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HIV cure still remains an elusive target. The “Shock and Kill” strategy which aims

to reactivate HIV from latently infected cells and subsequently kill them through

virally induced apoptosis or immune mediated clearance, is the subject of

widespread investigation. NF-kB is a ubiquitous transcription factor which

serves as a point of confluence for a number of intracellular signaling

pathways and is also a crucial regulator of HIV transcription. Due to its

relatively lower side effect profile and proven role in HIV transcription, the

non-canonical NF-kB pathway has emerged as an attractive target for HIV

reactivation, as a first step towards eradication. A comprehensive review

examining this pathway in the setting of HIV and its potential utility to cure

efforts is currently lacking. This review aims to summarize non-canonical NF-kB
signaling and the importance of this pathway in HIV shock-and-kill efforts.
KEYWORDS
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Introduction

The HIV latent reservoir refers to the pool of integrated-but-transcriptionally-silent

HIV pro-viral DNA that persists indefinitely in vivo (Siliciano and Greene, 2011). The

latent reservoir begins to seed within days of acute HIV infection. Combination anti-

retroviral therapy (ART) can suppress viral replication and plasma viremia to undetectable

levels; however, treatment interruption and ensuing reservoir reactivation allow for viral

rebound and the return of plasma viremia (Vanhamel et al., 2019). The exact mechanisms

underlying this partial and selective transcriptional silencing are poorly understood, and it

has been observed that multiple factors contribute to determining the size of the reservoir

including the efficacy of the host immune response, the level of plasma viremia in acute
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infection and the interval between infection and anti-HIV therapy

initiation. Additionally, it has now become apparent that even

under the cover of suppressive ART (which is capable of reducing

plasma viremia to undetectable levels), the HIV reservoir remains

dynamic with low-level replication and reservoir seeding through

clonal expansion (Yeh et al., 2021; Hosmane et al., 2017; Bui et al.,

2017; Bachmann et al., 2019; Woldemeskel et al., 2020).

A cure for HIV may be achieved either as a “sterilizing cure”,

which is the complete eradication of the virus; or a “functional cure”,

achieving the absence of viremia without ART. Within this

paradigm, the “shock and kill” theory is currently under

investigation at various levels as a feasible sterilizing or functional

cure strategy. Briefly, shock and kill therapy aims to therapeutically

reactivate latent HIV and subsequently clear it through a

combination of immune mechanisms, the cytopathic effects of

viral reactivation, and drugs that selectively eradicate reactivating

cells (Kim et al., 2018; Chandrasekar and Badley, 2022). Importantly,

identifying a feasible shock agent that potently activates HIV

remains the major objective. Furthermore, learning the various

mechanisms that drive HIV replication is central to the shock and

kill strategy. An understanding of key transcriptional regulators is

necessary to identify viable drug candidates that may reactivate the

latent reservoir. The Nuclear Factor Kappa Light Chain Enhancer of

B Cells (NF-kB) signaling pathway has long been recognized as a

major driver of HIV replication and its relationship to HIV

transcription has been extensively studied (Hiscott et al., 2001).

Between the canonical and non-canonical pathways that the NF-kB
family can signal through, studies are now beginning to identify the

non-canonical NF-kB pathway as a potential target for HIV cure

efforts. This review aims to examine the non-canonical NF-kB
pathway in depth and provide a comprehensive resource that

would help inform future investigations.
The NF-kB Family

The Nuclear Factor Kappa Light Chain Enhancer of B Cells

(NF-kB) complex constitutes one of the key transcription

regulatory factor families, and is present in almost all cells, across

most living higher organisms (Gilmore, 2006). The NF-kB family,

defined by the presence of a conserved homology domain known as

“Rel”, includes five individual Rel containing proteins – NF-KB1,

NF-KB2, RelA, RelB and c-Rel (O'Dea and Hoffmann, 2010). These

proteins interact with each other to form dimers that are capable of

binding to DNA and activating transcription.

The NF-kB1 and NF-kB2 proteins in their inactive states are

termed p105 and p100, respectively. Following activation or as a

result of translational arrest, these proteins are transformed to their

active, shorter conformations – p50 and p52 through protease

mediated cleavage. The p50 and p52 proteins can form dimers

either with each other, with themselves or with the RelA (p65), RelB

and c-Rel members of the family and exert downstream effects

(Gilmore, 2006; O'Dea and Hoffmann, 2010; Hoffmann and

Baltimore, 2006). Of the possible dimer combinations, the

combinations of p50:p50, p52:p52 and p50:p52, while capable of

binding to DNA, are not known to exert transcriptional regulation.
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Additionally, the RelA : RelB, c-Rel : RelB and RelB : RelB dimers

are incapable of binding to DNA. The remaining possible

combinations are all capable of initiating transcription (O'Dea

and Hoffmann, 2010).

NF-kB1 and 2 are, at baseline, in an inactive state; maintained as

such, by their association with a group of regulatory, inhibitory

proteins known as Inhibitory Kappa B (IkB). This family can

further be subclassified into the typical IkB proteins: IkBa, IkBb
and IkBϵ, and the atypical IkB proteins: BCL-3, IkBx and IkBNS
(Tam and Sen, 2001; Whiteside et al., 1997; Nolan et al., 1993; Yu

et al., 2020). These proteins bind to the NF-kB precursor proteins

p105 and p100 and prevent their cleavage into their active forms.

The Inhibitory Kappa B Kinase complex (IKK), consisting of the

enzymes IKKa, IKKb and IKKg (also called NF-kB essential

modifier (NEMO)), bind, phosphorylate and cause the

degradation of the IkB proteins, allowing for p52 or p50 release

and downstream signaling (Scheidereit, 2006).

Through exogenous or endogenous initiators, the NF-kB
signaling cascade may be activated, leading to the regulation of

cellular transcription and the up or down regulation of protein

production. There may be numerous cascades through which NF-

kB signaling may occur, but broadly, two major signaling pathways

exist: a canonical NF-kB (cNF-kB) pathway and non-canonical NF-
kB (ncNF-kB) pathway (Gilmore, 2006; O'Dea and Hoffmann,

2010; Hoffmann and Baltimore, 2006; Pomerantz and Baltimore,

2002). The cNF-kB pathway involves NF-kB1 protein in a p50:RelA

(p65) heterodimer that is capable of binding to DNA and inducing

transcriptional regulation and is largely the most constitutively

active NF-kB signaling cascade. A comprehensive review of the

mechanics and effects of the cNF-kB cascade is beyond the scope of

this article, [reviewed in detail in (Yu et al., 2020)], but briefly,

canonical NF-kB signaling may be initiated through multiple

mechanisms including T cell receptors, B-cell receptors, cytokine

receptors, and innate pattern recognition receptors. Canonical

signaling promotes immune cell activation, the production of

pro-inflammatory cytokines, angiogenesis and leads to immune

recruitment. Dysregulated cNF-kB signaling has been described as a

pathogenic mechanism in autoimmune diseases and malignancy

(Yu et al., 2020). The ncNF-kB pathway involves the NF-kB2
protein in a p52:RelB heterodimer that is examined in detail below.
The non-canonical NF-kB pathway
and its regulation

The Non-canonical NF-kB pathway culminates in

transcriptional regulation by the NF-kB2 protein, in a p52:RelB

heterodimer. At baseline, the p100 protein restricts RelB activity,

functioning like a IkB protein. Following proteolysis to p52 and

dimerization with RelB, the complex undergoes nuclear

translocation and regulates transcription (Sun, 2011). The central

component to ncNF-kB signaling is the NF-kB inducing kinase

(NIK), a MAP3K like protein, which is a potent and specific inducer

of p100 processing. NIK activation leads to downstream

phosphorylation, ubiquitination, and activation of the ncNF-kB
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cascade through IKKa activation, and potentiation of IKKa-p100
binding (Senftleben et al., 2001; Xiao et al., 2004; Xiao et al., 2001).

At cellular homeostasis, p100 is conjugated to the SUMO1 protein

in a post-translational SUMOylating process, mediated through the

Ubc9 enzyme, a process critical to normal p100 processing

(Vatsyayan et al., 2008).

The activation the ncNF-kB cascade may be initiated by

receptor-ligand interaction on the cell surface. Specifically,

signaling through tumor necrosis factor (TNF) superfamily

members and their receptors such as: CD40, B-cell activating

factor (BAFFR), Lymphotoxin b Receptor (LTbR), Receptor

activator for NF-kB (RANK), TNFR2, Fibroblast growth factor

inducible factor (FN14), CD27, CD30, or OX40 (CD134) have been

shown to activate the ncNF-kB. Additionally, signaling through the

macrophage colony stimulating factor receptor (MCSFR) or

membrane attack complexes (MACs) have also been shown to

activate the ncNF-kB. Activation of the retinoic acid inducible gene

1 (RIG-1) by viral pathogens has also been shown to activate the

ncNF-kB (Sun, 2011; Sun, 2017).

ncNF-kB activation through cell surface receptor-ligand

interactions are primarily dependent on the recruitment and

degradation of the TNF receptor associated factors (TRAF) 2 and

3. TRAF2 and TRAF3, in conjunction with the cellular inhibitor of

apoptosis-1&2 (cIAP1 & cIAP2) proteins, function as the main

negative regulators of ncNF-kB signaling (Vallabhapurapu et al.,

2008; Zarnegar et al., 2008). In the inactivated state, TRAF3 is

bound to NIK leading to its ubiquitination and proteasomal

degradation, preventing p52 processing. TRAF3-NIK binding is

mediated by the cIAP protein in a TRAF2-dependent manner.

Following receptor ligation, activated cIAP mediates TRAF3

degradation, which allows for the release and accumulation of

NIK (Sun, 2011; 2017). This process may be positively or

negatively regulated in vivo.
Positive regulation of the non-
canonical pathway

Positive regulation of the cascade may be mediated by receptor

ligand interaction or by intracellular proteins. Increased ligand-

receptor interaction would likely lead to increased signaling.

Intracellularly, NIK activation may also be positively regulated by

cytoplasmic proteins such as Zfp91, which leads to NIK

stabilization and downstream p100 processing (Jin et al., 2010).

Positive regulation of NIK may also occur through MALT-1, which

promotes TRAF3 ubiquitination (Sun, 2011), or BCL-10, which

promotes NIK phosphorylation (Bhattacharyya et al., 2010).

Additionally, independent activation of IKKa by proteins such as

STAT3 have also been shown to induce p100 processing. Another

key regulatory step in the ncNF-kB cascade is the NIK induced

processing of p100 which is mediated through the binding of bTRcP
to p100 (following its phosphorylation at serine residues 866 and

870) and subsequent ubiquitination and degradation (Yu et al.,

2020). At the nuclear level, p100 degradation may be mediated by

the Fbw7 protein (Fukushima et al., 2012).
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Negative regulation of the non-
canonical pathway

The ncNF-kB cascade is negatively regulated at various steps in

the pathway. As mentioned above, at baseline, the TRAF3-TRAF2-

cIAP complex prevents the intracellular accumulation and

activation of NIK; however, even following receptor-ligand

binding, the TRAF3 ubiquitination process may be inhibited by

the cytoplasmic deubiquitinase belonging to the OUT family, such

as A20 and OTUD7B, attenuating the pathway (Hu et al., 2013;

Pujari et al., 2013). NIK induced IKKa activation may

independently lead to NIK destabilization by IKKa in a negative

feedback mechanism (Razani et al., 2010). Intracytoplasmic

proteins such as NLRP12 (Allen et al., 2012) and Tank binding

kinase (TBK1) may lead to NIK degradation (Jin et al., 2012). In

neural tissues, TRIM9 has been shown to inhibit NIK mediated

p100 processing (Shi et al., 2014). IKKa may also be independently

inhibited by specific microRNAs.

Ultimately, the accumulation of stable NIK leads to IKKa
activation and p100 processing. The released p52 protein

associates with RelB and translocates to the nucleus where it

regulates transcription, binding to specific kB sites. It has been

suggested that there exists similar DNA-binding specificity of

canonical and non-canonical NF-kB members (Britanova

et al., 2008).

A summary of the non-canonical pathway and the involved

receptors and regulators is provided in Figure 1.
Non-canonical NF-kB regulators and
the effects of HIV infection

While at the population level, there is wide variance to

sequences into which HIV integrates, some regions have been

identified as preferential sites of integration, and having bearing

on HIV persistence, (Reviewed in (Hughes and Coffin, 2016)).

These include regions with transcription-associated histone

modifications and regions that correspond to specific mutations

in HIV integrase (Hughes and Coffin, 2016; Wang et al., 2007;

Serrao et al., 2014). Serving as a major transcriptional regulator, the

role of NF-kB in HIV transcription during active infection has been

extensively studied (reviewed in (Hiscott et al., 2001)) and is

essential for efficient replication. Additionally, it has been

demonstrated that the long terminal repeat (LTR) of the HIV

genome harbors two independent NF-kB binding sites that are

essential for normal HIV transcription and replication, and cells

with lower levels of NF-kB may facilitate the establishment of HIV

latency (Hiscott et al., 2001; Jiang and Dandekar, 2015; Kwon et al.,

1998; Alcamı ́ et al., 1995). CD4+ T cells (which harbor the vast

majority of the latent reservoir) are described to have very low levels

of NF-kB activity at baseline, and this is mostly mediated through

the non-canonical p50 pathway (Hiscott et al., 2001). It is widely

accepted that memory CD4+ T Cells harbor the vast majority of the

latent reservoir and therefore, understanding of the infection-

induced modifications to the regulators of the ncNF-kB pathway
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becomes essential to inform cure studies and will be examined here,

and are summarized in Table 1.
Surface receptor modulation

As mentioned above, non-canonical signaling may be initiated

through receptor ligand interactions at the cell surface. Chronic

infection may up or downregulate the expression of these receptors,

leading to potential pathogenic ramifications downstream.

Tumor Necrosis Factor Receptor 2 (TNFR2) stimulation

activates both the canonical and non-canonical NF-kB pathways.

TNF-mediated stimulation has been shown to reactivate HIV in in-

vitro models of latency and in ex vivo studies in combination with

other latency reversal agents but has been seen to be associated with

significant toxicity to bystander cells. TNFR2 signaling may also

control HIV replication through inhibition of HIV entry through

CD4 downregulation (Pasquereau et al., 2017).
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CD40-CD40L binding in active HIV infection contributes to

HIV control through the regulation of chemokine secretion,

antibody production and immune effector function. The levels of

plasma and surface expression of CD40 have been observed to vary

in acute, chronic, and treated infection (Kornbluth, 2000;

Donhauser et al., 2012). With respect to shock and kill strategies,

it has been observed that CD40L-CD40R blockade was sufficient to

significantly reduce HIV latency reversal and protein production in

a myeloid dendritic cell induced model (Kristoff et al., 2019).

B-cell activating factor (BAFF) is primarily produced on the

surface of antigen-presenting cells of myeloid lineage such as

monocytes and dendritic cells. HIV has been demonstrated to

independently upregulate BAFF expression in monocyte derived

macrophages (Gomez et al., 2016). In HIV infection, serum BAFF

levels have been seen to increase steadily over the duration of

infection, and in animal models, this increase was reversible with

ART (Fontaine et al., 2011). The BAFF/BAFFR axis, while primarily

involved in B-Cell regulation, has been demonstrated to influence T
FIGURE 1

The Non-canonical NF-kB pathway and its regulation: The non-canonical signaling pathway may be initiated through the binding of a variety of
exogenous ligands to their cognate receptors (top right). This ligand receptor interaction leads to the recruitment of TRAF2, TRAF3 and cIAP1/2,
forming a complex, which allows for the release and phosphorylation of NIK. Phospho-NIK is able to in turn phosphorylate IKKa, which leads to the
ubiquitination of the p100/RelB complex and p52 production. P52 subsequently translocates to the nucleus and regulates transcription. This cascade
may be positively regulated (left) or negatively regulated (right) by a variety of intracellular proteins.
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cell activation and proliferation (Huard et al., 2001; Ye et al., 2004).

In HIV infection, therefore, BAFF upregulation on the surface of

dendritic cells and B-Cells as well as secreted BAFF in the

microenvironment could exert pro-transcriptional activity and

drive HIV replication.

Lymphotoxin b Receptor (LTbR) signaling is known to increase

HIV replication alone and in the presence of TNFa (Marshall et al.,

1999). It has been established that Naïve T cells are the major

producers of LTb in lymphoid tissues and that HIV-associated CD4

+ T cell depletion leads to dysregulation of normal immune

architecture, concurrent with depleted LTbR signaling, an effect

that was seen to be reversible with ART (Zeng et al., 2012). HIV Tat

has also been shown to induce the production of Lymphotoxin a
(LTa), which may also signal through the LTbR and drive non-

canonical NF-kB activation. However, considering the observed off-

target effect of therapeutic targeting of this receptor, further

research is necessary to improve its feasibility as a safe target for

latency-reversal therapy (Sastry et al., 1990; Schmidt et al., 2021).

Receptor activator for NF-kB (RANK), RANK ligand (RANKL)

and its soluble receptor Osteoprotegerin (OPG) may be up or down

regulated during active HIV infection or following ART which has

been extensively reviewed elsewhere (Kelesidis et al., 2014). RANK-

RANKL signaling has been shown to drive HIV replication in an

NF-kB dependent fashion in acutely and chronically infected T cells

(Kelesidis et al., 2014).
TABLE 1 The known effects of non-canonical NF-kB regulators in
HIV infection.

Non-
canonical
Regulators

Role in
non-
canonical
signaling

Known effects
in HIV
infection

References

TNFR2
Extracellular
receptor

Inhibits HIV entry
and thereby
replication.
Reverses HIV latency

(Pasquereau
et al., 2017)

CD40-CD40L
Extracellular
receptor

Blockade inhibits
latency reversal

(Kornbluth, 2000;
Donhauser et al.,
2012; Kristoff
et al., 2019)

BAFF
Extracellular
receptor

Serum levels elevated
in active infection,
reversible with ART.
Elevated levels on
Monocyte derived
macrophages in
HIV infection

(Gomez et al.,
2016; Fontaine
et al., 2011)

LTbR
Extracellular
receptor

Increases HIV
replication.
HIV Tat induced
LTa could induce
ncNF-kB

(Sastry et al.,
1990; Marshall
et al., 1999;
Schmidt
et al., 2021)

RANK
Extracellular
receptor

Drives HIV
replication in an NF-
kB
dependent fashion

(Kelesidis
et al., 2014)

CD27
Extracellular
receptor

Serum levels elevated
in HIV infection

(Widney
et al., 1999)

CD30
Extracellular
receptor

HIV RNA is
enriched in CD30+

CD4+ cells in vivo.
CD30 blockade led
to significantly
reduced HIV DNA

(Biswas et al.,
1995; Biswas
et al., 2006;
Hogan
et al., 2018)

OX40
Extracellular
receptor

Drives HIV
replication in an NF-
kB dependent
manner.
OX40+ CD4+ cells
harbor significantly
higher intact
HIV virions

(Takahashi et al.,
2001; Kuo
et al., 2018)

NIK

Key
intracellular
regulator
protein

Favors HIV
replication mediated
through HIV Tat

(Li et al., 2001;
Zhou et al., 2008)

cIAP2

Key
intracellular
regulator
protein

Negatively regulates
HIV transcription

(Pache
et al., 2015)

STAT3
Positive
regulatory
protein

HIV GP120: STAT3
mediated NF-kB
activation
HIV Nef: STAT3
activation and
phosphorylation
HIV Tat: STAT3
phosphorylation,

(Briggs et al.,
2001; Cicala
et al., 2002;
Husain et al.,
2005; Zeng et al.,
2007; Jarboui
et al., 2012; Del
Cornò et al.,

(Continued)
TABLE 1 Continued

Non-
canonical
Regulators

Role in
non-
canonical
signaling

Known effects
in HIV
infection

References

dimerization, and
nuclear translocation

2014; Pache
et al., 2015)

Zfp91
Positive
regulatory
protein

Tat mediated
HIV transcription

(Faust
et al., 2018)

MALT1
Positive
regulatory
protein

Pro-
replication profile

(Liu et al., 2013;
Li H. et al., 2016)

RIG1
Positive
regulatory
protein

Decreased
cytoplasmic RIG1
levels due to
HIV protease

(Solis et al., 2011;
Zahoor
et al., 2014)

TBK1
Negative
regulatory
protein

HIV Vif and Vpr:
prevent TBK1
autophosphorylation
and the formation of
a TRAF3-TBK1-
IRF3 complex,
antagonizing
interferon
production

(Harman
et al., 2015)

A20
Negative
regulatory
protein

Upregulated in
intestinal epithelial
cells following ART

(Chitre
et al., 2018)
In acute and chronic infected states, HIV and its proteins may affect the ncNF-kB pathway
through modulation of regulatory proteins, leading to increased or decreased
HIV transcription.
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Fibroblast growth factor inducible factor (FN14) is a transient

receptor to the TNF-like weak inducer of apoptosis (TWEAK/TWK)

protein that is expressed on the cell surface in response to cellular

injury (Winkles, 2008). The levels of soluble TWEAK in the plasma of

treated and untreatedHIV-infected individuals were found to be lower

than in uninfected controls (Beltrán et al., 2014). FN14 expression in

gd T Cell subsets has been shown to be IL-21dependent (Vermijlen

et al., 2007). Plasma IL-21 levels have been shown to be decreased in

chronic HIV infection, an effect that is reversed in the presence of

ART. Additionally, Elite controllers (patients exhibiting spontaneous

immune control of HIV) have been shown to have higher circulating

levels of IL-21. However, it has been seen that infected individuals may

harbor higher levels of circulating IL-21 positive CD4+ T cells

(Pallikkuth et al., 2012). While it is yet to be clearly established that

FN14 expression is significantly dysregulated in HIV infection, the

concurrent downregulation of TWEAK and cytokines such as IL-21

which may stimulate FN14 production suggest that FN14 signaling

may represent a feasible therapeutic target for latency reversal.

CD30 levels in the plasma of HIV infected individuals have

been found to be directly related to disease progression (Biswas

et al., 1995; Biswas et al., 2006). It was recently demonstrated that in

HIV infection, CD4+ T cells express higher levels of CD30 on their

surface, regardless of ART status, whereas levels of soluble CD30

were only elevated in the viremic group. HIV RNA was seen to be

enriched in the CD30 positive CD4+ T cell subsets from the blood

of both untreated and treated patients, and also coincided with

magnitude higher levels of HIV DNA. mRNA levels in the gut

associated lymphoid tissue was also seen to co-localize with CD30

expression. The same study also utilized a clinically relevant anti-

CD30 antibody, brentuximab vedotin, to treat ex-vivo PBMCs from

HIV infected individuals which was seen to reduce the total amount

of HIV-1 DNA (Hogan et al., 2018).

OX40 (CD134) ligation by its cognate ligand has been described

to drive HIV replication in an NF-kB driven manner (Takahashi

et al., 2001). In the setting of ART, OX40-expressing cells were

observed to harbor significantly higher HIV DNA copy numbers

and higher levels of clonally expanded HIV DNA. Intact proviruses

were also seen to be enriched in the OX40-positive cells in four of

the five subjects analyzed (Kuo et al., 2018).
Activation of intracellular regulators of
ncNF-kB during HIV infection

NF-kB inducing kinase (NIK), the primary protein involved in

the ncNF-kB pathway, has been demonstrated to favor HIV

replication. HIV Tat has been described to facilitate NIK

mediated IKKb activation, and it has been observed that

knockdown of NIK leads to the inhibition of Tat driven HIV

transcription (Zhou et al., 2008; Li et al., 2001).

Cellular inhibitor of apoptosis 2 (cIAP2) another key regulatory

protein in the ncNF-kB cascade was identified to be able to directly

inhibit HIV transcription through the inhibition of the ncNF-kB
signaling pathway (Pache et al., 2015).
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Signal transducer and activator of transcription 3 (STAT3) has

been described to be activated and phosphorylated by different HIV

proteins. HIV Gp120 has been described to drive STAT3-mediated

NF-kB activation and cytokine production (Cicala et al., 2002; Del

Cornò et al., 2014). HIV Nef has been described to activate and

phosphorylate STAT3 in Macrophages, dendritic cells, and

podocytes (Briggs et al., 2001; Husain et al., 2005). HIV Tat has

been shown to cause STAT3 phosphorylation, dimerization, and

nuclear translocation (Zeng et al., 2007; Jarboui et al., 2012).

Zinc finger protein 91 (Zfp91), which has been shown to

associate with NIK and lead to p100 processing, was found to be

involved in Tat mediated transcription, identified by siRNA

mediated knockdown of Zfp91 leading to decreased Tat mediated

HIV transcription (Faust et al., 2018).

Mucosa-associated lymphoid tissue lymphoma translocation

protein 1 (MALT1), a Para-caspase that has been shown to

promote TRAF3 ubiquitination has been demonstrated to favor a

pro-replication profile, through the degradation of the MCPIP1

RNAse. It was demonstrated that MALT1 inhibition induced

significant HIV-infected cell death and significantly impacted the

level of HIV post reactivation with an LRA (Liu et al., 2013; Li H.

et al., 2016).

Retinoic acid-inducible gene 1 (RIG1) is a positive regulator of

the ncNF-kB pathway. In HIV infection, RIG1 activity has been

demonstrated to be antagonized by HIV protease, with infection

leading to decreased cytoplasmic RIG1 levels (Solis et al., 2011). On

the contrary, it has also been described that HIV Vpr may acutely

induce increased expression of RIG1 mRNA in human monocyte-

derived macrophages (Zahoor et al., 2014).

TANK-binding kinase 1 (TBK1) is a negative regulator of the

ncNF-kB cascade, and it has been demonstrated that HIV Vif and

Vpr may bind to TBK1, preventing its autophosphorylation and the

formation of a TRAF3-TBK1-IRF3 complex that is necessary for

interferon production in human dendritic cells and macrophages

(Harman et al., 2015). It is therefore plausible that HIV interactions

with TBK1 may also influence TBK1-TRAF3 mediated NF-kB
signaling, though this is yet to be established.

A20, an important negative regulator of NF-kB, is

downregulated in intestinal epithelial cells during HIV infection

due to the effects of interferon alpha, rendering cells more

susceptible to cytokine mediated cell death. This downregulation

was seen to be reversed following ART therapy in HIV infection

(Chitre et al., 2018). It is possible that a similar upregulation could

exist in cells that harbor the latent reservoir, allowing for

transcriptional silence. Importantly, there has been evidence that

the PKC agonist Prostratin upregulates A20 when used for

latency reversal, leading directly to NF-kB inhibition, an effect

that may be abrogated when co-administered with HMBA (Chen

et al., 2016).

As evidenced above, HIV-induced modulation to the regulators

of ncNF-kB signaling plays a significant role in developing

strategies to target HIV for latency reversal, either through the

potentiation of positive regulatory effects or the inhibition of the

negative inhibitory effects.
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Shock and kill and the
non-canonical pathway
Current latency reversal agents that are under investigation for

“shock and kill” include, but are not limited to, Histone deacetylase

inhibitors (HDACis) , Bromodomain inhibitors , DNA

methyltransferase inhibitors, proteosome inhibitors, Protein

kinase C (PKC) agonists, WNT inhibitors and second

mitochondria-derived activator of caspases (SMAC) mimetics.

Nearly all of these agents have been shown to reactive latency

invitro or in vivo with minimal effect on depleting total viral

reservoir size (Kim et al., 2018). It has been shown that many of

these agents have effects on the canonical NF-kB pathway.

However, due to the generally proinflammatory nature of NF-kB
and the significantly varied downstream effects of the canonical

pathway, there is cause for concern with regards to off-target

toxicity (Pache et al., 2015). In this scenario, selective agents

targeting the ncNF-kB pathway would be preferred to mitigate

toxicity risks.

SMAC mimetics are a group of drugs that have been shown to

selectively target and inhibit cIAPs, allowing for downstream ncNF-

kB signaling. The SMAC mimetics SBI-0637142 and LCL161 have

been demonstrated to drive HIV reactivation through non-

canonical signaling in cell lines. Additionally, in combination

with HDAC inhibitors, they were able to reactivate latent HIV

from ex vivo CD4+ T cells (Pache et al., 2015). Subsequently, a

bivalent SMAC mimetic, Ciapavir, was shown to reactivate HIV in

an in vivomouse model, at the bone marrow level, in four out of the

six mice treated with the agent, in the setting of suppressive ART

(Pache et al., 2020). Debio 1143, another IAP antagonist, was shown

to reactivate HIV from latency through the potentiation of the

ncNF-kB pathway (Bobardt et al., 2019).

The SMAC mimetic AZD5582 which functions through the

ncNF-kB pathway has been the focus of multiple recent studies and

was recently demonstrated to reactivate HIV in a mouse model and

in SIV infected macaques (Nixon et al., 2020). It is of note that

minimal off-target effects were observed in these studies. The effect

of AZD5582 was seen to be potentiated by crotonylation, allowing

for superior latency reversal along with significant increases in p52

protein levels (Li et al., 2021). The effects of AZD5582 were also

seen to be synergistically enhanced by selective and pan BET

domain inhibition in a cell-line model of latency, however this

was not seen to consistently result in HIV latency reversal in ex-vivo

primary CD4+ T cells (Falcinelli et al., 2022). A recent study,

examined the combination of AZD5582 with the DEAD-box

polypeptide 3 (DDX3) inhibitor FH1321. It was observed that

AZD5582 alone and in combination with DDX3 inhibition

resulted in robust HIV reactivation in in-vitro Jurkat models and

resulted in reservoir depletion in ex-vivo studies using PBMCs from

HIV infected individuals (Jansen et al., 2023).

Interestingly, the latency reversal effects of AZD5582 differed

between SIV-infected, ART-suppressed infant rhesus macaques and

adult macaques, revealing lower levels of on-ART plasma viremia.

In the same study, transcriptomic profiling in the infant macaques

revealed that the expression of the ncNF-kB signaling genes RELB
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and NFKB2 were not significantly increased, contrary to prior

observations in adults (Bricker et al., 2022).

Combination therapy with AZD5582 and a cocktail of 3

HIVxCD3 DART molecules (having human A32, 7B2, or

PGT145 anti-HIV-1 envelope (Env) specificities) in a SHIV

infected macaque model failed to result in an observable decrease

in the viral reservoir, possibly as a result of poor latency reversal,

with none of the infected animals demonstrating detectable viremia.

It was suggested that lower pre-ART viral loads, and low pre-

intervention reservoir sizes may have affected the potency of latency

reversal in this study (Dashti et al., 2020). A more recent study

examined AZD5582 with or without the IL-15 superagonist, N-803,

in combination with SIV Env-specific Rhesus monoclonal

antibodies (RhmAbs). N-803 is a potent LRA (discussed

separately below), which was seen to enhance AZD5582 driven

latency reversal. The combination of the RhmAbs with AZD5582 ±

N-803, was observed to cause differential SIV-DNA depletion in

CD4+ T cells based on anatomic location. However, significant

decreases in “total body” SIV-DNA in CD4+ T cells (graphed as the

sum of all SIV-DNA results from blood, lymph nodes, bone marrow

and gastrointestinal tract) were observed following treatment with

RhmAbs + AZD5582 ± N-803. Once again, it was observed that the

magnitude of latency reversal was directly associated with pre-ART

viral loads and the post-ART SIV-DNA CD4+ T cell reservoir,

suggesting that viral reservoir size may be a crucial determinant of

the efficacy of AZD5582 (Dashti et al., 2023).

PKC agonists such as bryostatin and prostratin are amongst the

most investigated class of drugs for HIV latency reversal, both in

vivo and invitro. Studies have indicated induction of cNF-kB and

HIV latency reversal by PKC agonists (Bullen et al., 2014; Jiang and

Dandekar, 2015; Kim et al., 2018; French et al., 2020). PKC agonism

by PMA in cell lines was seen to result in the activation of the non-

canonical NF-kB pathway via the recruitment of RelB to the

APOBEC3B promoter, increasing the expression of APOBEC3B,

a protein that is becoming increasingly recognized as a dynamic

modulator of HIV replication (Gillick et al., 2013; Leonard et al.,

2015; Bandarra et al., 2021). Prostratin was also seen to upregulate

APOBEC3B in primary CD4+ T cells, but the involvement of RelB

was not defined (Sung and Rice, 2006).

The IL-15 super agonists have been under study as a potential

latency-reversal agent that has been shown to reactivate HIV and

prime latently infected cells for clearance by immune effectors.

Notably, IL-15 was seen to increase gene sets involved in TNF

signaling via NF-kB and in STAT3 signaling in bulk CD4+ T cells

(Jones et al., 2016; McBrien et al., 2020). Additionally, IL-15 was

also seen to increase the expression of NF-kB2 in bulk CD4+ T cells

(extended data (McBrien et al., 2020)). As mentioned previously,

STAT3 can independently activate p100 processing and lead to

ncNF-kB signaling. This mechanism remains to be described in the

context of HIV latency reversal by these agents.

Proteasome inhibitors such as Bortezomib and Ixazomib are

now under study as latency reversal agents via the activation of the

NF-kB pathway (Miller et al., 2013; Natesampillai et al., 2018; Li

et al., 2019; Timmons et al., 2020; Alto et al., 2021; Cummins et al.,

2021), and they have recently been studied in the clinical setting

(Cummins et al., 2021). The generation of p52 has been described as
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proteasome dependent with studies demonstrating that inhibition

of the proteasome results in decreased p52 protein (Heusch et al.,

1999). It has also been very well established that ncNF-kB inhibition

is crucial to the efficacy of proteasome inhibitors in multiple

myeloma (Chauhan et al., 2011; Dash et al., 2020). It is still to be
Frontiers in Cellular and Infection Microbiology 08
elucidated whether the ncNF-kB pathway may play a similar role

for HIV latency reversal by proteasome inhibitors.

CD40 targeted antibodies are increasingly becoming relevant in

oncology. Agonists lead to observable T cell activation and anti-

tumor potentiation induced by dendritic cells, and it has been well

established that CD40-signaling can potentiate the ncNF-kB
pathway and that a CD40-blockade inhibits dendritic-cell induced

HIV latency reversal. Targeted antibodies to potentiate the effects of

CD40 on ncNF-kB activity therefore represents a feasible strategy to

achieve latency reversal, but the concomitant effects on the

canonical pathway need to be considered (Hostager and Bishop,

2013; Kristoff et al., 2019; Vonderheide, 2020).

OX40 agonistic antibodies have now become increasingly

relevant in cancer therapy, and OX40 agonism has been shown to

boost HIV replication (Takahashi et al., 2001; Linch et al., 2015). As

mentioned above, OX40, MALT1 and BCL-10 are all positive

regulators of the non-canonical pathway. OX40 agonism has been

seen to recruit and activate MALT-1 (Linch et al., 2015; Israël and

Bornancin, 2018). Additionally, OX40-expressing CD4+ T cells were

preferentially enriched for clonally expanded HIV, and some

subjects harbored higher quantities of intact Proviral DNA (Kuo

et al., 2018). As mentioned above, MALT-1 favors a pro-

transcriptional profile. Interestingly, another protein, NEDD4-

binding protein 1 (N4BP1), was seen to inhibit HIV replication, a

function that was antagonized byMALT1. MALT1-mediated N4BP1

degradation was seen to facilitate the reactivation of latent HIV

proviruses (Yamasoba et al., 2019). Targeted efforts to boost OX40

signaling or MALT1 potentiation, either in an OX40-dependent or

independent manner may therefore represent feasible latency

reversal agents not only through the non-canonical NF-kB
pathway but also through other protein interactions.

RIG-1, a positive regulator of ncNF-kB, was targeted through

the RIG-1 agonist acitretin which increased HIV replication in in-

vitro and ex vivo models, and lead to preferential HIV infected cell

apoptosis. However, a second study failed to reproduce similar

results, suggesting further research is necessary to examine RIG-1 as

a shock agent (Li P. et al., 2016; Garcia-Vidal et al., 2017). The

interactions of these agents with the nc-NF-kB pathway has been

summarized in Table 2.
Conclusion

Current ART therapy is incapable of achieving either a

sterilizing or a functional cure of HIV. The current “shock and

kill” strategies to eradicate HIV may involve the ncNF-kB pathway.

As further studies in these fields progress, the role of this pathway

may become better defined. Efforts to identify specific agonists of

this pathway would significantly enhance “shock and kill” efforts

and may ultimately contribute to the cure of HIV.
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TABLE 2 Shock and kill agents and their known effects on the non-
canonical pathway.

Therapeutic
agent

Effect on
non-
canonical
signaling

Known
drug
effect
in HIV

References

SMAC Mimetics
Inhibition
of cIAP1

Latency
reversal in-
vitro and
in-vivo

(Pache et al., 2015;
Bobardt et al., 2019;
Dashti et al., 2020;
Nixon et al., 2020;
Pache et al., 2020; Li
et al., 2021; Bricker
et al., 2022; Falcinelli
et al., 2022; Dashti
et al., 2023; Jansen
et al., 2023)

PKC Agonists

Upregulation
of A20
Recruitment of
RelB to
increase
APOBEC3B

PKC agonist
Prostratin
upregulates
A20, leading
directly to
NF-kB
inhibition.
PMA is a
potent LRA

(Spina et al., 2013;
Chen et al., 2016)

IL-15
super agonists

Increased
expression of
NF-kB
Increase in
TNF mediated
NF-kB
activation and
STAT3
signaling

Latency
reversal in-
vivo
following
CD8
depletion
and priming
of latent cells
for
immune
clearance

(Jones et al., 2016;
McBrien et al., 2020)

Proteasome
inhibitors

ncNF-kB
signaling
crucial
for efficacy

Latency
reversal and
reservoir
depletion in-
vitro and
in vivo

(Natesampillai et al.,
2018; Li et al., 2019;
Dash et al., 2020; Alto
et al., 2021; Cummins
et al., 2021)

OX40 agonist
Potentiation of
MALT1-
BCL10 action

Increases
replication

(Takahashi et al.,
2001; Linch et al.,
2015; Kuo et al., 2018;
Yamasoba et al., 2019)

RIG-1 agonists
ncNF-
kB activation

Increases
transcription
in-vitro and
ex vivo.
(or) No effect

(Li P. et al., 2016;
Garcia-Vidal
et al., 2017)

MALT1 inhibition

Blockade of
MALT-1
dependent
MCPIP
cleavage

Reduced
levels of HIV
post
LRA
treatment

(Liu et al., 2013; Li H.
et al., 2016)
The above table aims to summarize known interactions of drugs being currently investigated
for HIV cure, as part of “Shock and Kill”, and the NF-kB signaling pathway.
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