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Gynecology, Pojen Hospital, Kaohsiung, Taiwan
Introduction: The aim of this study is to investigate changes in TNF-related

apoptosis-inducing ligand (TRAIL) and gamma interferon-induced protein 10 (IP-

10) after COVID-19 vaccination in pregnant women and to explore their

association with neutralizing antibody (Nab) inhibition.

Methods: The study evaluated 93 pregnant women who had previously received

two (n=21), three (n=55) or four (n=17) doses of COVID-19 vaccine. Also we

evaluated maternal blood samples that were collected during childbirth. The

levels of TRAIL, IP-10 and Nab inhibition were measured using enzyme-linked

immunosorbent assays (ELISA).

Results and discussion: Our study revealed four-dose group resulted in lower

TRAIL levels when compared to the two-dose and three-dose groups (4.78 vs.

16.07 vs. 21.61 pg/ml, p = 0.014). The two-dose group had reduced IP-10 levels

than the three-dose cohort (111.49 vs. 147.89 pg/ml, p=0.013), with no significant

variation compared to the four-dose group. In addition, the four-dose group

showed stronger Nab inhibition against specific strains (BA.2 and BA.5) than the

three-dose group. A positive correlation was observed between TRAIL and IP-10

in the two-dose group, while this relationship was not found in other dose

groups or between TRAIL/IP-10 and Nab inhibition. As the doses of the COVID-

19 vaccine increase, the levels of TRAIL and IP-10 generally increase, only by the

fourth dose, the group previously vaccinated with AZD1222 showed lower TRAIL
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but higher IP-10. Despite these changes, more doses of the vaccine consistently

reinforced Nab inhibition, apparently without any relation to TRAIL and IP-10

levels. The variation may indicate the induction of immunological memory in

vaccinated mothers, which justifies further research in the future.
KEYWORDS
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1 Introduction

Since the emergence of the COVID-19 pandemic in 2019, the

disease caused by the SARS-CoV-2 virus has turned into a global

health crisis with a remarkable transmission rate (Borges Do

Nascimento et al., 2021). Vaccination has been crucial in curbing

its spread and reducing the incidence of severe cases, particularly

among vulnerable groups such as healthcare professionals and

pregnant women (Polack et al., 2020; Butt et al., 2021). The

literature indicates that pregnant women who contract COVID-19

have an increased risk of severe complications such as preeclampsia,

preterm birth, and emergency Cesarean deliveries, with 18%

experiencing severe illness or critical morbidity (Pettirosso et al.,

2020; Gurol-Urganci et al., 2021). Furthermore, neonates of infected

mothers face extended hospital stays, necessitating specialized care,

and an increased likelihood of adverse outcomes (Zimmermann and

Curtis, 2020). Various types of COVID-19 vaccines, including

inactivated vaccines, nucleic acid-based vaccines (mRNA and DNA

vaccines), protein-based vaccines, and adenovirus vector vaccines are

available (Ghasemiyeh et al., 2021; Li et al., 2021; Nagy and Alhatlani,

2021). Vaccination against COVID-19 for pregnant women allow

mothers to produce and transfer protective antibodies to their fetus

(Shen et al., 2022). Specifically, the transplacental transmission of

SARS-CoV-2 neutralizing antibodies (Nabs) has shown potential in

protecting fetuses and neonates (Shen et al., 2022; Chen et al., 2022a),

and this protection can also be observed for newly-evolved SARS-

CoV-2 variants including Omicron variants (Chen et al., 2022b;

Munoz et al., 2023). According to current research, COVID-19

vaccination in pregnant women does not increase the risk of any

adverse pregnancy, maternal, or neonatal outcomes. This includes

risks of spontaneous abortion, stillbirth, congenital anomalies,

preterm birth, neonatal intensive care unit (NICU) admission,

gestational diabetes, hypertensive disorders, and others, indicating

that COVID-19 vaccination during pregnancy is safe (Fleming-Dutra

et al., 2023).

Determining the severity of illness in infected COVID-19

patients is crucial. Several biomarkers, such as TNF-related

apoptosis-inducing ligand (TRAIL), interferon gamma-induced

protein 10 (IP-10 or CXCL10), and C-related protein (CRP), have

been identified as indicators for assessing the severity of COVID-19

(Tegethoff et al., 2022). TRAIL, a member of the tumor necrosis
02
factor (TNF) family, can induce apoptosis in cells through an

extrinsic pathway by binding to death receptors (DR) (Condotta

et al., 2013). Apoptosis can occur in immune cells, virus-infected

cells, or tumor cells (Gyurkovska and Ivanovska, 2016). Hence,

TRAIL plays a dual role, encompassing both immune-suppressive

and immune-stimulatory functions (Ishikawa et al., 2005).

Additionally, IP-10 is a chemokine released in response to

inflammation. Inflammatory reactions can be generated when the

body encounters an infection, and leukocytes as well as neutrophils

can release IP-10 under the influence of IFN-g, thereby activating

and recruiting B cells, T cells, and NK cells to combat foreign

pathogens (Singh et al., 2008; Lu et al., 2011; Bergamaschi et al.,

2021). Consequently, IP-10 levels increase when the body is infected

with a virus. Current research also indicates that the levels of IP-10

may be affected by COVID-19 vaccine. After the first dose of

COVID-19 vaccine, an increase in IP-10 is observed (Huang

et al., 2005; Sobolev et al., 2016; Dunning et al., 2018). The levels

of IP-10 can rise after the second dose (Bergamaschi et al., 2021).

However, no literature has yet discussed the association between

TRAIL and the COVID-19 vaccine.

In pregnant women diagnosed with COVID-19, elevated levels

of IP-10 have been observed (Rosen et al., 2022). Additionally, the

increased IP-10 level in both the diagnosed mother and her fetus

have potential implications for the long-term health of the fetus

(Taglauer et al., 2022). However, no literature has addressed the

association between TRAIL and pregnant women diagnosed with

COVID-19. Moreover, there is a lack of research examining the

correlation between TRAIL or IP-10 levels and pregnant women

post-COVID-19 vaccination. Therefore, our study aims to

investigate the relationship between TRAIL and IP-10 in pregnant

women who have received a COVID-19 vaccine. Concurrently, the

association of neutralizing antibody inhibition for SARS-CoV-2

among mothers and the neonates will be also explored.
2 Materials and methods

2.1 Participants collection

The current study was performed at Kaohsiung Medical

University Hospital and included only patients with singleton
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pregnancies. All participants were aged 20 or above. Additionally,

any subjects that experienced preterm labor, displayed symptoms

associated with COVID-19, or demonstrated prior medical history

indicating the need for immunosuppressant treatments were

purposefully excluded from this investigation. The study was

conducted after receiving approval from the local institutional

review board (IRB); designated IRB number: KMUHIRB-SV

(II)-20210087.

In our study, all participants were previous recipients of 2 to 4

doses of COVID-19 vaccine. Among those receiving 4 doses, the 4th

dose was the Moderna COVID-19 bivalent (SPIKEVAX Bivalent

Original/Omicron BA.1 or BA.4/5) vaccine. Those subjects that

received two doses of COVID-19 vaccine received both vaccines

during their pregnancy, and they typically received the Pfizer

BioNTech (BNT162b2) COVID-19 vaccine or the Spikevax

(elasomeran) COVID-19 vaccine (previous called the mRNA-

1273 Moderna vaccine). By contrast, participants receiving 3 or 4

doses had their final shot during their pregnancy, but their

preceding doses might have been administered before conception.

These subjects received the Oxford/AstraZeneca ChAdOx1 nCoV-

19 (AZD1222) vaccine, mRNA-1273 Moderna vaccine, or

BNT162b2 vaccine.

Additionally, participants in our study were allowed to receive

standard vaccinations during their antenatal period that included

the tetanus toxoid, reduced diphtheria toxoid, and acellular

pertussis (Tdap) vaccines (Adacel, Sanofi Pasteur, Toronto,

Ontario, Canada) and the influenza (Flu) vaccine (AdimFlu-S,

QIS, Adimmune Corporation, Taichung, Taiwan; FlucelvaxQuad,

CSL Behring GmbH, Marburg, Germany; VAXIGRIP TETRA,

Sanofi Pasteur, Val-de-Reuil, Cedex, France). No significant

discomfort or morbidity was reported after vaccination

during investigation.
2.2 Sample collection

All eligible pregnant women were admitted to our study on the

day of delivery after obtaining permission via informed consent.

Blood samples were collected from the pregnant mother and the

neonatal umbilical cord post cord-clamping on the delivery day.

These samples were then sent to the laboratory for further analysis.

Concurrently, pertinent clinical data was extracted from the

electronic medical record system for comprehensive statistical

evaluation including maternal age, parity, body mass index

(BMI), neonatal weight, baby’s gender, dates of COVID-19

vaccination and other vital parameters. All compiled data was

used for our subsequent analysis.
2.3 Detection of TRAIL and IP-10 level in
maternal blood samples via enzyme-linked
immunosorbent assays

In our study, we analyzed two targeted biomarkers, TRAIL and

IP-10, in the collected maternal blood samples. Frozen specimens

were thawed at room temperature, and the concentrations of
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TRAIL and IP-10 were quantified using enzyme-linked

immunosorbent assays (ELISAs). For this procedure, we followed

the manufacturer’s protocols (R&D systems Cat. No. DTRL00/

DIP100), and subsequent absorbance value data was obtained using

a plate reader following ELISA process. A calculated standard curve

was used for further transformation of the above values into sample

biomarker concentrations.
2.4 Detection of neutralizing antibody
inhibition for SARS-CoV-2 Omicron
subtype BA.1, BA.2, and BA.5

Neutralizing antibody (Nab) inhibition was detected via a

competitive ELISA test that included a spike protein receptor

binding domain (SRBD) solution that could interact with both

the Nab from our collected samples and the angiotensin-converting

enzyme 2 (ACE2) that was pre-coated in the wells of 96-well

microplates. Analysis was performed using a commercially

available ELISA kit for different SARS-CoV-2 subvariants under

the manufacturer’s protocols (Acro biosystems Cat. No. RAS-N056/

RAS-N087/RAS-N107).

The procedure began with the introduction of the collected

samples along with both positive and negative controls into 96-well

microplates. We then added the solution comprising horseradish

peroxidase (HRP)-conjugated SRBD tailored for the respective

SARS-CoV-2 variants. These microplates underwent incubation

in the dark for 1 hour at room temperature. After incubation, we

discarded the supernatant, thoroughly washed the wells, and

introduced an additional substrate solution. After a subsequently

repeated 20-minute incubation in the dark, a stopping solution was

added. At this point, the microplate wells displayed a noticeable

colorimetric change from blue to yellow. We evaluated the intensity

of this colorimetric alteration in each well using a microplate

spectrophotometer (Molecular Devices, USA) to read the O.D.

value absorbance at 450 nm, and the obtained O.D values were

employed to calculated the Nab inhibition percentage using the

following formula:

Inhibition %  = ( 1 −
OD450 value of  sample

average OD450 value of  negative control
)*100%
2.5 Statistics

We employed the chi-square test to compare proportionate

differences among participants receiving different doses of the

COVID-19 vaccine. Based on these proportions, participants were

categorized into distinct subgroups. Subsequent analyses using

analysis of variance (ANOVA) or the sample t-test were

conducted to calculate the differences in TRAIL and IP-10 values

between these subgroups. Furthermore, we explored the

relationships between the levels of TRAIL and IP-10, as well as

the correlation between Nab inhibition and both TRAIL and IP-10

among the cohorts receiving different COVID-19 vaccine doses by

Spearman and Pearson correlation. All data processing and analyses
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were performed using SPSS Statistics (version 27, IBM, USA) and

Microsoft Excel (Microsoft, Redmond, Washington, USA).

Calculated data demonstrating p-values less than 0.05 were

considered statistically significant. We also illustrated these

statistical findings using GraphPad Prism software (GraphPad

Software, San Diego, CA, USA).
3 Results

3.1 Participants characteristics

We analyzed data from 93 eligible pregnant women during the

investigation period. Among the participants, 21 had received two

doses of COVID-19 vaccine, 55 had received three doses, and 17

had received four doses. The related characteristics are tabulated in

Table 1. The mean age for these women was between 33 and 35

years, and the mean BMI was around 25 and 28. Analyzing the

interval from the last dose of COVID-19 vaccination to childbirth

revealed that there was a uniform distribution of subjects across

each of the intervals, i.e., 0-4 weeks, 5-8 weeks, and 9-12 weeks. For

the three-dose cohorts, 34.5% had vaccination-to-childbirth

intervals of 0-4 weeks, 38.2% had intervals of 5-8 weeks, and

27.3% had intervals of 9-12 weeks. Among the four-dose

participants, 35.3% had intervals of both 0-4 weeks and 5-8

weeks, 11.8% had intervals of 9-12 weeks, and a notable 17.6%

exceeded 12 weeks.
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Regarding previous vaccination history, significant differences

in vaccination history were detected among participants in the three

cohorts that received AZD1222 vaccination. No participants in the

two-dose group received the AZD1222 vaccine. In the three-dose

and four-dose groups, the figures stood at 34.5% and 64.7%

respectively. Significant differences were also found regarding

Tdap and Flu vaccines. No participants in the two-dose cohorts

received them; however, 50.9% of those in the three-dose group

received only the Tdap instead of Flu vaccines, and 64.7% in the

four-dose cohorts received both vaccines. As for neonatal outcomes,

no significant differences were detected among the three cohorts.

The median fetal weight spanned from 2900 to 3200 grams. Female

neonates comprised 71.4% in the two-dose group, and

approximately 43.6% and 47.1% in the three-dose and four-dose

cohorts respectively.
3.2 Levels of TRAIL, IP-10, and Nab
inhibition in our cohorts

The TRAIL, IP-10, and Nab inhibition levels for the BA.1, BA.2,

and BA.5 strains across cohorts with different dosages of vaccines

are presented in Table 2, Figure 1, Supplementary Figures S1, and

S2. Notably, the 4-dose group exhibited a significantly lower TRAIL

value when compared to the 2-dose and 3-dose groups (4.78 pg/mL

vs. 16.07 pg/mL vs. 21.61 pg/mL, respectively, p = 0.014). For IP-10

levels, the 2-dose group exhibited lower values than the 3-dose
TABLE 1 Participants characteristics.

2 doses
(N=21)

3 doses
(N=55)

4 doses
(N=17)

p value

Mean age (years)
34.1

(26 – 41)
33.2

(22 – 45)
33.2

(25 – 43)
0.411

Mean BMI
28.03

(21 – 40.84)*
27.89

(20.45 – 38.58)
25.78

(20.29 – 33.82)
0.321

Mean delivery weeks
37.7

(34 – 40)*
38.6 (37 – 40) 38.9 (38 – 40) 0.226

Last interval
0-4 weeks
5-8 weeks
9-12 weeks
> 12 weeks

7 (33.3)
7 (33.3)
7 (33.3)

0

19 (34.5)
21 (38.2)
15 (27.3)

0

6 (35.3)
6 (35.3)
2 (11.8)
3 (17.6)

0.018

AZ included
Yes
Not

0
21 (100)

19 (34.5)
36 (65.5)

11 (64.7)
6 (35.3)

0.001

Tdap/Flu
Tdap only
Flu only

Tdap + Flu
No Tdap/Flu

0
0
0

21 (100)

28 (50.9)
1 (1.8)
16 (29.1)
10 (18.2)

3 (17.6)
0

11 (64.7)
3 (17.6)

0.001

Mean neonatal BW (gm) 3002.3 (2425 – 3550)* 3121.5 (2045 – 3855) 3065.0 (2325 – 3645) 0.583

Neonatal gender
Male
Female

6 (28.6)
15 (71.4)

31 (56.4)
24 (43.6)

9 (52.9)
8 (47.1)

0.091
fro
*1 participant had miss data.
BMI, body mass index; AZ, AZD1222 vaccines; Tdap, tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccines; Flu, influenza vaccine; BW, body weight.
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group (111.49 pg/mL vs. 147.89 pg/mL, p=0.013), while the 4-dose

group levels did not differ significantly from those of the other two

groups (145.92 pg/mL, p = 0.112 and 0.914 for 2-dose and 3-dose

groups respectively). Regarding Nab inhibition rates, the 2-dose

cohorts values for participants were not evaluated, but the 3-dose

and 4-dose groups showed no significant difference in inhibition for

the BA.1 strain (p=0.519). However, the 4-dose group

demonstrated a significantly higher Nab inhibition rate for the

BA.2 and BA.5 strains compared to the 3-dose group (BA.2: 56.32%

vs. 25.28%, p<0.0001; BA.5: 48.38% vs. 17.27%, p<0.0001).

Additionally, as showed in Supplementary Figures S3 and S4, our

analysis of the TRAIL and IP-10 responses across different dosage

groups of Tdap and Flu vaccines reveals that despite variations in

the administration of Tdap and Flu vaccines across groups, the

profiles of TRAIL and IP-10 are fundamentally similar to those

depicted in Figure 1. This suggests that the administration of Tdap

and Flu vaccines does not significantly impact the expression

patterns of TRAIL and IP-10.

Moreover, within the 3-dose group, a longer interval between

the third dose and childbirth corresponded to a significant decrease

in Nab inhibition across BA.1, BA.2, and BA.5 (BA.1: p=0.0031 and

0.0006; BA.2: p=0.0144; BA.5: p=0.0145 and 0.0402), as illustrated

in Supplementary Figure S5. Additionally, we also evaluated

inhibition among participants that received both Tdap/Flu
Frontiers in Cellular and Infection Microbiology 05
vaccines and compared those values to inhibition from

participants who only received the Tdap vaccine within the 3-

dose cohort. For the BA.1 and BA.5 strains, no significant difference

in Nab inhibition was observed (BA.1: p=0.1627; BA.5: p=0.0599).

However, for the BA.2 strain, those receiving both Tdap and Flu

vaccines demonstrated greater Nab inhibition compared to those

who received Tdap alone (p=0.0157). This data is visualized in

Supplementary Figure S6.
3.3 Subgroup analysis of TRAIL and IP-10
levels comparing vaccine intervals
and regimens

Supplementary Table S1 presents a comparison of TRAIL and

IP-10 levels among patients receiving different COVID-19 vaccine

combinations. For cohorts that did not receive the AZD1222

vaccine, the 4-dose group demonstrated significantly lower

TRAIL and IP-10 levels compared to both the 2-dose and 3-dose

groups (TRAIL: 7.35 vs. 16.07 vs. 29.48 pg/mL, p=0.041; IP-10:

94.76 vs. 111.48 vs. 139.91 pg/mL, p=0.048). Among patients that

did not receive the AZD1222 vaccine, there were no significant

differences in TRAIL or IP-10 levels between the 3-dose and 4-dose

groups (TRAIL: 6.68 vs. 3.38 pg/mL, p=0.122; IP-10: 162.99 vs.
FIGURE 1

The maternal blood levels of TRAIL and IP-10 among participants receiving 2 doses, 3 doses, and 4 doses of COVID-19 vaccine. TNF-related
apoptosis-inducing ligand, TRAIL; interferon gamma-induced protein 10, IP-10. *p-value < 0.05; ****p-value < 0.0001.
TABLE 2 The levels of TRAIL, IP-10, and Nab inhibition rates to omicron type SARS-CoV-2 BA.1, BA.2, and BA.5 subvariants in maternal blood from
participants receiving 2, 3, and 4 doses of COVID-19 vaccine.

N
TRAIL
(pg/mL)

IP-10
(pg/mL)

BA.1 (%) BA.2 (%) BA.5 (%)

2 doses
3 doses
4 doses
p value

21
55
17

16.07
21.61
4.78
0.014

111.49
147.89
145.92
0.066

-a

40.93b

45.81
0.519

-a

25.28b

56.32
<0.0001

-a

17.27b

48.38
<0.0001

2 vs. 3
2 vs. 4
3 vs. 4

0.335
<0.0001
0.01

0.013
0.112
0.914
fr
aNo available data for Nab concentration for the 2-doses group.
b8 participants had no available data for Nab concentration.
TNF-related apoptosis-inducing ligand, TRAIL; interferon gamma-induced protein 10, IP-10; Nab, neutralizing antibody.
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173.83 pg/mL, p=0.631). Within individual vaccine dose groups,

participants in the 3-dose group (and participants overall) exhibited

higher TRAIL values when they had not been vaccinated with

AZD1222 (3-dose: 29.48 vs. 6.68 pg/mL, p=0.013; overall: 22.90 vs.

5.47 pg/mL, p=0.001). For IP-10, a significant difference was

observed in the overall participant group, i.e., those who received

the AZD1222 vaccine showed significantly higher values than those

who did not (166.97 vs. 126.12 pg/mL, p=0.0028).

Supplementary Table S2 and Figure 2 focus on the influence of

the interval length between the final vaccine dose and childbirth on

TRAIL and IP-10 levels. For TRAIL, there was no significant

difference between different dosage groups for intervals of 0-4

weeks and 9-12 weeks (p=0.097 and 0.340). However, during the

5-8 week interval, the 4-dose group demonstrated significantly

lower TRAIL levels compared to the 2-dose and 3-dose groups

(4.68 vs. 15.79 vs. 17.15 pg/mL, p=0.01). The interval length did not

significantly affect IP-10 levels across all groups. Additionally,

within individual vaccine dose group, there remained no

significant differences based on the interval from vaccination

to childbirth.
3.4 Subgroup analysis of TRAIL and IP-10
levels in maternal factors

The influence of maternal factors, including maternal age, BMI,

and Tdap/Flu vaccine administration on TRAIL and IP-10 levels is

elaborated in Supplementary Tables S3, S4, and S5 respectively.

Among the maternal age group of 35-40 years, variation in TRAIL

levels were evident among different dosage groups (p=0.040). For

cohorts aged under 30 years, significant differences in IP-10 level

were detected among different dosage groups (p=0.049), but there

were no significant differences observed for other ages. Within each

individual dosage cohorts, TRAIL levels within the 2-dose group

exhibited significant differences based on maternal age (p=0.029),

but other dosage groups showed no obvious differences. For IP-10,

maternal age presented no significant impact among different

dosage groups. Additionally, there were no differences in TRAIL

and IP-10 levels observed based upon different maternal BMI.

Regarding the administration of Tdap or Flu vaccines during

pregnancy, no significant differences were seen in IP-10 levels.
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However those who received both Tdap and Flu vaccines in the

4-dose group had significantly lower TRAIL levels compared to the

3-dose group (5.98 vs. 18.23 pg/mL, p=0.005). Similarly, those who

did not receive Tdap or Flu vaccine displayed significantly lower

TRAIL values in the 4-dose group compared to both the 2-dose and

3-dose groups (5.16 vs. 16.07 vs. 21.95 pg/mL, p=0.001).

Nonetheless, within each individual dosage cohort, Tdap or Flu

vaccination did not lead to any significant differential impacts on

TRAIL or IP-10 values.
3.5 Subgroup analysis of TRAIL and IP-10
levels considering neonatal factors

The effect of neonatal factors, including neonatal body weight

and gender, on TRAIL and IP-10 levels is listed in Supplementary

Tables S6 and S7. There were no significant differences among

different dosage groups for both TRAIL and IP-10 levels regardless

of neonatal body weight. Moreover, within individual dosage

cohorts, variations in neonatal body weight had no significant

effect on TRAIL or IP-10 levels. Regarding neonatal gender, male

neonates in the 4-dose group exhibited significantly lower TRAIL

levels compared to their counterparts in the 2-dose and 3-dose

groups (5.30 vs. 17.77 vs. 19.79 pg/mL, p=0.030), though IP-10

levels did not differ between different dosage groups. Female

neonates demonstrated no significant difference in TRAIL levels

across dosage groups, but a significantly lower IP-10 level was

observed in the 2-dose group compared to the 3-dose and 4-dose

groups (103.32 vs. 151.35 vs. 182.67 pg/mL, p=0.012). However,

within each individual dosage cohort, neonatal gender had no

significant influence on TRAIL or IP-10 level.
3.6 The analysis of correlation between
neutralizing antibody inhibition and TRAIL/
IP-10

Figure 3 illustrates the correlation between TRAIL and IP-10

among different vaccine dosage groups. A positive correlation is

evident in the 2-dose cohort between TRAIL and IP-10 (Pearson:

p=0.006, r=0.5782; Spearman: p=0.0018, r=0.6390). However, no
FIGURE 2

The maternal blood levels of TRAIL and IP-10 among participants with different intervals between last COIVD-19 vaccine and childbirth. TNF-related
apoptosis-inducing ligand, TRAIL; interferon gamma-induced protein 10, IP-10.
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significant correlation between TRAIL and IP-10 was observed in

the 3-dose and 4-dose cohorts. Figures 4–6 present the correlation

between the level of TRAIL/IP-10 and Nab inhibition rates in

maternal blood against the BA.1, BA.2, and BA.5 SARS-CoV-2

virus subtypes among participants in the 3-dose and 4-dose groups.

Within the 3-dose and 4-dose cohorts, no significant differences in

TRAIL, IP-10, or Nab inhibition rate were detected in maternal

blood samples.
4 Discussion

TRAIL is a member of the TNF family, which can trigger

extrinsic apoptosis upon binding with receptors containing the

intracellular death domain (Sträter and Möller, 2004). As

previously mentioned, numerous cells mediating innate immunity

enhance the expression of TRAIL following activation by several

pro-inflammatory cytokines including IFN-a, IFN-b, IFN-g, IL-2,
and TNF-a (Kashii et al., 1999; Kayagaki et al., 1999a; Takeda et al.,

2001; Ehrlich et al., 2003). During viral infections, previous research
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indicates that IFN expression increases, and that increase results in

enhanced expression of TRAIL and its receptor in infected cells.

Conversely, normal cells diminish their TRAIL receptor expression.

Ultimately, these changes lead to apoptosis of infected cells as a

means of controlling infection (Sedger et al., 1999). Experimental

evidence has shown that mouse NK cells stimulated with IL-2 and

IL-15 can produce TRAIL that can mediate cytotoxicity against

various tumor cell lines (Kayagaki et al., 1999a, Kayagaki et al.,

1999b; Shepard and Badley, 2009). However, some viruses have

evolved mechanisms to activate the TRAIL system, such as inducing

NF-kB, allowing the virus to produce proteins that sensitize cells to
TRAIL-mediated apoptosis (Wurzer et al., 2004). Certain viral

infections can cause uninfected CD4+ and CD8+ lymphocytes to

increase the expression of TRAIL and its receptors, which is

subsequently accompanied by a significant reduction in

lymphocytes (Roe et al., 2004; Gupta et al., 2007). TRAIL induced

apoptosis in normal dendritic cells, monocytes, and T-cells is

considered a form of immunomodulation (Martıńez-Lorenzo

et al., 1998; Griffith et al., 1999; Secchiero et al., 2001). In the

early stages of infection, TRAIL appears to play a role in
FIGURE 4

The correlation between TRAIL/IP-10 levels and Nab inhibition rate of omicron type SARS-CoV-2 BA.1 subvariants in maternal blood from
participants receiving 3 doses and 4 doses of COIVD-19 vaccine. TNF-related apoptosis-inducing ligand, TRAIL; interferon gamma-induced protein
10, IP-10; Nab, neutralizing antibody.
FIGURE 3

The correlation between levels of TRAIL and IP-10 in maternal blood among participants receiving 2 doses, 3 doses, and 4 doses of COIVD-19
vaccine. TNF-related apoptosis-inducing ligand, TRAIL; interferon gamma-induced protein 10, IP-10. **p-value < 0.01.
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suppressing the immune response rather than eliminating the virus

or infected cells. However, as the infection progresses, TRAIL may

help regulate the removal of infected cells and restrict viral

replication, as seen in models of influenza or myocarditis, aiding

in infection control (Sato et al., 2001; Brincks et al., 2008).

Consequently, lower levels of soluble TRAIL in the blood are

linked to septic shock and related mortality (Tian et al., 2013;

Schenck et al., 2019). Additionally, in COVID-19 cases, reduced

TRAIL levels in blood have been associated with more severe

disease outcomes, including extended stays in hospitals and

intensive care units (ICU) (Tegethoff et al., 2022).

In pregnant women, TRAIL and its receptors are present in

peripheral blood, gestational membranes, and amniotic fluid.

Research indicates that the concentration of TRAIL is higher

during childbirth, irrespective of labor onset, when compared to

preterm birth samples (Lonergan et al., 2003). Furthermore, TRAIL

plays a role in protecting vascular endothelial cells (Secchiero et al.,

2006), and therefore low levels of TRAIL in the blood are associated

with cardiovascular diseases (Volpato et al., 2011). Among pregnant

women, such low levels might be associated with early preeclampsia
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or hypertensive disorders of pregnancy (Zhou et al., 2015). Research

on the relationship between TRAIL and vaccination, particularly in

pregnant women, has been sparse. This study reveals that pregnant

women receiving three doses of COVID-19 vaccines showed higher

serum TRAIL levels than those who received two doses of vaccine.

TRAIL is found in most cells and its expression increases in

activated T-cells. Beyond its role in inducing apoptosis by binding

to death receptors, TRAIL can also amplify T-cell proliferation and

further enhances IFN-r secretion after TCR binding (Chou et al.,

2001). Vaccination with two doses of vaccine can lead to a robust T

cell response, which has been observed among patients receiving

AZD1222 or BNT162b2 vaccines (Swanson et al., 2021; Gao et al.,

2023). Hence, with more doses, the co-stimulation effect of T-cell

and TRAIL might be even more potent. Interestingly, this effect

diminished with the fourth dose vaccination in our study, which

may indicate a robust vaccine memory effect that doesn’t require as

much co-stimulation for enhanced vaccine protection.

Our study indicated that the AZD1222 vaccine tends to produce

lower TRAIL levels than mRNA-based COVID-19 vaccines.

Previous research has demonstrated that individuals primarily
FIGURE 6

The correlation between TRAIL/IP-10 levels and Nab inhibition rate of omicron type SARS-CoV-2 BA.5 subvariants in maternal blood from
participants receiving 3 doses and 4 doses of COIVD-19 vaccine. TNF-related apoptosis-inducing ligand, TRAIL; interferon gamma-induced protein
10, IP-10; Nab, neutralizing antibody.
FIGURE 5

The correlation between TRAIL/IP-10 levels and Nab inhibition rate of omicron type SARS-CoV-2 BA.2 subvariants in maternal blood from
participants receiving 3 doses and 4 doses of COIVD-19 vaccine. TNF-related apoptosis-inducing ligand, TRAIL; interferon gamma-induced protein
10, IP-10; Nab, neutralizing antibody.
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vaccinated with AZD1222, when compared with subsequent doses

of either AZD1222 or BNT162b2, displayed enhanced immunity

triggered by the primary vaccination, but BNT162b2 elicited

significantly higher frequencies of spike protein-specific CD4+

and CD8+ T-cells (Barros-Martins et al., 2021). Other research

also suggests lower T-cell responses among patients receiving two

doses of AZD1222 compared to a those receiving a combination of

AZD1222/BNT162b2 or two doses of BNT162b2 (Bánki et al.,

2022), which might affect TRAIL levels. In the four-dose group,

where 11 out of 17 participants received AZ, the reduction in

TRAIL levels could be linked to the dominant use of AZD1222.

However, the interval between the last dose and delivery didn’t

significantly affect the TRAIL levels. Given that all of our

participants were vaccinated during their pregnancy, this suggests

that the interval does not notably influence the vaccine’s

memory response.

IP-10, also known as CXCL10, is a chemokine that’s rapidly and

transiently induced following vaccination and various viral infections

(Huang et al., 2005; Sobolev et al., 2016). This chemokine has been

shown to trigger the migration, recruitment and activation of

monocytes, natural killer (NK) cells, and T-cells to the infection-

associated tissue damage site (Singh et al., 2008; Lu et al., 2011). Such

chemotactic factors are critical for eliciting protective immune

responses at the site of infection (Ramakrishnan, 2012). Elevated

serum levels of IP-10 have been correlated with severity of infection

or sepsis (Azzurri et al., 2005). Generally, IP-10 is transiently induced

by type I or type II interferons and produced by dendritic cells and

helper T cells (Sobolev et al., 2016). The gene for the IP-10 chemokine

receptor, located in virus-susceptible regions, can be regulated by

other proteins, such as CD26 (Casrouge et al., 2012). Therefore, there

are multiple mechanisms contributing to increased IP-10 levels

during viral infections. Severe COVID-19 has been associated with

T-cell apoptosis. T-cell death that has been correlated with IP-10 level

(André et al., 2022). In COVID-19 patients, IP-10 levels were

observed to be significantly elevated compared to healthy

individuals (667.5 vs 127 pg/mL, P<0.001). Moreover, IP-10 levels

were positively correlated with disease severity and stood as an

independent predictor of ICU mortality (Tegethoff et al., 2022).

Previous research also reported that serum levels of IP-10 and

MCP-1 were identified as biomarkers of critical illness in COVID-

19 patients and tended to increase with disease severity (Chen et al.,

2020). Another study also highlighted the association of MCP-3/IP-

10 levels with the progression of COVID-19 disease (Yang

et al., 2020).

Previous literature has shown that expression of IP-10 and

CXCR3 in the decidua of pregnant women is higher than expression

in the endometrial tissue of non-pregnant women (Jiang et al.,

2021). Additionally, this study also found that mice prone to

miscarriage exhibited lower IP-10 levels in their decidua than

mice with normal pregnancies (Jiang et al., 2021). Therefore, IP-

10 can shape a pro-inflammatory immune microenvironment

during early pregnancy via the distribution of immune cells and

the generation of pro-inflammatory cytokines (Jiang et al., 2021).

Women with preeclampsia, which may be an anti-angiogenic state

with augmented systemic inflammatory response, also displayed

significantly elevated serum concentrations of IP-10 compared to
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women with normal pregnancies (Gotsch et al., 2007b). Similarly,

elevated IP-10 levels can be detected in the maternal blood of

pregnant women with acute pyelonephritis (Gotsch et al., 2007a).

Previous research had revealed an increase in IP-10 levels after

vaccinations (Tang et al., 2023), and the increase was evident in

healthy individuals as well as in elderly or cancer patients after

administration of the BNT162b2 vaccine (Konnova et al., 2022).

According to the literature, after receiving a second vaccine dose, a

memory response was induced, leading to a significant increase in

levels of IFN-g, IP-10/CXCL10, IL-6, and TNF-a that were crucial

for quickly recruiting and activating effector immune cells

(Bergamaschi et al., 2021). IP-10 is commonly released by various

cells including leukocytes, neutrophils, eosinophils, monocytes, and

mesenchymal cells during inflammation, and it can facilitate the

chemotaxis of CXCR3+ cells that are predominantly activated T

and B lymphocytes (Loetscher et al., 1998). Our recent findings

demonstrated a higher IP-10 level after three doses of COVID-19

vaccines was comparable to IP-10 level following receipt of two

doses of vaccine. By the fourth dose, the body’s memory response

appears to be sufficiently robust. It is possible that this reduces the

need for the involvement of IP-10 compared to the 2- or 3-dose

cohorts. Additionally, patients that received AZD1222 vaccine as

the primary vaccination demonstrated elevated IP-10 levels. While

the underlying reason remains elusive, it might be linked to the

adenovirus vector of AZD1222 vaccines, which can concurrently

invoke an inflammatory response and therefore increase IP-10

(Azzarone et al., 2021; Ostrowski et al., 2021). In the two-dose

group, AZD1222 was not used. However, in the three-dose group,

18 out of 54 subjects received AZD1222, and in the four-dose group,

11 out of 17 did. This distribution could influence the

observed values.

Our previous research reported that 2-dose vaccinations

produced greater Nab inhibition for various strains of SARS-

CoV-2 including wildtype, alpha, beta, gamma, and delta type,

than 1-dose vaccinations according to values observed in maternal

blood and corresponding neonatal cord blood (Shen et al., 2022;

Chen et al., 2022a). Other research reported in the literature has

indicated that booster COVID-19 vaccination can produce a more

potent Nab response against the Omicron SARS-CoV-2 variants

including several novel subvariants (Lin et al., 2023). This enhanced

Nab protection from booster vaccines can also be observed in

maternal blood and neonatal cord blood (Munoz et al., 2023).

The above findings are compatible with those of our current study

indicating that the four-dose group exhibited higher Nab inhibition

against the BA.1, BA.2, and BA.5 Omicron variant strains compared

to the three-dose group. It also aligns with current trend indicating

that receiving a fourth dose not only strengthens the vaccine’s

memory response and protection against Omicron variants but also

amplifies Nab protection, especially in pregnant women.

In this study, TRAIL and IP-10 levels varied in the maternal

serum of study participants receiving different doses of COVID-19

vaccine. However, when assessing Nab inhibition, it appears that

the levels of TRAIL and IP-10 had no significant impact. The

reasons for this remain unclear, but it is possible that TRAIL and

IP-10 may be involved in the body’s memory response following

vaccination, in modulating post-vaccination inflammatory
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reactions, and in regulating the capacity for antibody production.

With increased vaccine doses, the memory response of immunity

may be enhanced, and the body’s inflammatory reaction further

intensified, which could lead to alterations in the levels of TRAIL

and IP-10. Nevertheless, in our study, Nab inhibition remained

consistently high and even increased with subsequent doses of

COVID-19 vaccine.

In our current study, subjects receiving two doses of COVID-19

vaccine demonstrated a consistent positive correlation with TRAIL

and IP-10 level. This may be due to the fact that the vaccine doses

were mRNA-based COVID-19 vaccines. However, as the vaccine

dosage number increased to three or four, the vaccine’s memory

response might have intensified. Moreover, the complexity in vaccine

composition arises as some participants had been administered

AZD1222 vaccine. The adenovirus vector of AZD1222 vaccine may

also trigger inflammatory reactions that may potentially influence the

post-vaccination inflammatory states and other related reactions

(Azzarone et al., 2021; Ostrowski et al., 2021). Therefore, various

factors might disrupt and affect the correlation between the levels of

TRAIL and IP-10, and therefore no significant correlation can be

obviously detected for the 3-doses and 4-doses cohorts.

To the best of our knowledge, this is the first study to investigate

the variations of TRAIL and IP-10 in the blood of pregnant women

following COVID-19 vaccination. Our study also had limitations. First,

there was discrepancy in the distribution among the participant groups

receiving different doses of vaccines. When comparing the groups, the

sample size was uneven: the 2-dose group had 21 participants, the 4-

dose group had 17, and the 3-dose group contained 55 subjects.

Additionally, the vaccination combinations were inconsistent for the

participants in our study. While the two-dose group did not receive

AZD1222 vaccine, some participants in the three-dose and four-dose

groups did. The above discrepancy of vaccine combination could also

affect our findings when making comparisons among the vaccine dose

groups. Enrolling a greater number of participants in a future study is

advised and could validate our findings.
5 Conclusions

The levels of TRAIL and IP-10 increase as the number of vaccine

doses increases. However, upon reaching the fourth dose, TRAIL levels

decrease while IP-10 levels rise. Furthermore, those who have

previously received the AZD1222 vaccine tended to exhibit lower

TRAIL levels and higher IP-10 levels. Despite these variations, a

higher number of vaccine doses consistently lead to enhanced Nab

inhibition, which appears to be independent of TRAIL and IP-10 levels.

The fluctuations in TRAIL and IP-10 levels upon vaccination might

serve as a reflection of the body’s memory response to the vaccine.

Further research is needed with more participants.
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SUPPLEMENTARY FIGURE 1

The dot blots of TRAIL and IP-10 among different vaccine doses groups. TNF-

related apoptosis-inducing ligand, TRAIL; Interferon gamma-induced protein

10, IP-10.

SUPPLEMENTARY FIGURE 2

Neutralizing antibody (Nab) inhibition rates to omicron type SARS-CoV-2

BA.1, BA.2, and BA.5 subvariants in maternal blood from participants receiving
3 and 4 doses of COVID-19 vaccine.

SUPPLEMENTARY FIGURE 3

TRAIL concentrations in maternal blood among different regimens of Tdap

(tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccines)/
Flu (influenza) vaccination during pregnancy from participants receiving
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3 doses of mRNA-based COVID-19 vaccine. TNF-related apoptosis-
inducing ligand, TRAIL.

SUPPLEMENTARY FIGURE 4

IP-10 concentrations in maternal blood among different regimens of Tdap

(tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccines)/Flu

(influenza) vaccination during pregnancy from participants receiving 3 doses of
mRNA-based COVID-19 vaccine. Interferon gamma-induced protein 10, IP-10.

SUPPLEMENTARY FIGURE 5

Neutralizing antibody (Nab) inhibition rates to omicron type SARS-CoV-2

BA.1, BA.2, and BA.5 subvariants in maternal blood among different intervals
between last COVID-19 vaccine dose to childbirth from participants receiving

3 doses of COVID-19 vaccine.

SUPPLEMENTARY FIGURE 6

Neutralizing antibody (Nab) inhibition rates to omicron type SARS-CoV-2

BA.1, BA.2, and BA.5 subvariants in maternal blood among different regimens

of Tdap (tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis
vaccines)/Flu (influenza) vaccination during pregnancy from participants

receiving 3 doses of mRNA-based COVID-19 vaccine.
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