeting the same gene, and only two

primer sets yielded identical results, with other primers resulting

in incorrectly sized amplifications (Simões et al., 2011).
Frontiers in Cellular and Infection Microbiology 08
In the present study, to address the potential issue of primer

incompatibility, we designed location-specific primers for wsp

based on published sequences of Wolbachia populations in the

same regions (Carvajal et al., 2019). In order to avoid bias, we

included 16S rRNAmarker which we did not design and has already

been established (Fraser et al., 2020). Using either marker

demonstrated a high detection rate with wspAAML being 22%

higher than 16S rRNA. This suggests that the qPCR method led to

an improved natural Wolbachia detection rate in Ae. aegypti owing

to primer compatibility.

Notably, the qPCRmethod requires the use of primers that yield

short amplicons (150 bp), which may have contributed to an

increase in sensitivity. Additionally, qPCR has a lower limit of

detection and higher sensitivity relative to conventional PCR, which

could also explain the higher detection rate in the current study

(Mee et al., 2015; Xia et al., 2018). When we compared Wolbachia
A

B

FIGURE 3

Phylogenetic analysis of Wolbachia according to wsp. Maximum-likelihood tree showing wspAAML sequences from Ae. aegypti samples collected in
Metro Manila, Philippines (AAML in black bold text) and other wsp sequences obtained from other mosquito hosts (data from NCBI Blast; shown in
black italicized text). Reference sequences are shown in red with an indication of the corresponding Wolbachia strains. Numbers on branches reflect
the bootstrap support estimated with 1000 replications. The gray triangles are collapsed clades, each representing a node class. Ninety-eight
percent of the wspAAML sequences clustered into either supergroup A or B. The tree shows two Wolbachia strains, namely wAlbA (violet) under
supergroup A, wAlbB/wAegB (blue), and a group AAML under supergroup B (red). Scale bar indicates a phylogenetic distance of 0.1 nucleotide
substitutions per site.
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density between samples found to be Wolbachia-negative or

positive using conventional PCR, we found a 30-fold higher

median Wolbachia density in the Wolbachia-positive samples by

qPCR. We also found low Wolbachia density. Therefore, it is likely

that both the newly designed primers and qPCR helped increase the

natural Wolbachia detection rate relative to the detection

performance of conventional PCR. These results suggest that

location-specific primers may help validate the presence and

determine Wolbachia density in Ae. aegypti samples with

transient, sporadic, and/or low density naturalWolbachia infection.

The use of Ae. aegypti mosquitoes previously subjected to

Wolbachia detection (Carvajal et al., 2019), allowed us to define

potential reasons (e.g., primer incompatibility) for the sporadic

detection of natural Wolbachia in Ae. aegypti. However, the

possibility of contamination of Wolbachia from other mosquito

host species in the larval stage cannot be completely avoided

and therefore should be carefully considered (Ross et al., 2020). It

is recommended that a comprehensive approach including

imaging-based technique (FISH, IFA), demonstration of maternal

transmission, reproductive manipulation e.g., CI, and antibiotic

treatment of Wolbachia can be used to confirm natural infection in

Ae. aegypti. Nevertheless, an economical way to improve detection

for initial surveillance is also needed considering the sporadic and

low-density presence of Wolbachia in Philippine Ae. aegypti.
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Meanwhile, the present study adds to the existing evidence that

Wolbachia (wsp) sequences found in Ae. aegypti belong to either

supergroup A or B. Most wsp sequences found in Ae. aegypti

collected from Metro Manila, Philippines were categorized

under supergroup B consistent with the previous studies that

utilized known Wolbachia primers and ddRAD-Seq, respectively

(Carvajal et al., 2019; Muharromah et al., 2023). Both supergroups

are widespread among arthropods and belong to a single

monophyletic lineage (Gerth et al., 2014; Zug and Hammerstein,

2015). Supergroup B is likely to be the dominant supergroup found

in naturally infected Ae. aegypti, as reported in most previous

studies (Coon et al., 2016; Balaji et al., 2019; Carvajal et al., 2019;

Kulkarni et al., 2019). Wolbachia strains under supergroup B

usually reside in their hosts at high density (Hu et al., 2020;

Walker et al., 2021) and exhibit resilience to cyclical heat stress,

allowing them to persist in host populations (Ross et al., 2017). In

our study, Wolbachia density is found to be relatively low. Balaji

et al. (2019) reported 1.01 and 1.76 wsp/Rps17 ofWolbachia in male

and female, respectively whereas we found an overall range of -4.02

to 1.81 regardless of gender. Natural Wolbachia density in Ae.

aegypti differs throughout the developmental stage where

significantly low density commonly manifests from the adult

stage (Balaji et al., 2019). Our study only used random field-

collected adult samples without considering age of adult

mosquitoes that could account for the difference.

Interestingly, we detected three clusters representing the

Wolbachia strains wAlbA, wAegB/wAlbB, and wAegML. Due to the

inability to conduct further experiments to validate strain, we refer to

another cluster as merely wAegML group. The bacterial density of

wAegML was significantly lower than that of wAlbA, wAegB/wAlbB,

and 62.8% of the wsp sequences in our Ae. aegypti samples belong to

the wAegML. It is important to recognize that our study only used

wsp for phylogenetic analysis which somehow limit our capacity to

establish relatedness. Therefore, it is important that future studies

utilize other markers and incorporate MLST data for a more accurate

strain differentiation (Wang et al., 2020). Further experiments are

needed to provide conclusive evidence on what impact sporadic and

low-density natural Wolbachia in Ae. aegypti have.

Lastly, previous studies have revealed sex-specific Wolbachia

density differences in natural populations of planthoppers S.

furcifera and L. striatellus (Noda et al., 2001), as well as D. citri

(Hoffmann et al., 1986), Drosophila spp (Correa and Ballard, 2012),

Cx. Pipiens (Echaubard et al., 2010), Ae. albopictus (Tortosa et al.,

2010; Calvitti et al., 2015), and Ae. aegypti (Mejia et al., 2022). We

found that natural Wolbachia density in Ae. aegypti males was

higher than in females, which is consistent with observations in D.

citri (Hoffmann et al., 1986) and Ae. albopictus (Tortosa et al.,

2010). Such sex-specific variation was only previously observed in

Ae. albopictus mosquitoes carrying the wAlbB strain (Tortosa et al.,

2010). A recent study on Wolbachia density in Ae. aegypti also

reported the consistent densities in females throughout their

lifetime whereas males demonstrate relatively higher and variable

Wolbachia densities, in testes (Mejia et al., 2022). Although the

biology underlying sex-specific differences in Wolbachia density is

unknown, biological differences between the host sexes could

explain our finding. For instance, female mosquitoes tend to have
FIGURE 4

Wolbachia density in Ae. aegypti according to three identified
Wolbachia clusters. Relative Wolbachia density of strains wAlbB/
wAegB, wAegML, and wAlbA in Ae. aegypti. Relative density was
considered the ratio of the target gene to RPS17. Values are shown
on a logarithmic scale. Median Wolbachia relative density is
indicated by a dark grey line. **** indicates p ≤0.001. ns indicates no
significance between two groups.
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an expanded microbial composition relative to that of males,

resulting in more bacterial competition (Zouache et al., 2011).

Female mosquitoes are hematophagous, and the composition of

bacterial microbiota in mosquitoes largely depends on nutrient

intake (Gaio et al., 2011; Minard et al., 2013). Thus, the digestion

process of female mosquitoes may act as a barrier to the survival of

some symbionts, including Wolbachia.

Other studies have found that females exhibit higherWolbachia

densities than males in S. furcifera, L. striatellus (Noda et al., 2001),

Drosophila spp (Correa and Ballard, 2012), Cx. pipiens (Echaubard

et al., 2010), and Ae. albopictus (Tortosa et al., 2010; Calvitti et al.,

2015). Thus, further investigation on gender-specific effects

considering other coexisting factors is warranted. Our study only

explored differences of relative Wolbachia density between male

and female adult mosquitoes. It is important to further characterize

how Wolbachia density is affected by host sex in different stages of

the mosquito life cycle. Determining an absoluteWolbachia density

rather than a relative one will provide more accurate information.

Additionally, supplementing this with microscopic evidence will

demonstrate the changes in Wolbachia density occurring between

male and female mosquitoes during the insects’ life cycle.
5 Conclusion

Host species in which Wolbachia is naturally found usually

exhibit stable high prevalence, high density, and heritable infection.

Nevertheless, this is not the case for Ae. aegypti. Our study proposes

that presence of natural Wolbachia in Ae. aegypti does not mean

absolute presence, rather natural Wolbachia in this host is sporadic,

and low-density. In the present study, we focused on investigating the

factors that affect such occurrence. The use of Ae. aegypti samples

previously subjected to Wolbachia detection by conventional PCR

and ddRAD-Seq (Carvajal et al., 2019; Muharromah et al., 2023)

allowed us to explore the biological (Wolbachia strain and host sex)

and methodological (method of detection, primer incompatibility)

factors affecting Wolbachia prevalence rate and density. This

potentially explains the varying presence of natural Wolbachia in

this host. Our findings suggest that (i) location-specific primers can

improveWolbachia density detection; (ii) relativeWolbachia densities

are influenced by host sex and bacterial strain; (iii) majority of

Wolbachia sequences clustered into a group referred to here

wAegML that was present at a low density in Ae. aegypti. Overall,

designing location-specific primers is economical for initial validation

considering limited resources in other countries. These factors must

be accounted for when conducting initial surveillance in places where

no mass release programs have been conducted (e.g., Philippines).

Moving forward, a comprehensive detection of natural Wolbachia

infection in Ae. aegypti using multiple methods is still warranted.
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