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Background: Pancreatic cancer is one of the deadliest cancer, with a 5-year

overall survival rate of 11%. Unfortunately, most patients are diagnosed with

advanced stage by the time they present with symptoms. In the past decade,

microbiome studies have explored the association of pancreatic cancer with the

human oral and gut microbiomes. However, the gut microbial antibiotic

resistance genes profiling of pancreatic cancer patients was never reported

compared to that of the healthy cohort.

Results: In this study, we addressed the gut microbial antibiotic resistance genes

profile using the metagenomic data from two online public pancreatic cancer

cohorts. We found a high degree of data concordance between the two cohorts,

which can therefore be used for cross-sectional comparisons. Meanwhile, we

used two strategies to predict antibiotic resistance genes and compared the

advantages and disadvantages of these two approaches. We also constructed

microbe-antibiotic resistance gene networks and found that most of the hub

nodes in the networks were antibiotic resistance genes.

Conclusions: In summary, we describe the panorama of antibiotic resistance

genes in the gut microbes of patients with pancreatic cancer. We hope that our

study will provide new perspectives on treatment options for the disease.
KEYWORDS

pancreatic cancer, gut microbiomes, antibiotic resistance genes, vancomycin-resistant
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1 Introduction

Pancreatic cancer, particularly pancreatic ductal adenocarcinoma

(PDAC), is one of the deadliest cancer, with a 5-year overall survival

rate of 11% (Siegel et al., 2022). The high lethality of PDAC is

attributed to both late diagnosis and limited therapeutic options. This

is because symptoms are often nonspecific and only become apparent

in the advanced stages of the disease, when tumors may already be

locally non-resectable or have metastasized. Surgery is the only

potential curative treatment, but this method is only possible in the

early stage. Combinatorial chemotherapy remains the standard of

care for PDAC patients, but most patients present with an advanced

disease characterized by both inherent and rapidly acquired

chemoresistance to current anticancer treatments (Zeng et al., 2019).

In the past decade, microbiome studies have explored the

association of pancreatic cancer with the human oral and gut

microbiomes (Farrell et al., 2012; Ren et al., 2017; Fan et al., 2018;

Matsukawa et al., 2021; Kartal et al., 2022). A study identified 30 gut

and 18 oral species significantly linked to pancreatic cancer,

exhibiting AUCs ranging from 0.78 to 0.82 (Nagata et al., 2022).

In addition, epidemiological investigations have revealed a

connection between periodontitis and an elevated risk of

pancreatic cancer development (Michaud et al., 2007). Notably,

Neisseria elongata and Porphyromonas gingivalis in saliva have been

associated with an increased risk of pancreatic cancer development

(Fan et al., 2018). Despite the pancreas not being part of the

alimentary canal, the suggested translocation of microbiota from

the gut to the pancreas is thought to occur through the sphincter of

Oddi (Ansari et al., 2023). Studies using mouse models strongly

suggested profound associations of gut microbiome with pancreatic

cancer (Pushalkar et al., 2018; Thomas and Jobin, 2020). Moreover,

studies suggested that microbiome ablation with antibiotics in

mouse models improved tumor immune surveillance and

improved responses to PD-1 blockade (Pushalkar et al., 2018). On

the one hand, antibiotic use may lead to microbiota dysbiosis,

potentially fostering chemoresistance and influencing treatment

outcomes (Routy et al., 2018). On the other hand, much evidence

suggested that the gut microbiota plays a role in determining

resistance to various anticancer treatments, encompassing

conventional chemotherapy, immunotherapy, radiotherapy, and

surgery (Garajova et al., 2021). Several studies have highlighted

the microbiome’s involvement in drug resistance within

gastrointestinal cancers, including esophageal and pancreatic

cancers (Yang et al., 2009; Wilkinson et al., 2018; Garajova et al.,

2021). An increasing number of studies has shown that gut

microbiota may impact resistance to commonly used anticancer

drugs such as irinotecan, oxaliplatin, cyclophosphamide, 5-

fluorouracil, gemcitabine, and anthracyclines (Bloemen et al.,

2010; Iida et al., 2013; Sivan et al., 2015; Goubet et al., 2018). For

instance, Bacteroides spp., residing in the gastrointestinal tract,

expedite the conversion of sorivudine (a synthetic thymidine

analogue used as an antiviral agent) into bromovinyluracil

(BVU), an intermediate product that inhibits 5-FU degradation

by the enzyme dihydropyrimidine dehydrogenase (Nakayama et al.,

1997; Chae et al., 2020). However, the gut microbial antibiotic

resistance genes profiling of pancreatic cancer patients has never
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reported compared to healthy cohort. Therefore, enhancing our

understanding of the gut microbiota and its interactions with

anticancer drugs will empower us to devise innovative treatment

strategies, thereby contributing to treatments of cancer patients.

In this study, we addressed the gut microbial antibiotic

resistance genes profile using the metagenomic data from online

public pancreatic cancer cohorts. By studying the types, abundance,

copy number, and affiliated microorganisms of antibiotic resistance

genes in the gut microbes of pancreatic cancer patients, we describe

the panorama of antibiotic resistance genes in the gut microbes of

patients with the disease. We aimed to find out the main types of

antibiotic resistance genes and the microorganisms. This will

provide a theoretical basis for more accurate assessment of the

patient’s condition and adjustment of the treatment plan for

pancreatic cancer in the future.
2 Methods

2.1 Public data acquisition and
quality control

All data in this study were obtained from the NCBI database

(https://www.ncbi.nlm.nih.gov/) (Supplementary Table S1) and

downloaded using fastq-dump. The total number of samples in

our analysis is 202. The raw data were preprocessed using

Trim_Galore (Version 0.4.5) to obtain the clean data. Since some

of the metagenomic data had a high proportion of human DNA, we

removed the human DNA from the clean data. The clean data were

mapped to the reference sequence of human genome (hg38) using

bwa (Li and Durbin, 2009), and the sam file was processed into

sort.bam file by samtools (Li et al., 2009). The sort.bam file was

converted into bed file by bamToBed (Quinlan and Hall, 2010). An

in-house perl program for removing human DNA was used, and the

samples that clean data over 800 megabases were used for

subsequent analysis.
2.2 Antibiotic resistance gene identification

In this study, two strategies were used for the prediction of

antibiotic resistance genes: CARD database mapping vs. genome

assembly and RGI prediction. In the CARD database mapping

strategy, the reference sequence of antibiotic resistance genes

(https://card.mcmaster.ca/download) was downloaded from the

Comprehensive Antibiotic Resistance Database (CARD) (Alcock

et al., 2020). The index file of reference sequences was constructed

by Salmon (Patro et al., 2017). The clean data after filtering human

DNA were performed using Salmon to quantitative the abundance

of antibiotic resistance genes (Patro et al., 2017). In the genome

assembly and RGI (Resistance Gene Identifier) prediction strategy,

first, the genome assembly were performed based on clean data

using metaspades (Nurk et al., 2017). Then, the assembled genome

sequences were annotated using the genome annotation software

prokka (Seemann, 2014). Antibiotic resistance gene prediction was
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performed based on gene sequences using the RGI to obtain the

copy number of the antibiotic resistance.
2.3 Taxonomy classification and other
bioinformatics analysis

Kraken2 coupled with Bracken strategy were used for taxonomy

annotations and abundance quantification based on clean data after

filtering human DNA (Wood et al., 2019; Lu and Salzberg, 2020).

The relationships between microbes and antibiotic resistance genes

in network analysis were determined by genome assembly and RGI

prediction strategy. The network between microbes and antibiotic

resistance genes was performed by Cytoscape (Otasek et al., 2019).

LEfSe was used for differential abundance microbial identification

(Segata et al., 2011).
2.4 Statistical analysis

Analysis of differences between groups in this study was done

by Wilcox test, and R script was used for statistical analysis. We

consider p-values ≤ 0.05 to be significant. Ggplot2 package was used

for plotting in this study.
3 Results

3.1 Overview of the cohorts and
metagenomic data

Two pancreatic cancer cohorts sourced from two different

studies were selected: patients of one cohort only collected from

Japan between August 2014 and September 2019 (called Cohort 1)

(Matsukawa et al., 2021) and the other cohort collected from a
Frontiers in Cellular and Infection Microbiology 03
multinational study including Japan, Spain, and Germany (called

Cohort 2) (Nagata et al., 2022). In addition, we also included a

healthy cohort as a control, which is also sourced from the

multinational study. Each cohort contained oral samples and fecal

samples (see Supplementary Table S1). We pre-processed the

downloaded raw data and removed the human DNA sequences,

and we found that the proportion of the human DNA in the fecal

samples was small, while the proportion of the human DNA in the

oral cavity was large. The proportion of the human DNA in several

oral samples was more than 95%, so we screened the samples, and

we only retained samples whose file size were larger than 800 M for

subsequent analyses. In sum, we obtained a total of 202

metagenomic samples in the three cohorts.
3.2 Quantitative analysis of microbial
abundance in pancreatic cancer cohorts

We calculated the abundance of samples from two pancreatic

cancer cohorts (oral and fecal) at the species level and show the top

10 species in abundance of each cohort. In the oral samples of

Cohort I, which had only eight samples, three of the top 10 species

were from the genus Prevotella, another three species from the

genus Neisseria, and the others from different genus (Figure 1A). In

the oral samples of Cohort II, three of the top 10 species were from

the genus Prevotella, and these three species were also present in the

oral samples of Cohort I at the same time (Figure 1B). In addition,

another three species from the genus Streptococcus were also

present in the top 10 species of the cohort II. It is worth noting

that 7 of the top 10 species overlapped in both oral cohorts,

indicating better reproducibility of the data from these two

cohorts. In fecal samples, Cohort I contained a total of 17

samples. The top 10 species were mainly from genus

Bifidobacterium, genus Phocaeicola, Faecalibacterium prausnitzii,

Streptococcus salivarius, and Bacteroides uniformis (Figure 1C). In
B
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FIGURE 1

(A) Distribution of the top 10 microorganisms (species level) in abundance of oral samples from Cohort 1. (B) Distribution of the top 10
microorganisms (species level) in abundance of oral samples from Cohort 2. (C) Distribution of the top 10 microorganisms (species level) in
abundance of stool samples from Cohort 1. (D) Distribution of the top 10 microorganisms (species level) in abundance of stool samples from
Cohort 2.
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Cohort II, the top 10 species in the fecal sample included

Bifidobacterium longum , Streptococcus salivarius , and

Faecalibacterium prausnitzii (Figure 1D). Coincidentally, there are

also seven shared species of top 10 species in abundance for both

cohorts of fecal samples. We also show the top 10 species for both

cohorts (oral samples and fecal samples) based on heatmaps. The

difference in the abundance of the top 10 species between the

disease and control groups is not obvious (Supplementary Figure

S1). Furthermore, we compared the top 300 species in microbial

abundance for the oral and fecal samples, and we found that the two

cohorts overlapped by 85% for both oral and fecal (85% for oral and

86% for fecal), which shows that the two population cohorts are

highly reproducible (Supplementary Figure S2). We also found

Streptococcus salivarius to be present in both fecal cohorts and in

the oral cohort of Cohort II.
3.3 Identifying antibiotic resistance genes
in pancreatic cancer cohorts

To systematically identify antibiotic resistance genes, we used

two strategies for prediction: CARD database mapping vs. genome

assembly and RGI prediction. Utilizing the mapping strategy of the

CARD database, which relies on the reference dataset of antibiotic

resistance genes offered by the CARD database, we aligned the clean

reads with the reference sequences. Then, we calculated the

abundance and frequency of antibiotic resistance genes in oral

and fecal samples from the two cohorts separately. In addition,

we also added an extra healthy cohort with oral and fecal samples as

control. In the pancreatic cancer cohorts, we identified a total of 130

types of antibiotic resistance genes in oral samples. The top 10 most

frequent genes were mostly from tetracyclines, with an average of 36

types of antibiotic resistance genes detected per sample. We selected

the top 20 antibiotic resistance genes in terms of abundance for
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comparison between different cohorts of pancreatic cancer and

healthy individuals, and we found that the abundance and the

frequency of tet(M) and mel genes were higher overall. The Wilcox

test showed that the abundance of antibiotic resistance genes in oral

samples of pancreatic cancer were not significantly different from

that of healthy individuals (Figures 2A, B). We then analyzed fecal

samples and identified a total of 321 types of antibiotic resistance

genes, with most of the top 10 genes with the highest frequency also

coming from the tetracyclines but differing from the typing of

antibiotic resistance genes in the oral samples, with an average of 82

types of antibiotic resistance genes detected per sample. For fecal

samples, we also selected the top 20 antibiotic resistance genes in

terms of abundance for comparison between samples from different

cohorts of pancreatic cancer and healthy individuals. The

abundance of antibiotic resistance genes in fecal samples were

relatively stable, and the Wilcox test did not reveal any difference

in the abundance of fecal antibiotic resistance genes between

pancreatic cancer samples and those from healthy individuals

(Figures 2C, D).

In terms of genome assembly and RGI prediction strategy, we

first obtained the gene sequences of each sample by metagenomic

assembly and then predicted the copy number of antibiotic

resistance genes by rgi software. Similar to the previous strategy,

we also calculated the frequency of antibiotic resistance genes in

oral and fecal samples from each of the three cohorts (two

pancreatic cancer cohorts and one healthy cohort). In the

pancreatic cancer oral samples, we identified a total of 72 types of

antibiotic resistance genes, with an average of 39 types of antibiotic

resistance genes per sample, and half of the top 10 most frequent

genes were vancomycin resistance genes. We also selected the top

20 antibiotic resistance genes in terms of copy number for

comparison between different cohorts of pancreatic cancer and

healthy individuals. The Wilcox test showed significant differences

in the copy number of vanT, vanY, and patB genes in different gene
B

C D
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FIGURE 2

(A) Heatmap of antibiotic resistance gene abundance of oral samples from Cohort 1 (case vs. control). (B) Heatmap of antibiotic resistance gene
abundance of oral samples from Cohort 2 (case vs. control). (C) Heatmap of antibiotic resistance gene abundance of stool samples from Cohort 1
(case vs. control). (D) Heatmap of antibiotic resistance gene abundance of stool samples from Cohort 2 (case vs. control).
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clusters of the pancreatic cancer cohort I compared with the healthy

cohort (Figures 3A, B). In pancreatic cancer stool samples, we

identified a total of 227 types of antibiotic resistance genes, with an

average of 73 types of antibiotic resistance genes per sample, and

half of the 10 genes with the highest frequency also belonged to

vancomycin-resistant genes, and three genes belonged to

tetracycline-resistant genes. In a cross-sectional cohort’s

comparison of the top 20 copy number antibiotic resistance

genes, four vancomycin-resistant genes and one tetracycline-

resistant gene showed significant copy number differences

between the pancreatic cancer Cohort I and the healthy cohort

(Figures 3C, D).
3.4 Antibiotic resistance genes and
their microbes

To figure out the affiliations between antibiotic resistance genes

and gut microbes, we constructed a network of antibiotic resistance

genes interacting with microbes. We constructed the network based

on antibiotic resistance genes obtained from genome assembly and

RGI prediction because we considered that this strategy provides

more accurate links. Furthermore, we used only two cohorts of

pancreatic cancer patients (oral samples and intestinal samples).

We performed the network construction according to the oral

samples and the fecal samples, respectively, and merged the

connections of the two cohorts (Supplementary Figure S3). We

found a total of 283 non-redundant connections in the antibiotic

resistance genes–microbes interaction network of the oral samples,

of which nine of the hub nodes in the top 10 of the degree rank

belonged to antibiotic resistance genes, and most of them were from

vancomycin-resistant genes (the top 3 hub nodes in order were

vanT gene in vanG cluster, 67 links; vanY gene in vanM cluster, 27

links; vanY gene in vanB cluster, 25 links), and the other top 10 hub

nodes was species Streptococcus sp. (11 links) (Supplementary

Figure 3A). We analyzed the affiliations of the top 9 hub
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antibiotic resistance genes, which came from a total of 59 genera,

with the top 5 genera being Streptococcus (64), Veillonella (20),

Prevotella (20), Bacteroides (8), and Neisseria (7). From

microbiological perspective, the overall average degree of

microbes was only 2, and most of the microbes with a degree of

more than 5 were from the genera Streptococcus and Prevotella. In

the antibiotic resistance genes–microbes network of fecal samples,

there were a total of 556 non-redundant connections, of which the

top 10 hub nodes were all antibiotic resistance genes, and nine were

from vancomycin-resistant genes (the top 3 hub nodes in order

were vanT gene in vanG cluster, 134 links; vanW gene in vanI

cluster, 70 links; vanY gene in vanB cluster, 62 links)

(Supplementary Figure 3B). We also analyzed the affiliations of

the top 10 hub antibiotic resistance genes, which came from a total

of 136 genera, with the top 5 genera being Streptococcus (33),

Blautia (27), Ruminococcus (25), Bacteroides (23), and

Faecalibacterium (15). Taking the microbiological point, the

overall average degree of microbes was 2. A total of 30 microbes

with a degree of more than 5, scattered among different genera, and

no dominant genus was found.
3.5 Antibiotic resistance genes in
differential abundant microbiotas

Differential abundant microbes between groups are often

associated with disease and health. We used LEfSe to identify

differential abundant microbes in two pancreatic cancer cohorts

versus healthy control (Supplementary Figure S4). In oral samples,

we identified 31 and 33 differential abundant microbes in the two

cohorts, respectively. In fecal samples, we identified 48 and 55

differential abundant microbes in the two cohorts, respectively. In

this study, we focused on the antibiotic resistance genes of the

differential abundant microbes that were significantly enriched in

the cohorts of pancreatic cancer patients (combined the differential

abundant microbes from the two cohorts). In the oral samples, a
B
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FIGURE 3

(A) Heatmap of antibiotic resistance gene copy number of oral samples from Cohort 1 (case vs. control). (B) Heatmap of antibiotic resistance gene
copy number of oral samples from Cohort 2 (case vs. control). (C) Heatmap of antibiotic resistance gene copy number of stool samples from Cohort
1 (case vs. control). (D) Heatmap of antibiotic resistance gene copy number of stool samples from Cohort 2 (case vs. control). The red font and *
means p ≤0.05.
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total of 25 differential abundant microbes were significantly

enriched in the pancreatic cancer cohorts. Integrating the results

of the antibiotic resistance genes described above, we found that 11

of these differential abundant microbes with eight types of antibiotic

resistance genes (Supplementary Table S2), and the 11 differential

abundant microbes were mainly from the genus Prevotella

(including six species), while the others were Fusobacterium

pseudoperiodonticum and Bacteroides heparinolyticus. The

number of linkages of vancomycin-resistant genes was the highest

in eight types of antibiotic resistance genes, and the vanT gene in

vanG cluster had the most connections in the vancomycin-resistant

genes. In the fecal samples, integrating the results of a total of 29

differential abundant microbes that were significantly enriched in

the pancreatic cancer cohorts and the antibiotic resistance genes

mentioned above, we found that 12 differential abundant microbes

with seven types of antibiotic resistance genes (Supplementary

Table S3). Most of 12 differential abundant microbes came from

Streptococcus and Klebsiella. The number of vancomycin-resistant

genes in the seven types of antibiotics was also the highest, but the

genotypes were different from the oral samples. The antibiotic

resistance genes in the fecal samples were mainly vanG, vanT,

vanW, and vanY.
4 Discussion

Antibiotic resistance has been a globally health concern. It

affects the therapeutic efficacy of diseases. Traditional methods of

antibiotic resistance testing are mainly based on minimal inhibitory

concentration (MIC) test of cultured isolates of microorganisms.

The gut contains thousands of microbial species, most of which are

uncultured or difficult to culture. It is difficult to detect gut

antibiotic resistance using traditional methods because of their

large microbial community. Moreover, detecting antibiotic

resistance of isolates does not reflect the overall of antibiotic

resistance in gut microbes. The whole genome sequencing-based

metagenomic technology can detect most of the DNA fragments in

one sample and thus can detect the antibiotic resistance genes from

gut. It can reveal the overall of antibiotic drug resistance to a certain

extent by this method. Pancreatic cancer is one of the common

malignant tumors in the digestive tract and is known as the “king of

cancers” in the field of oncology. Studies in this field of

microbiology have also been widely reported, but the gut

microbial antibiotic resistance profile of pancreatic cancer are

rarely reported. Here, we investigated the gut microbial antibiotic

resistance profiles of pancreatic cancer using two online public data

cohorts with oral and fecal samples, which can be used to validate

the results against each other. In addition, we included a cohort of

healthy individuals that also contained oral and fecal samples as a

control. We found that the two pancreatic cancer cohorts had an

overlap of more than 85% in abundance of top 300 species for both

oral and fecal samples, suggesting that the two cohorts were well

reproducible and could be used for validation of the results in

subsequent analyses.

While numerous anticancer therapeutic regimens have achieved

clinical success, the enduring challenges of heterogeneous response
Frontiers in Cellular and Infection Microbiology 06
and resistance to chemotherapy and immunotherapy remain the

hallmarks of cancer therapy. Recent findings have unveiled a

correlation between the microbiota and the development of

chemoresistance (Choy et al., 2018). Hence, integrating

microbiome-modulating regimens (such as antibiotics, probiotics,

and dietary interventions) with anticancer treatment could offer

innovative therapeutic approaches for cancers associated with

dysbiosis. Several studies have indicated the significant impact of

gut microbiota on drug metabolism and encompassing anticancer

drugs (Ma et al., 2019). This process may result in heightening or

diminishing drug activity, coupled with variations in toxicity levels.

Consequently, manipulating the microbial network through

interventions like fecal transplantation or probiotics emerges as a

promising strategy that may enhance the treatment efficacy for

cancer patients. Ongoing clinical trials are exploring the potential of

the microbiome to enhance the management of pancreatic cancer.

In our study, genera such as Prevotella and Fusobacterium were

significantly enriched in the pancreatic cancer cohort, compared

with healthy cohort in oral samples. Based on a recent study about

oral microbiota in pancreatic cancer, patients had a higher amount

of Prevotella compared with the healthy control group (Wei et al.,

2020). Fan et al. found that Fusobacterium and several bacteria

might be a protective factor in oral samples of pancreatic cancer

(Fan et al., 2018). Previous studies have reported that vancomycin-

resistant genes (vanT gene and vanY gene) were identified from

Streptococcus, Veillonella, and Prevotella. Kwack et al. revealed the

biological mechanisms of vancomycin tolerance in the oral

commensal bacterium Streptococcus anginosus by whole genome

and RNA sequencing (Kwack et al., 2022). Li et al. tested the

vancomycin resistance in Veillonella strains from oral of healthy

adults by agar dilution method (Li et al., 2022). In the fecal samples,

Prevotella, Streptococcus, and Klebsiella were the differential

abundant microbes in the pancreatic cancer cohort compared

with healthy cohort (Kabwe et al., 2022). The genus Streptococcus

has been studied for its association with cancer progression and

treatment outcomes over an extended period (Sobocki et al., 2021).

Matsukawa et al. found that Klebsiella, Streptococcus, and other

several microbiotas can be treated as prognostic factors for

pancreatic cancer (Matsukawa et al., 2021). In fecal samples of

pancreatic cancer, vancomycin-resistant genes (vanT gene, vanW

gene, and vanY gene) were also found in some popular gut microbes

(such as Streptococcus, Blautia, and Ruminococcus) (Stogios and

Savchenko, 2020). An earlier study showed that vanD and vanG-

Like gene clusters were located in Ruminococcus species, which

isolated from human bowel flora (Domingo et al., 2007). The vanB

gene has also been found in a vancomycin-resistant isolate of

Streptococcus bovis isolated from a stool swab (Poyart et al.,

1997). The above findings suggest the importance of vancomycin-

resistant microbial communities in pancreatic cancer.

Two strategies are currently used to study the antibiotic

resistance gene profiles of gut microbes: CARD database mapping

vs. genome assembly and RGI prediction. Both strategies have their

advantages: CARD database mapping strategy is more sensitive and

can detect more antibiotic resistance genes, which is mainly used to

calculate the abundance of those genes. The disadvantages of this

strategy are that it may be affected by the length of the reads, which
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leads to a low prediction accuracy, and the range of antibiotic

resistance genes detected may be limited by the content of the

database. Another method for antibiotic resistance gene prediction

is genome assembly and RGI prediction, which is a strategy based

on the annotation of assembled genome sequences and is mainly

used to detect the presence or absence of antibiotic resistance genes

and the copy numbers. It offers the benefit of relatively high

accuracy and the potential for uncovering new antibiotic

resistance genes. However, a drawback is the inability to quantify

their abundance. In this study, we compared these two prediction

strategies. It was found that CARD database mapping strategy

detected more types of antibiotic resistance genes than genome

assembly and RGI prediction in both oral and fecal samples. In

terms of the average number of antibiotic resistance genes of each

sample, the two strategies did not differ much in oral and fecal

samples. In terms of frequency, for both strategies, the genes with

high frequency in oral and fecal samples were from the vancomycin

and tetracycline resistance gene families, which shows that the

results predicted by the two methods are in good agreement.

However, there are some differences between the two strategies.

According to the results of the heatmap and the Wilcox test,

genome assembly and RGI prediction identified significant

differences in some vancomycin-resistant genes between the

pancreatic cancer patient cohort and the healthy cohort.

However, this distinction was not observed with the CARD

database mapping strategy. In summary, we found that the

CARD database mapping strategy was superior in sensitivity in

the prediction of the types of antibiotic resistance genes, whereas

genome assembly and RGI prediction was better able to detect

anomalies in copy number between groups.

There are still some shortcomings in this study. First, because

we used publicly available online data, we lacked information on

oral and fecal pairings; thus, we were unable to compare the

antibiotic resistance genes between oral and fecal samples in a

single individual. Second, the online public data also lacked

information on antibiotic use and treatment of the patients, so we

were unable to map antibiotic resistance genes to patients’ clinical

information. Finally, the resistance of some microbes requires

isolation by bacteria culture and measure by MIC. We hope that

future research may complement the shortcomings.
5 Conclusion

We conducted an extensive evaluation of antibiotic resistance

genes using both oral and fecal samples sourcing from two publicly

available online datasets of pancreatic cancer populations. We

found a high degree of data concordance between the two

cohorts, which can therefore be used for cross-sectional

comparisons. Meanwhile, we used two strategies to predict

antibiotic resistance genes and compared the advantages and

disadvantages of these two approaches. Based on genome

assembly and RGI prediction strategy, we found that four
Frontiers in Cellular and Infection Microbiology 07
vancomycin-resistant genes and one tetracycline-resistant gene

differed significantly in copy number between the pancreatic

cancer Cohort I and the healthy cohort. We also constructed

microbe-antibiotic resistance gene networks and found that most

of the hub nodes in the networks were antibiotic resistance genes.

We hope that our research will contribute to adjuvant therapy for

pancreatic cancer patients by designing new antibiotic regimens

that can be targeted to alter the abundance of dysbiotic microbiota

in the future.
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SUPPLEMENTARY FIGURE 1

(A) Heatmap of top 10 species abundance of oral samples from Cohort 1

(Case vs Control). (B) Heatmap of top 10 species abundance of oral samples

fromCohort 2 (Case vs Control). (C)Heatmap of top 10 species abundance of
stool samples from Cohort 1 (Case vs Control). (D)Heatmap of top 10 species

abundance of stool samples from Cohort 2 (Case vs Control).

SUPPLEMENTARY FIGURE 2

(A) The venn diagrams of top 300 microbial abundances in oral samples from

different cohorts. (B) The venn diagrams of top 300 microbial abundances in
stool samples from different cohorts.

SUPPLEMENTARY FIGURE 3

(A) Network between microbes and antibiotic resistance genes network from

oral samples in two cohorts. (B) Network between microbes and antibiotic
resistance genes from stool samples in two cohorts. Red nodes represent

antibiotic resistance genes and light-blue nodes represent microorganisms.

SUPPLEMENTARY FIGURE 4

(A) Lefse analysis at the species level between control and case oral samples
from cohort 1. (B) Lefse analysis at the species level between control and case

oral samples from cohort 2. (C) Lefse analysis at the species level between
control and case stool samples from cohort 1. (D) Lefse analysis at the species

level between control and case stool samples from cohort 2.
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