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Using host-mimicking conditions
and a murine cutaneous abscess
model to identify synergistic
antibiotic combinations effective
against Pseudomonas aeruginosa
Nikita Lyons1,2, Weihui Wu3, Yongxin Jin3, Iain L. Lamont2

and Daniel Pletzer1*

1Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago,
Dunedin, New Zealand, 2Department of Biochemistry, School of Biomedical Sciences, University of
Otago, Dunedin, New Zealand, 3Department of Microbiology, College of Life Sciences, Nankai
University, Tianjin, China
Antibiotic drug combination therapy is critical for the successful treatment of

infections caused bymultidrug resistant pathogens. We investigated the efficacy of

b-lactam and b-lactam/b-lactamase inhibitor combinations with other antibiotics,

against the hypervirulent, ceftazidime/avibactam resistant Pseudomonas

aeruginosa Liverpool epidemic strain (LES) B58. Although minimum inhibitory

concentrations in vitro differed by up to eighty-fold between standard and host-

mimicking media, combinatorial effects only marginally changed between

conditions for some combinations. Effective combinations in vitro were further

tested in a chronic, high-densitymurine infectionmodel. Colistin and azithromycin

demonstrated combinatorial effects with ceftazidime and ceftazidime/avibactam

both in vitro and in vivo. Conversely, while tobramycin and tigecycline exhibited

strong synergy in vitro, this effect was not observed in vivo. Our approach of using

host-mimicking conditions and a sophisticated animal model to evaluate drug

synergy against bacterial pathogens represents a promising approach. This

methodology may offer insights into the prediction of combination therapy

outcomes and the identification of potential treatment failures.
KEYWORDS

antibiotic synergy, checkerboard, skin infection model, high-density, host-mimicking
conditions, abscess model, drug combinations
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GRAPHICAL ABSTRACT

Lyons et al. show that antibiotic synergy testing in microbiological growth medium and tissue culture medium result in similar, but not identical,
combinatorial effects. Combinatorial effects identified during in vitro experiments under host-mimicking conditions were a good, but not perfect,
predictor of effects in an in vivo murine infection model. The authors’ approach could improve the predictive power of synergy studies at a time
when combinatorial therapy is becoming more critical to address antibiotic resistant pathogens.
Highlights
Fron
• Antibiotic synergy in host-mimicking tissue culture medium

shows similar trends to that in microbiological growth

medium although antibiotic susceptibility is reduced

• Antibiotic combinations can restore susceptibility to

ceftazidime in ceftazidime-resistant P. aeruginosa

• The predictive potential of synergy is enhanced by

including host mimicking conditions and should be

included for drug synergy evaluation in vitro

• Synergistic killing effects under host mimicking conditions

suggests the clinical use of ceftazidime/avibactam rather

than ceftazidime for improved antimicrobial efficacy

• A combination of in vitro assays and an in vivo mouse

model to improve success of combinatorial therapy and to

broaden options to tackle antibiotic resistant pathogens
Introduction

Pseudomonas aeruginosa is an opportunistic gram-negative

pathogen which commonly colonises chronic wounds and the

lungs of people with cystic fibrosis (CF) (Glen and Lamont,

2021). Hospitalised patients with ventilators, catheters or other

long-term indwelling devices are at high risk of contracting

nosocomial P. aeruginosa infections. Such infections are difficult

to treat as P. aeruginosa is intrinsically resistant to many antibiotics

due to the upregulation of efflux pumps, low outer membrane

permeability, target modification, upregulation of chromosomally

encoded b-lactamases and acquisition of b-lactamases through

horizontal gene transfer (Poole, 2011; Botelho et al., 2019).

First-line treatment for P. aeruginosa infections often includes

b-lactam antibiotics in combination with a b-lactamase

inhibitor (Diaz Santos et al., 2022). b-lactam antibiotics include

penicillins, carbapenems, cephalosporins and monobactams

that share a common structure (b-lactam ring) and all target
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penicillin-binding proteins (PBPs) involved in the synthesis of

the peptidoglycan layer (Vollmer and Holtje, 2004). P. aeruginosa

possesses eight PBPs that play important roles in cell division, cross-

linking of peptidoglycan peptide chains, and peptidoglycan

recycling (Vollmer et al., 2008). b-lactam antibiotics are structural

mimics of D-alanine-D-alanyl residues of the peptidoglycan

pentapeptide precursor and covalently bind to the active site of

PBPs, inactivating them and causing cell wall lysis. The presence of

b-lactamases including penicillinase, carbapenemase and

cephalosporinase can confer resistance to one or more classes

of b-lactams antibiotics (Glen and Lamont, 2021). b-lactamase

inhibitors such as avibactam can overcome resistance conferred

by certain b-lactamases. Avibactam is a covalent reversible

inhibitor for most b-lactamase enzymes (Bush and Bradford,

2016) (class A, C and some D) and unlike another b-lactamase

inhibitor, clavulanate (Weber and Sanders, 1990), does not induce

expression of b-lactamases (Miossec et al., 2013). Avibactam can be

used in combination with ceftazidime (Papp-Wallace, 2019), a

cephalosporin b-lactam antibiotic, potentially allowing effective

ceftazidime treatment of infections by P. aeruginosa that would

otherwise be resistant (Nichols et al., 2018).

Treatment of P. aeruginosa infections commonly involves an

empirically determined combination of a b-lactam/b-lactamase

inhibitor drug with an aminoglycoside, fluoroquinolone, or

polymyxin depending on the site of infection, patient

characteristics and local epidemiology (Bassetti et al., 2018).

Although the effectiveness of combinatorial treatment over

monotherapy is controversial, with a lack of enough studies on

whether it improves clinical outcomes, it is evident that inadequate

empirical antibiotic therapy increases mortality (Traugott et al.,

2011; Pletzer and Hancock, 2018; Zakhour et al., 2022). Antibiotic

combinations can act synergistically, with each antibiotic enhancing

the other’s efficacy to produce an inhibitory effect greater than the

sum of their individual effects (Fantin and Carbon, 1992; Pletzer

et al., 2018). This enhanced effect may be sufficient to restore

susceptibility to one or both antibiotics in an otherwise resistant

strain. A challenge in predicting antibiotic effectiveness, either alone
frontiersin.org
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or in combination, is that in vitro susceptibility under standard

testing conditions often does not predict treatment effectiveness in a

patient (Stratton, 2006; Somayaji et al., 2019; Vazquez-Pertejo,

2022). Lack of correlation can be due to a plethora of differences

including nutrient availability, the number of bacteria, drug

exposure of bacteria (time and concentration), involvement of the

immune system, as well as pharmacodynamic drug effects (from

drug absorption, distribution, and metabolism to excretion)

occurring in an individual (Stratton, 2006).

Indeed, in vitro cultures under more physiologically relevant

conditions can substantially alter efficacy across a range of

antimicrobials and pathogens (Ersoy et al., 2017; Yung et al.,

2021; Vyas et al., 2022). Host mimicking media including

eukaryotic cell or tissue culture medium, and addition of blood or

serum to standard laboratory media have been developed to

replicate conditions of in vivo infections more closely (Cantor,

2019). For example, Dulbecco’s Modified Eagle Medium (DMEM)

and Roswell Park Memorial Institute (RPMI) medium that are

commonly used to culture mammalian cells contain salts, amino

acids and vitamins at concentrations mimicking the in vivo

extracellular milieu. These are also typically supplemented with

foetal bovine serum (FBS), providing proteins and growth factors

(Shah, 1999). The fundamental differences between laboratory

conditions and the infectious environment have recently been

explored (Cornforth et al., 2018; Ibberson and Whiteley, 2019).

The transcriptome of P. aeruginosa cultured in host mimicking

conditions is more similar to those collected from wounds than

those grown in conventional culture medium (Belanger et al., 2020;

Belanger et al., 2022) and antibiotic susceptibility testing under

host-mimicking conditions is a more accurate predictor of efficacy

or resistance in vivo (Ersoy et al., 2017; Sweeney et al., 2020;

Belanger and Hancock, 2021; Heithoff et al., 2023).

Given the substantial influence of culture conditions on efficacy of

antibiotics, their interactions and synergy may well be altered under

physiologically relevant conditions and in vivo but this possibility has

not been systematically explored. Here, synergy of ceftazidime and

ceftazidime/avibactam with other clinically relevant antibiotics were

evaluated against P. aeruginosa in standard and host-mimicking

laboratory media and in a murine high density skin infection

model. The combinatorial effects were similar, but not identical, in

both media and could, at least partly, predict the effectiveness in the

skin infection model. Our study emphasizes the importance of using

appropriate methods, including host-mimicking conditions to test

drug synergy in vitro, and a complex animal model to evaluate drug

combination in vivo, to tackle antibiotic resistant pathogens.
Results

Antibiotics have reduced activity under
host-mimicking conditions in vitro

Antimicrobial susceptibility testing in conventional microbial

culture media such as the EUCAST-recommended Mueller-Hinton

medium (EUCAST, 2023), can show poorer predictive accuracy for in

vivo efficacy than testing in tissue culture medium (TCM) that better
Frontiers in Cellular and Infection Microbiology 03
represents conditions encountered during infection (Ersoy et al., 2017;

Heithoff et al., 2023). Thus, we first determined whether the efficacy of

various antibiotics from different classes, against the clinical cystic

fibrosis isolate P. aeruginosa LESB58, is altered in TCM.

The efficacy of azithromycin increased by 100-fold under host

mimicking conditions in tissue culture medium (TCM) compared to

standard susceptibility testing medium (MHB), whereas almost all

other antibiotics lost efficacy with four to over 80-fold increases inMIC

in TCM (Table 1). Ceftazidime (CAZ), a strong anti-pseudomonal

drug, had a small MIC increase of four-fold in TCM, while the MIC of

ceftazidime in combination with the b-lactamase inhibitor avibactam

(CZA) was unchanged. Notably, colistin (CST; MIC of 3.12 mg/mL),

one of the only antibiotics to which LESB58 is susceptible in MHB

based on EUCAST breakpoints (4 mg/mL) (EUCAST, 2023), showed a

four-fold increase in MIC bringing it over the clinical susceptibility

breakpoint. Aztreonam (ATM) and ciprofloxacin (CIP), another two

commonly prescribed anti-pseudomonal drugs, showed a striking

eight- and 16-fold increase in MIC in TCM, respectively.

Additionally, tobramycin (TOB) and gentamicin (GEN) had a

pronounced loss of efficacy showing a 20-fold increase in MIC

under host-mimicking conditions. Tigecycline (TGC), a member of

glycylcyclines and derivate of tetracycline, is a relative new drug used

in critically ill patients for complicated infections where other

antibiotics have ceased to work. Worryingly, tigecycline entirely lost

its efficacy under host-mimicking conditions against P. aeruginosa

LESB58. Similar trends were observed in the commonly used

laboratory strain P. aeruginosa PAO1 (Supplementary Table S1).

To delineate whether the higher ceftazidime MIC in TCM was

caused by the base medium (DMEM) or by the proteins and growth

factors in FBS, we tested the MIC of ceftazidime in MHB

supplemented with FBS, and in DMEM in which FBS was

replaced by MHB (Supplementary Table S2). The MIC of

ceftazidime increased eight-fold in MHB when FBS was present

and four-fold in TCM containing FBS but only two-fold in TCM

where FBS was substituted with MHB (Supplementary Table S2).

Collectively these findings indicate that FBS is the primary reason

for the ceftazidime MIC being higher in TCM than in MHB.

The ceftazidime/avibactam combination had a lower MIC than

ceftazidime alone in TCM though not in MHB (Table 1;

Supplementary Table S2). Unexpectedly, avibactam alone had

anti-pseudomonal activity in TCM, although this effect was not

observed in MHB (Supplementary Table S2).
Antibiotics can act synergistically with
ceftazidime to restore susceptibility in vitro

Ceftazidime and ceftazidime-avibactam are widely used to treat

P. aeruginosa infections but many isolates including P. aeruginosa

LESB58 are resistant to these treatments (Bassetti et al., 2018; Garcia

et al., 2022). We investigated whether other clinically relevant

antibiotics could act synergistically with ceftazidime or

ceftazidime-avibactam, to restore their effectiveness. Synergy is

defined as an at least four-fold decrease in MIC of both drugs in

combination (fractional inhibitory concentration index [FICI] 0.5),

compared to either drug alone. Under standard testing conditions
frontiersin.org
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(MHB) ceftazidime synergised with all non-b-lactam antibiotics

(Table 2) and the combinations reduced ceftazidime MIC to the

clinical susceptibility breakpoint of 8 mg/mL or below.

Combinations with ceftazidime-avibactam in MHB showed

similar trends, except that azithromycin did not act synergistically

(Supplementary Table S3).

We next determined if combinatorial effects were affected by

using host-mimicking conditions (culture in TCM instead of MHB)

for a subset of antibiotics (Table 2; Supplementary Table S3). In

TCM, colistin and tobramycin synergised with ceftazidime but

combined effects with azithromycin or ciprofloxacin were only

additive (FICI between 0.5 and 1). Intriguingly, ceftazidime in

combination with synergising antibiotics was generally more

effective (8-fold decrease in ceftazidime MIC) in TCM compared

to MHB (Table 2). Ceftazidime-avibactam also acted synergistically,

reducing the MIC of both antibiotics by at least four-fold

(Supplementary Table S3). However, in contrast to the situation

with ceftazidime, only colistin synergised with ceftazidime-

avibactam under host mimicking conditions, with three other

tested combinations showing weaker combinatorial effects in TCM

than in MHB (Supplementary Table S3). Intriguingly, the

combination with ciprofloxacin, although not synergistic in TCM,

reduced the ceftazidime-avibactam MIC from 32 mg/mL to 4 mg/mL

(8-fold) bringing it below the clinical susceptibility breakpoint

(Supplementary Table S3). These findings highlighted the potential

synergistic therapeutic effects of ceftazidime in combination with

colistin or tobramycin, and of ceftazidime-avibactam in combination
Frontiers in Cellular and Infection Microbiology 04
with colistin. Intriguingly, combinations with ciprofloxacin could

revert susceptibility to ceftazidime-avibactam.
Colistin and azithromycin show synergistic
effects with ceftazidime and ceftazidime/
avibactam in vivo

Although testing antibiotic efficacy in TCM mimics the

extracellular milieu of the host environment (Belanger et al., 2022),

it does not provide the complex interactions with the host immune

system that occur during infection. Thus, we tested ceftazidime and

ceftazidime-avibactam in combination with four other antibiotics in

a murine subcutaneous abscess model of high-density infection with

P. aeruginosa LESB58. P. aeruginosa LESB58 is resistant to

ceftazidime and therefore an excellent isolate for testing whether

antibiotic combinations can restore drug susceptibility in vivo.

Antibiotics were chosen based on their synergistic activity under

both laboratory (MHB) and host-mimicking (TCM) media

conditions (colistin and tobramycin) or just MHB (azithromycin

and tigecycline). All antibiotics were empirically tested in vivo

(sub-cutaneous) to determine a non-toxic concentration

(Supplementary Table S4) that reduced skin abscess sizes and/or

the bacterial load and would allow us to observe synergy of the drug

combinations. Synergy is defined as the combinatorial treatment

having a significantly greater effect than the sum of the individual

treatments (Figure 1) (Fantin and Carbon, 1992; Pletzer et al., 2018).
TABLE 1 Antimicrobial susceptibility of various antibiotics against P. aeruginosa LESB58 in two different media.

Drug ATMb CAZ CZAc CIP CST GEN TOB TGC AZM

MHB (mg/mL) 62.5 31.25 31.25 3.13 3.13 25 3.13 6.25 62.5

TCM (mg/mL) 500 125 31.25 50 12.5 500 62.5 >500 0.625

Fold change
TCM vs MHB

8 4 1 16 4 20 20 >80 -100

CLSI breakpoint <=S (mg/mL)a 8 8 8 0.5 – – 1 – –
frontie
aClinical & Laboratory Standards Institute Guidelines breakpoint based on MIC in MHB; S, sensitive.
bATM, aztreonam; CAZ, ceftazidime; CZA, ceftazidime/avibactam; CIP, ciprofloxacin; CST, colistin; GEN, gentamicin; TOB, tobramycin; TGC, tigecycline; AZM, azithromycin.
cCZA was used with a 1:4 (AVI : CAZ) ratio, while the clinical breakpoint was determined with a fixed avibactam concentration of 4 mg/L.
Minimum inhibitory concentrations were determined in MHB or TCM after 20-24 h and fold changes calculated between the two media.
-, represents a blank or missing value in the data, indicating that no meaningful data or calculation can be provided for that particular entry or variable.
TABLE 2 Synergy experiments with ceftazidime (CAZ) combined with various antibiotics against P. aeruginosa LESB58 in two different growth media.

Drug combined with CAZ: ATM AVI CIP CST GEN TOB TGC AZMb

FICIa
MHB 0.75 n.d.c 0.5 0.38 0.25 0.38 0.38 0.5

TCMd n.d. 0.38 0.63 0.38 n.d. 0.38 n.d. 0.625

Fold decrease in CAZ MIC
MHB 2 – 4 4 8 4 4 4

TCM – 8 8 8 – 8 – 8

Fold decrease in other MIC
MHB 4 – 4 8 8 8 8 4

TCM – 4 2 4 – 4 – 2
aFICI, Fractional inhibitory concentration index (FICI <= 0.5 indicates synergy).
bSynergy with AZM in MHB was determined in P. aeruginosa LESB58-lux.
cn.d., not determined.
dSynergy in TCM was determined in P. aeruginosa LESB58-lux.
-, represents a blank or missing value in the data, indicating that no meaningful data or calculation can be provided for that particular entry or variable.
rsin.org
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As expected, ceftazidime or ceftazidime-avibactam treatment, even

at concentrations as high as 2.5 mg/injection did not by themselves

significantly reduce abscess sizes or alter bacterial load compared to

vehicle-treated animals (Figure 1; Supplementary Table S5). Other

single drug treatments (azithromycin, colistin and tobramycin)

significantly reduced bacterial CFU relative to vehicle-treated

animals, by ~42-, 107-, and 5-fold, respectively. They also

significantly reduced abscess sizes relative to vehicle-treated mice

by 36%, 59%, and 41%. Tigecycline showed no anti-abscess or

antimicrobial effect at the highest tolerated dose (Supplementary

Table S5).

When azithromycin was combined with ceftazidime, abscess

sizes were reduced by over 50% and bacterial load reduced by 129-

fold compared to the vehicle control (Figure 1). Ceftazidime acted

synergistically with azithromycin, showing a significant

improvement compared to the sum of the individual single

treatment. The combination of azithromycin with ceftazidime-

avibactam also showed a significant (66%) reduction of abscess

sizes, but killing efficacy was only additive although bacterial load

was reduced 199-fold compared to the vehicle control (Figure 1A).

The highest activity occurred when ceftazidime or ceftazidime-

avibactam was combined with colistin, reducing bacterial load by

784- and 5302-fold, respectively, compared to the vehicle control.
Frontiers in Cellular and Infection Microbiology 05
This activity was synergistic, reducing bacterial load by 60- and 244-

fold for ceftazidime and ceftazidime-avibactam respectively

compared to the sum of the individual single treatments. This

combination also reduced mean abscess sizes by 62% for

ceftazidime and 88% for ceftazidime-avibactam relative to the

vehicle control (Figure 1B; Supplementary Table S5).

Conversely, the combinations of tobramycin or tigecycline with

ceftazidime or ceftazidime-avibactam showed no further effect

beyond those of individual antibiotics on either bacterial load or

abscess size (Figures 1C, D). This was despite the fact that both

antibiotics showed strong synergy (FIC <0.4) with ceftazidime and

ceftazidime-avibactam, respectively, in standard laboratory media.

The synergistic effect of tobramycin was retained with ceftazidime

but not with ceftazidime-avibactam in TCM (Table 2;

Supplementary Table S2). Tigecycline could not be tested for

synergy in TCM as it lost its activity (Table 1), which was also

evident in the mouse infection model (Figure 1C).
Discussion

Antimicrobial susceptibility tests have been widely used to

determine the efficacy of a standardized concentration of
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FIGURE 1

Antibiotic single and combinatorial therapies in a murine subcutaneous abscess model. P. aeruginosa LESB58 was injected subcutaneously and
treated one hour later with either vehicle, single antibiotics or an antibiotic combination. Abscess sizes are shown as box and whisker plots (left
panel) and counted bacteria recovered from the abscess tissue as CFU/abscess with geometric mean and geometric standard deviation (right panel).
Combinatorial treatment of ceftazidime (CAZ; 50 mg/mL) or ceftazidime/avibactam (CZA; 50 mg/mL) with (A) azithromycin (AZM; 6.25 mg/mL),
(B) colistin (CST; 1.25 mg/mL), (C) tigecycline (TGC; 2.5 mg/mL), or (D) tobramycin (TOB; 2 mg/mL). A-D. VEH for AZM experiments was 1.56 mg/mL
citric acid in 0.9% saline at pH 7-7.2; VEH for all other experiments was 0.9% saline. VEH, CAZ & CZA mice are shared for CST, TGC & TOB graphs.
All experiments were done at least three times with 3-5 mice (6-8 week, female Swiss Webster)/group. Statistical analysis was performed using
One-way ANOVA, Kruskal Wallace test with Dunn’s correction (two-sided). Limit of detection for CFU counts was 102. Asterisks indicate significant
effect of treatment compared to vehicle control (*p < 0.05; **p < 0.01), and hashes indicate a significant effect of the combination therapy over the
sum of the effects of each agent alone (#p < 0.05; ##p < 0.01).
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antimicrobial drugs and drug combinations. However, standard

susceptibility testing in regular growth media is increasingly

recognized as being a poor predictor of effective treatment in vivo

(Doern and Brecher, 2011; Ersoy et al., 2017; Heithoff et al., 2023).

In fact, drug susceptibility tests often fail to predict clinical efficacy,

and resistance in experimental tests does not always predict

treatment failure (Doern and Brecher, 2011). Nowadays,

combination therapy is frequently used to restore or increase the

efficacy of antibiotics against drug resistant strains (El Solh and

Alhajhusain, 2009; Tamma et al., 2012). We therefore sought to

investigate whether there is also a mismatch between antibiotic

combinations tested in vitro and their effectiveness in vivo. To do

this, we determined the synergy of commonly used anti-

pseudomonal drugs in a standard growth medium and under

more physiologically relevant (host-mimicking) conditions in the

laboratory, and in a murine infection model. Although antibiotics

have been tested for susceptibility in host mimicking conditions,

potential drug interactions under these conditions have not been

investigated. To the best of our knowledge, this is the first study to

investigate drug combinations under more physiological conditions

in vitro and a complex, non-lethal murine infection model. Our

approach might be a first step into improved prediction of drug

combination success or antibiotic combinatorial treatment failure.

We chose ceftazidime, with and without avibactam, as a model

drug against P. aeruginosa. Synergy occurred with almost all tested

antibiotics in MHB, with similar trends in TCM although in several

cases the effects were additive rather than synergistic (Table 2;

Supplementary Table S3). Nonetheless, in TCM, all combinations

reduced ceftazidime MIC by 8-fold to well below the clinical

breakpoint value (Tables 1, 2). Surprisingly, this was not so

evident for the ceftazidime/avibactam combinations, although

combination with ciprofloxacin and colistin still reduced the

ceftazidime/avibactam MIC below the clinical breakpoint

(Table 1; Supplementary Table S3). Interestingly, while

ceftazidime showed an increased MIC in TCM compared with

MHB, the MIC of the ceftazidime/avibactam combination did not

change between the two media. Avibactam alone showed no

antimicrobial activity in MHB, as expected, but had significant

antimicrobial activity in TCM (Supplementary Table S2).

Avibactam can bind P. aeruginosa PBPs 2 and 3 (Coleman, 2011;

Asli et al., 2016; Rajavel et al., 2021). Our data suggest that the lower

MIC of the ceftazidime/avibactam combination than ceftazidime

alone in TCMmay be partly due to the direct effect of avibactam on

these PBPs, in addition to its b-lactamase inhibitory activity. This

possibility warrants further work into the mechanism of avibactam,

but was outside the scope of our study.

Although combinatorial effects between antibiotics were similar

in MHB and TCM, MIC values were quite different (Table 1). P.

aeruginosa showed increased susceptibility to one macrolide

antibiotic, azithromycin, while being more resistant to b-lactams,

aminoglycosides, tetracyclines and polymyxin antibiotics in TCM.

These findings are consistent with previous studies (Buyck et al.,

2012; Ersoy et al., 2017; Belanger et al., 2020) and emphasize the

importance of considering growth conditions during drug

evaluation studies. Antibiotic combinations, even if additive

rather than synergistic, can restore antibiotic susceptibility in
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drug resistant strains as shown here and by others (Tait et al.,

2021). But regardless of the synergistic or additive effect of antibiotic

combinations in vitro, they do not account for the host immune

system and its important role in individual patients. To further

improve and strengthen the predictive value of our in vitro synergy

studies, we evaluated combinations in a complex, non-lethal, long-

term high-density skin infection model. This model (Pletzer et al.,

2017) proved well suited to identifying combinatorial and

synergistic effects between antibiotics.

Azithromycin had negligible anti-pseudomonal activity under

standard laboratory conditions, but was highly effective in host

mimicking conditions and in vivo (Table 1; Figure 1), consistent

with previous work (Buyck et al., 2012; Belanger et al., 2020; Sorensen

et al., 2020). While ceftazidime and azithromycin showed synergy

under standard conditions, only additive effects were found in host

mimicking conditions. Yet, in vivo combinatorial synergistic effects

were observed, reducing abscess lesions and bacterial load (Figure 1;

Supplementary Table S5) and emphasising the value of the in vivo

infection model. Azithromycin has immunomodulatory activity

(Cramer et al., 2017) which may contribute to its in vivo

combinatorial activity with ceftazidime. Combination therapy of

azithromycin with ceftazidime is predicted to be effective in our

study, as also suggested by others (Fernandez-Cuenca et al., 2003;

Wang et al., 2016). Conversely, tigecycline, which also has

immunomodulatory activity (Garrido-Mesa et al., 2018), had no

effect in vivo consistent with its lack of antimicrobial efficacy in

vitro in TCM, but in contrast to its effects in MHB. Similarly,

although synergy of tobramycin with ceftazidime occurred in both

standard laboratory medium and TCM (Table 2) its antimicrobial

activity was reduced by 20-fold in host mimicking conditions

(Table 1). The loss of lower antimicrobial activity in TCM reflected

the in vivo situation where the highest tolerated dose had only a small

effect on clearing the infection (Figure 1D). Lastly, combinations of

ceftazidime and colistin have been investigated for over 20 years

(Gunderson et al., 2003), and several studies support their

combinatorial activity (Mikhail et al., 2019; Mataraci Kara et al.,

2020). Our findings support the observation that colistin exhibits

strong synergy with both ceftazidime and ceftazidime-avibactam, as

demonstrated in vitro under standard and host mimicking conditions

(Table 2; Supplementary Table S3), as well as in vivo (Figure 1B).

Nephrotoxicity is a critical side effect of colistin treatment,

necessitating dose limitations in patients. Therefore, combining

ceftazidime with colistin holds promise for reducing its renal

toxicity. Testing drug combinations in physiologically relevant

conditions and employing non-lethal animal models could enhance

diagnostic accuracy and should be considered in research on effective

combinatorial therapies.

This research addresses an important topic that focuses on the

discrepancies between various in vitro studies and in vivo outcomes,

with translation into clinical outcomes still in its infancy. Our

pathway for drug combinatorial testing, from using MHB to host-

mimicking conditions (TCM) to a high-density murine infection

model, lays the foundation to optimize drug combinations in the

future. We suggest that through combination testing in

physiologically relevant media and a relevant infection model, the

predictive accuracy of combinatorial drug therapy will be increased.
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Methods

Strains and growth conditions

P. aeruginosa LESB58 (Cheng et al., 1996), P. aeruginosa

LESB58.lux (Pletzer et al., 2018) or P. aeruginosa PAO1 (Hancock

and Carey, 1979) was cultured on tryptic soy or double yeast tryptone

(dYT) agar (Fort Richards Laboratories) at 37°C overnight. Liquid

cultures were grown in dYT broth at 37°C with shaking at 250 rpm.

For susceptibility testing under standard conditions, bacteria

were cultured in Muller Hinton Broth MHB (Fort Richards

Laboratories). Host mimicking conditions in vitro were simulated

using tissue culture medium (TCM) consisting of Dulbecco’s

modified Eagle medium (DMEM; Gibco #11965) supplemented

with FBS (Moregate Biotech) (5% v/v) and glucose (1% w/v).

Further susceptibility testing was also conducted in MHB

supplemented with FBS (5% v/v) and DMEM supplemented with

glucose (1% w/v) and MHB (10% v/v).
Antibiotics

The following antibiotics were used in this study: azithromycin

(AZM; Selleck Chemicals), aztreonam (ATM; Azactam),

ceftazidime (CAZ; Biovision), ciprofloxacin (CIP; Sigma Aldrich),

colistin (CST; Saphhire Biosciences), gentamicin (GEN;

Biochemica), tigecycline (TGC; Adooq Bioscience) and

tobramycin (TOB; US Pharmacopeia). The b-lactamase inhibitor

avibactam (AVI; MedChem Express) was used alone or in

combination with ceftazidime (ceftazidime/avibactam; CZA).

Azithromycin was dissolved in citric acid (Sigma Aldrich) at a

4:1 w/w ratio in 0.9% sterile saline with pH adjusted to 7.0-7.2 using

3 M NaOH. Other antibiotics were dissolved in sterile water for

in vitro experiments or in 0.9% sterile saline (Sigma Aldrich) for

in vivo experiments. Avibactam was used at a fixed 1:4 w/w ratio

with ceftazidime. All antibiotic stock solutions were filter sterilized

using 0.22 mm PES membrane syringe filters.
Minimum inhibitory and
bactericidal concentration

The minimum inhibitory concentration (MIC) of each

antibiotic was determined using the broth microdilution method

in 96-well plates. All tests were performed in at least triplicate

following the Clinical and Laboratory Standards Institute

recommendations (CLSI, 2023). Briefly, antibiotics were two-fold

serially diluted in MHB or TCM prior to adding 1 × 106 CFU mL-1

bacteria. Plates were incubated at 37°C for 22-24 hours. The MIC

was recorded as the lowest antibiotic concentration with no visible

growth and the median value of at least three biological replicates

reported. For experiments using the LESB58.lux strain, no visible

growth was defined as an at least 95% reduction compared to the no

antibiotic growth control in luminescence detected using a

ClarioStar plate reader.
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The minimum bactericidal concentration (MBC) was determined

by spotting 5 mL from wells of the MIC plate at or above the MIC onto

antibiotic free dYT agar. Plates were incubated at 37°C for another 22-

24 hours. TheMBCwas recorded as the lowest antibiotic concentration

with no visible growth on agar plates and the median value reported.
In vitro synergy experiments using the
checkerboard assay

The P. aeruginosa LESB58.lux strain was used for in vitro

synergy experiments with azithromycin in MHB and all antibiotic

combinations in TCM to determine bacterial growth (as visual

inspection and absorbance measurements were unreliable). Synergy

was determined using the checkerboard method (Berenbaum, 1978;

Pletzer and Hancock, 2018) in at least triplicate. Each antibiotic was

two-fold serially diluted in sterile water before transferring to a 96-

well plate containing 1 × 106 CFU mL-1 bacteria in MHB or TCM.

Plates were incubated at 37°C for 22-24 hours. The MIC alone or in

combination was recorded as the lowest antibiotic concentration

with no visible growth. For experiments using the LESB58.lux strain

no visible growth was defined as an at least 95% reduction

compared to the no antibiotic growth control in luminescence

detected using a ClarioStar plate reader. The fractional inhibitory

concentration index (FICI) was calculated as [(MICA in

combination)/MICA] + [(MICB in combination)/MICB]. FICI

values of 0.5 or below indicated synergy, while values above 0.5

up to and including 1 were taken to indicate additivity. FICI values

above 1 indicate indifference or antagonism (Odds, 2003).
Murine high density skin abscess model

Mice used in this study were female Swiss Webster aged

approximately 6-7 weeks and sourced from the University of Otago

Biomedical Research Facility. All animal experiments were approved

by the University of Otago Animal Ethics Committee under protocol

number AUP19-125. The subcutaneous abscess infection model was

performed as previously described (Pletzer et al., 2017) with a higher

inoculum. Briefly, the fur on the back of each mouse was removed by

shaving and chemical depilation. Antibiotics were tested for skin

toxicity by injecting 50 mL of antibiotic suspension subcutaneously

into naïve mice, and subsequent inspection of the skin for

inflammation on the next day. P. aeruginosa LESB58 was grown to

mid-log phase in dYT broth, washed twice in sterile PBS (Gibco, pH

7.4), and resuspended in PBS to ~1 x 108 CFU per 50 mL inoculum.

The bacterial suspension (50 mL) was injected subcutaneously into

the right side of the dorsum, followed one hour later by 50 mL of

antibiotic treatment injected directly into the infected area. Antibiotic

treatments were administered at the highest non-toxic concentration

(CAZ, CZA, CST, TOB) or a dosage that showed a more than 10-fold

reduction in recovered bacteria (AZM, TGC) versus vehicle-treated

animals. A minimum of 10-fold reduction was required based on

power calculations to predict a group of 10-15 mice and on previous

experience with this model (Pletzer et al., 2017; Pletzer et al., 2018) to

achieve significance. Combination treatments were administered as a
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single 50 mL injection containing both antibiotics. The concentration

of each antibiotic in the combination was the same as when it was

used alone. Progression of the infection was monitored daily, and

abscess dimensions were measured on day three using a calliper. On

day three, abscess tissue and pus were excised, homogenized in sterile

PBS using SPEX SamplePrep 1600 MiniG for five minutes and

bacterial CFU counts determined by serial dilution. In this model,

synergy was defined as being a significant difference between the

combination treated group and the amalgamated group of single drug

treated animals (Fantin and Carbon, 1992; Pletzer et al., 2018).
Statistical analysis

Statistical analysis was performed using GraphPad Prism 9.5.1.

Bacterial CFU and abscess size data from in vivo experiments was

analysed by Kruskal-Wallace test with Dunn’s correction for

multiple comparisons. The data was considered significant when

p-values were below 0.05 or 0.01 as indicated.
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