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Development and validation a
nomogram prediction model
for early diagnosis of
bloodstream infections in
the intensive care unit
Zhili Qi, Lei Dong, Jin Lin and Meili Duan*

Department of Critical Care Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
Purpose: This study aims to develop and validate a nomogram for predicting the risk

of bloodstream infections (BSI) in critically ill patients based on their admission status

to the Intensive Care Unit (ICU).

Patients and methods: Patients’ data were extracted from the Medical

Information Mart for Intensive Care−IV (MIMIC−IV) database (training set), the

Beijing Friendship Hospital (BFH) database (validation set) and the eICU

Collaborative Research Database (eICU−CRD) (validation set). Univariate logistic

regression analyses were used to analyze the influencing factors, and lasso

regression was used to select the predictive factors. Model performance was

assessed using area under receiver operating characteristic curve (AUROC) and

Presented as a Nomogram. Various aspects of the established predictive

nomogramwere evaluated, including discrimination, calibration, and clinical utility.

Results: Themodel dataset consisted of 14930 patients (1444 BSI patients) from the

MIMIC-IV database, divided into the training and internal validation datasets in a 7:3

ratio. The eICU dataset included 2100 patients (100 with BSI) as the eICU validation

dataset, and the BFH dataset included 419 patients (21 with BSI) as the BFH validation

dataset. The nomogram was constructed based on Glasgow Coma Scale (GCS),

sepsis related organ failure assessment (SOFA) score, temperature, heart rate,

respiratory rate, white blood cell (WBC), red width of distribution (RDW), renal

replacement therapy and presence of liver disease on their admission status to the

ICU. The AUROCs were 0.83 (CI 95%:0.81-0.84) in the training dataset, 0.88 (CI

95%:0.88-0.96) in the BFH validation dataset, and 0.75 (95%CI 0.70-0.79) in the eICU

validation dataset. The clinical effect curve and decision curve showed that most

areas of the decision curve of this model were greater than 0, indicating that this

model has a certain clinical effectiveness.

Conclusion: The nomogram developed in this study provides a valuable tool for

clinicians and nurses to assess individual risk, enabling them to identify patients at

a high risk of bloodstream infections in the ICU.
KEYWORDS

bloodstream infections, bacteremia, intensive care unit, critically ill, early diagnosis,
nomogram, prediction model
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1 Introduction

There is a significant correlation between bloodstream

infections (BSI) and increased morbidity, mortality, and

healthcare costs (Goto and Al-Hasan, 2013; Lydeamore et al.,

2022; Verway et al., 2022).The incidence of BSIs is rising, both in

the general population and among hospitalized patients (Martıńez

Pérez-Crespo et al., 2021). In particular, intensive care unit (ICU)

patients have twice incidence of non-ICU patients (Kassaian et al.,

2023). Delayed effective therapy is associated with worse outcomes

(Rhodes et al., 2017; Seymour et al., 2017). Blood culture is the gold

standard for diagnosing bloodstream infections, but it typically

takes 1-5 days to identify microorganisms and the positivity rate of

blood cultures is only 10-20% (Zhou et al., 2023; Lamy et al., 2020),

This raises concerns about their cost-effectiveness. Routine blood

culture waiting times limit timely escalation or de-escalation of

antibiotics, contributing to the development of resistance and

increased hospital costs (Cunha, 2018). Therefore, early

identification of patients at high-risk for bloodstream infections

may facilitate targeted blood culture collection and antibiotic

administration, potentially improving patient outcomes and

reducing healthcare resource consumption.

The early diagnosis of bloodstream infections focuses on two

main areas: the application of molecular pathogen detection and the

construction of predictive models. While a number of molecular

biology techniques may facilitate early diagnosis of bloodstream

infections, clinical impact has been variable, in part due to the

prescriber understanding of these rapidly evolving platforms

(Briggs et al., 2021). Importantly, these techniques are usually

more expensive, limiting their widespread use and not completely

replacing the role of blood cultures. On the other hand, predictive

models often focus on predicting a bacterial with the use of various

biomarkers or aim to predict the occurrence of BSI in a particular

group of people (Zhao et al., 2023; Nakamura et al., 2023; Wang

et al., 2021; Lee et al., 2014), and their timing is usually concentrated

around the time of blood culture collection or a period preceding

suspected infection (Fabre et al., 2020). Several studies have

developed a machine learning (ML) algorithm to predict BSI in

patients with suspected infections in the intensive care unit, but

valuable predictors are mainly trends in time-series variables, which

makes them geographically limited and not widely generalisable

(Roimi et al., 2020; Van Steenkiste et al., 2019). Last but not least,

few articles on predicting BSI have been externally validated (Jones

et al., 2021; Hertz et al., 2022).

To the best of our knowledge, there are no studies predicting the

risk of bloodstream infections in critically ill patients based on their

admission status to the Intensive Care Unit (ICU). We aim to

construct a model of bloodstream infections at the time of ICU

admission and external validate the utility of the model. This model

is designed to promptly identify patients at an elevated risk of

developing bacteremia among all ICU admissions. It has the

potential to minimize unnecessary blood culture collection in

low-risk patients while guiding the appropriate use of blood

cultures in the ICU.
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2 Patients and methods

2.1 Patients information

This study was performed with the data from the Medical

Information Mart for Intensive Care (MIMIC-IV (version 1.0)

(Timmer et al., 2021; Johnson et al., 2023,) the eICU

Collaborative Research Database (eICU-CRD) version 1.2

(Pollard et al., 2018). and the Beijing Friendship Hospital

(BFH).MIMIC-IV database consists of comprehensive and high-

quality data of patients admitted to ICUs at the Beth Israel

Deaconess Medical Center between 2008 and 2019. The data in

the eICU database covers patients who were admitted to a

combination of many critical care units throughout the

continental United States in 2014 and 2015. Both MIMIC-IV and

eICU databases are public databases for critically ill patients. All

data from the two database studies were extracted by the first author

(certification number: 39247526), who passed the Collaborative

Institutional Training Initiative examination and was granted

access to the database for data extraction. The Massachusetts

Institute of Technology institutional review boards approved

using the database. Beijing Friendship Hospital is a tertiary

hospital in Beijing, China. The validation data came from the

ICU of Beijing Friendship Hospital West Side Courtyard, a

comprehensive ICU with 20 beds. We selected patients who were

admitted to the ICU from January 1, 2019, to June 30, 2019, and

obtained the informed consent of the ethics committee of Beijing

Friendship Hospital (2021-P2-053).

The MIMIC-IV and eICU data extraction codes, are available

on GitHub (https://github.com). The data from BFH was collected

manually. We used MIMIC-IV data for modeling. The exclusion

criteria of the modeling dataset were: 1) Patients ‘age < 18 years; 2)

Time to ICU admission < 48 hours; 3) Repeated admission to

ICU;4) Positive blood cultures prior to admission to the ICU. As the

aim of our study was to predict BSIs based on patients’ admission to

the ICU, we did not exclude patients admitted to the ICU for less

than 48 hours from the validation set and then performed a

sensitivity analysis.
2.2 Definitions and diagnostic criteria

BSI is defined as the growth of a clinically significant pathogen

in at least one blood culture bottle. Potential contaminants

(including coagulase-negative Staphylococci, Corynebacterium

species, Bacillus species, diphtheroids, Aerococcus, and

Propionibacterium sp) were defined according to the Center for

Disease Control and Prevention (CDC)/National Health Safety

Network (NHSN) guidelines for Laboratory Confirmed

Bloodstream Infections (LCBI) and were not considered BSI

(Karakullukçu et al., 2017; Hall and Lyman, 2006). For patients

with positive blood cultures, only the first positive result was

included. Only the first blood culture result was included for

patients with negative blood cultures.
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2.3 Data collection and cleaning

We constructed the model by extracting data from the database

MIMIC-IV, included 3 basic information items, 4 critical illness

scores, 4 first-day vital signs, 16 laboratory test parameters, 5

baseline conditions and 15 comorbidities before ICU admission,

resulting in a total of 47 characteristics. Baseline ICU assessment

scales such as SOFA and Simplified Acute Physiology Score II

(SAPS II) were calculated and collected on admission. Intervention

events included vasopressors, mechanical ventilation, renal

replacement therapy, and central venous catheterization.

Laboratory information was collected on access to the ICU. We

randomly divided the modeling dataset into training and internal

validation datasets, which comprised 70% and 30% of the

dataset, respectively.

Data cleaning: In the modeling dataset, for missing values, we

first removed variables with missing values ≥20%. We then deleted

all individuals with any missing values. We defined plausible ranges

for vital signs. We applied the capping method to handle

implausible values (Supplementary Table 1). In the validation

dataset, we deleted all the data with missing values. In the eICU

validation dataset, we also applied the capping method to handle

implausible values (Supplementary Table 2).

The eICU website (https://eicu-crd.mit.edu/eicutables/

microlab/),states that the dataset is not well populated due to

limited availability of microbiology interfaces, there were only 100

blood culture-positive patients. Referring to the MIMIC-IV and

BFH datasets, the proportion of BSIs was approximately 4%-5% in

the included population, we matched 2000 blood culture-negative

patients, resulting in the inclusion of 2100 patients as a validation

set. As for admissions data of the BFH dataset, due to the manual

collection by our doctors, there is no abnormal value.
2.4 Feature selection and modeling

Medians and interquartile ranges were used for continuous

variables with a skewed distribution. In cases where two

independent samples adhered to a normal distribution and

variance homogeneity was assumed, we utilized the independent

samples t-test for comparing differences. The chi-squared test or

Fisher’s exact test was used to assess whether there was a difference

between the two overall rates and constituent ratios. To establish a

well-calibrated nomogram for predicting outcomes, we performed

univariate regression analyses to screen for predictors, in which

variables with P < 0.05 in the univariate were entered into the Lasso

regression. We used variance inflation factor method to detect

multicollinearity in the regression model, and we removed

variables with a VIF≥4. In the Lasso regression analysis, the

selected coefficient for the screening threshold is Lambda=0.025.

Based on these results, we then constructed a nomogram prediction

model based on independent risk factors.

The model was then validated and evaluated: Firstly, the area

under the receiver operating characteristic curve (AUROC) was
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used to analyze the model’s accuracy. Secondly, the calibration

curve is drawn through 200 repeated sampling verifications, and the

correlation between the calibration curve and the standard curve is

verified and evaluated. Lastly, to ascertain the model’s clinical

applicability, we employed both clinical impact curve and

decision curve analyses.

The analysis software for this study was R version 4.2.2 (The R

Foundation for Statistical Computing, Austria, Vienna).
3 Results

3.1 Characteristics of patients

The MIMIC-IV database concludes 76540 patients, all patients

included in MIMIC-IV were older than 18 years, 39,682patients

were admitted to the ICU for <48h, and 125 patients had positive

blood cultures before ICU admission. According to the exclusion

criteria, 33993 patients remained. After removing Potential

contaminants and missing values there were 1444 patients with

positive blood cultures, The positive rate of blood culture

was 8.72%.

To construct our models, we gathered a diverse range of data

from the patient’s first day in the ICU. This included basic

information items, critical illness scores, first-day vital signs,

laboratory test parameters, and comorbidities and baseline

conditions before ICU admission. We compared the clinical

characteristics between the BSI group, blood culture negative

group and without blood culture group. Patients with BSI had

significantly higher rates of sepsis, days in ICU and in-hospital

mortality. It can be seen that the variables such as white blood cell

(WBC), ventilator use and Diabetes were statistically significant in

the patients with BSI and no blood culture group but not

statistically significant between the BSI and blood culture negative

group. The clinical characteristics of the three groups of patients

were compared in Table 1. The model dataset consisted of 14930

patients, including those with positive blood cultures and those

without blood cultures. The training dataset consisted of 10447

patients (999 with BSI) and the internal validation dataset consisted

of 4483 patients (445 with BSI). The diagram of the selection

process is shown in Supplementary Figure 1. We divided the

model dataset into train dataset and internal validation dataset,

and the comparison of the clinical characteristics of these two

groups of patients is shown in Supplementary Table 3, which shows

that there is no significant difference between the train and the

internal validation group of patients in terms of baseline

clinical characteristics.

The eICU dataset contained 200859 patients, 75829 patients

were included according to the exclusion criteria, finally, a total of

2100 patients included in the eICU validation dataset. In the BFH

dataset, a total of 542 patients were admitted to the ICU during

enrollment, and 419 patients were ultimately included in the

validation dataset based on exclusion criteria. (Figure 1) In the

eICU dataset 78553 patients were admitted to ICU <48 h and in the

BFH dataset 243 patients were admitted to ICU <48 h. Our study
frontiersin.org

https://eicu-crd.mit.edu/eicutables/microlab/
https://eicu-crd.mit.edu/eicutables/microlab/
https://doi.org/10.3389/fcimb.2024.1348896
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Qi et al. 10.3389/fcimb.2024.1348896
TABLE 1 Univariate analysis the characteristic of BSI group, negative blood culture(BC) group and no blood cultures(No-BC) group in the MIMIC-
IV dataset.

Characteristic BSI
(group 1)

Negative-BC
(group 2)

No-BC
(group 3)

P-value
(1and 2)

P-value
(1and 3)

Numbers 1444 15112 13486

Age(years) 64.0 [52.0, 73.0] 65.0 [53.0, 76.0] 67.5 [56.0, 78.0] <0.001 <0.001

Sex(male,%) 866 (60.0) 8579 (56.8) 7436 (55.1) 0.02 0.001

Weight(kg) 79.90 [67.15, 96.00] 78.00 [65.60, 94.00] 78.00 [65.40, 92.90] 0.015 <0.001

Scoring system/index

SAPS II(IQR) 42.00 [33.00, 53.00] 39.00[31.00, 49.00] 34.00[27.00, 42.00] <0.001 <0.001

CCI(IQR) 6.00 [4.00, 8.00] 6.00 [4.00, 8.00] 6.00 [4.00, 8.00] 0.003 <0.001

GCS(IQR) 12.00 [7.00, 14.00] 13.00 [8.00, 14.00] 14.00[13.00, 15.00] <0.001 <0.001

SOFA(IQR) 8.00 [5.00, 12.00] 6.00 [4.00, 9.00] 4.00 [2.00, 6.00] <0.001 <0.001

Laboratory indicators

Heart Rate(bpm) (IQR) 96.0 [81.0, 112.0] 91.0[78.0, 106.0] 83.0 [73.0, 96.0] <0.001 <0.001

MAP(IQR) 78.0 [67.0, 90.0] 81.0 [70.0, 95.0] 83.0 [73.0, 95.0] <0.001 <0.001

Respiratory Rate(IQR) 20.0 [16.0, 25.0] 20.0 [16.0, 24.0] 17.0 [15.0, 21.0] <0.001 <0.001

Temperature(IQR) 36.83 [36.44, 37.28] 36.78 [36.44, 37.22] 36.67 [36.39, 36.94] 0.006 <0.001

Spo2(IQR) 98.0 [95.0, 100.0] 98.0[95.0, 100.00] 99.00[96.0, 100.0] 0.091 <0.001

Glucose(IQR) 131.0[104.8, 173.0] 133.0[107.0, 176.0] 130.0[106.0, 165.0] 0.059 0.447

Anion gap(IQR) 16.0 [13.0, 19.0] 15.00 [13.0, 19.0] 14.00 [12.0, 17.0] 0.001 <0.001

Bicarbonate(IQR) 21.0 [18.0, 25.0] 23.0 [20.0, 26.0] 23.0 [21.0, 26.0] 0.091 <0.001

Bun(IQR) 26.0 [16.0, 44.0] 22.0 [15.0, 38.0] 19.0 [13.0, 29.0] <0.001 <0.001

Chloride (IQR) 102.0 [97.0, 107.0] 103.0[98.0, 107.0] 104.0[100.0, 108.0] 0.037 <0.001

Creatinine(IQR) 1.20 [0.80, 2.20] 1.10 [0.80, 1.80] 0.90 [0.70, 1.30] <0.001 <0.001

Sodium(IQR) 137.0[134.0, 140.0] 138.0[135.0, 141.0] 139.0 [136.0, 141.0] <0.001 <0.001

Potassium(IQR) 4.20 [3.70, 4.70] 4.20 [3.80, 4.70] 4.20 [3.80, 4.60] 0.323 0.143

Hematocrit(IQR) 31.50 [26.50, 36.62] 32.70[27.80, 38.10] 33.80 [28.50, 38.90] <0.001 <0.001

Hemoglobin(IQR) 10.20 [8.67, 12.00] 10.60 [8.90, 12.50] 11.10 [9.30, 12.80] <0.001 <0.001

Platelets count (IQR) 180.0[108.0, 254.0] 207.0[144.0, 284.0] 200.0[147.0, 264.0] <0.001 <0.001

WBC(IQR) 12.15 [7.88, 18.10] 11.70 [8.10, 16.40] 10.20 [7.50, 14.00] 0.053 <0.001

RDW(IQR) 15.50 [14.00, 17.40] 14.90 [13.70, 16.70] 14.20 [13.20, 15.60] <0.001 <0.001

PT(IQR) 15.30 [13.28, 19.60] 14.10 [12.40, 17.30] 13.40 [12.00, 15.90] <0.001 <0.001

APTT(IQR) 32.90 [28.20, 41.52] 30.90 [27.00, 37.70] 29.90 [26.50, 35.40] <0.001 <0.001

First Day Status

Antibiotic Application(%) 1113 (77.1) 10830 (71.7) 7675 (56.9) <0.001 <0.001

Renal Replacement Therapy(%) 181 (12.5) 1055 (7.0) 873 (6.5) <0.001 <0.001

Invasive Line(%) 1118 (77.4) 10558 (69.9) 372 (2.8) <0.001 <0.001

Vasoactive(%) 564 (39.1) 5236 (34.6) 8085 (60.0) <0.001 <0.001

Ventilation(%) 719 (49.8) 7581 (50.2) 4343 (32.2) 0.808 <0.001

(Continued)
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aimed to predict positive blood culture results in patients on their

admission status to the ICU, therefore we included all patients

admitted to ICU in the validation dataset, and sensitivity analyses

were performed with patients admitted to ICU <48h. Table 2

presents a comparison of clinical characteristics among the

three databases.
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3.2 Predictors of BSI in ICU patients

The results of the univariate analysis in the training set are

shown in Supplementary Table 4.Variables with P < 0.05 in the

univariate were entered into the Lasso regression, with a Lasso

regression coefficient threshold of Lambda=0.025, we ultimately
TABLE 1 Continued

Characteristic BSI
(group 1)

Negative-BC
(group 2)

No-BC
(group 3)

P-value
(1and 2)

P-value
(1and 3)

Pre-comorbidities

Myocardial Infarct(%) 234 (16.2) 2772 (18.3) 2523 (18.7) 0.048 0.022

Congestive Heart Failure(%) 463 (32.1) 5323 (35.2) 4180 (31.0) 0.017 0.421

Peripheral Vascular Disease(%) 190 (13.2) 1839 (12.2) 1803 (13.4) 0.292 0.854

Cerebrovascular Disease(%) 235 (16.3) 2699 (17.9) 2646 (19.6) 0.141 0.002

Dementia(%) 47 (3.3) 611 (4.0) 487 (3.6) 0.163 0.536

Chronic Pulmonary Disease(%) 363 (25.1) 4237 (28.0) 3615 (26.8) 0.02 0.183

Rheumatic Disease(%) 59 (4.1) 555 (3.7) 460 (3.4) 0.471 0.209

Peptic Ulcer Disease(%) 80 (5.5) 491 (3.2) 302 (2.2) <0.001 <0.001

Paraplegia(%) 103 (7.1) 1088 (7.2) 856 (6.3) 0.968 0.271

Renal Disease(%) 421 (29.2) 3910 (25.9) 2871 (21.3) 0.007 <0.001

Malignant Cancer(%) 262 (18.1) 2137 (14.1) 1591 (11.8) <0.001 <0.001

Metastatic Solid Tumor(%) 97 (6.7) 1003 (6.6) 797 (5.9) 0.951 0.242

Aids(%) 15 (1.0) 146 (1.0) 73 (0.5) 0.898 0.03

Liver Disease(%) 397 (27.5) 2644 (17.5) 1022 (7.6) <0.001 <0.001

Diabetes(%) 505 (35.0) 4830 (32.0) 4004 (29.7) 0.021 <0.001

Outcomes

Sepsis(%) 1277 (88.4) 11714 (77.5) 5814 (43.1) <0.001 <0.001

ICU LOS (days) (IQR) 6.34 [3.30, 13.31] 4.76 [3.01, 8.71] 3.12 [2.41, 4.42] <0.001 <0.001

In-hospital mortality(%) 437 (30.3) 2712 (17.9) 873 (6.5) <0.001 <0.001
fr
SAPS II, simplified acute physiology score II; CCI, Charlson Comorbidity Index; GCS, Glasgow Coma Scale; SOFA, sepsis-related organ failure assessment; SBP, Systolic arterial pressure; DBP,
diastolic blood pressure; MAP, mean arterial pressure; WBC, White blood cells count; RDW, Red blood distribution width; PT, prothrombin time; APTT, activated partial thromboplastin time;
Liver Disease includes mild to severe liver disease. ICU LOS, Length of stay in the intensive care unit.
FIGURE 1

Flow diagram of blood culture data processing. ICU, Intensive Care Unit; ICU LOS, Length of stay in the ICU. Age<18, ICU LOS <48.
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selected 9 critical variables for inclusion as shown in Supplementary

Figure 2. These variables encompassed the GCS, SOFA, heart rate,

temperature, white blood cell count, RDW, Renal Replacement

Therapy, and liver disease. In this training database, a nomogram to

predict the risk of bloodstream infections in critically ill patients

was constructed based on their admission data to the

ICU (Figure 2).
3.3 Model assessment

After building the model, we evaluated its accuracy using the

area under the receiver operating characteristic curve (AUROC).

ROC analysis revealed an AUC (Area Under the Curve) value of

0.830 (95% CI 0.816-0.844) in the training dataset (Figure 3A),

0.838 (95% CI 0.818-0.858) in the internal validation dataset

(Figure 3B), 0.878 (95% CI 0.797-0.958) in the BFH validation

dataset (Figure 3C), and 0.751 (95% CI 0.705-0.797) in the eICU

validation dataset (Figure 3D). These results indicate robust

performance across different datasets. In addition, we excluded

patients in the validation dataset who were admitted to the ICU for

<48 h, and the AUROC results are shown in the Supplementary

Figure 3, with an AUC of 0.698 (95% CI 0.653-0.756) in the eICU

and an AUC of 0.838 (95% CI 0.720-0.957) in the BFH dataset.

Furthermore, calibration curves were constructed to validate the

effectiveness of the model further (Figure 4). The calibration curves

showed that the prediction probabilities of the model agreed well

with the BFH dataset, but did not agree well with the eICU dataset.

Finally, the clinical application value of this model was further

evaluated. We plotted both the decision curve (Figure 5) and the

clinical impact curve (Figure 6). In the decision curves,the
TABLE 2 Baseline information of the three databases.

Characteristic Mimic iv
dataset

eICU
dataset

BFH
dataset

Number 30042 2100 419

Number of positives % 1444 (4.8) 100 (4.8) 21 (5.0)

Sex,(Male %) 16881 (56.2) 1118 (53.2) 254 (60.6)

Age (years) 66.00
[54.00, 77.00]

65[53.0, 76.0]
56.0
[42.0, 66.5]

First Day Status

GCS (IQR) 14.00
[10.00, 15.00]

14.00
[10.00, 15.00]

15.00
[15.00, 15.00]

SOFA (IQR) 5.00
[3.00, 8.00]

6.00
[4.00, 8.00]

1.07
[0.00, 0.00]

Heart Rate(bpm) (IQR) 87.00
[75.00, 102.00]

88.0
[74.0, 103.0]

81.0
[68.0, 99.5]

Respiratory Rate(IQR)
18.00
[15.00, 23.00]

19.0
[16.0, 23.0]

16.0
[15.0, 18.0]

Temperature(IQR)
36.72
[36.39, 37.06]

36.80
[36.40, 37.10]

36.30
[36.00, 36.85]

WBC(IQR)
10.90
[7.80, 15.40]

10.50
[7.60, 14.81]

9.70
[6.50, 13.00]

RDW(IQR)
14.60
[13.40, 16.30]

14.70
[13.50, 16.30]

13.10
[12.20, 14.60]

Renal Replacement
Therapy(%)

1608 (5.4) 89 (4.2) 26 (6.2)

Ventilation(%) 13198 (43.9) 338 (16.1) 330 (78.8)

Pre-comorbidities

Myocardial Infarct(%) 5529 (18.4) 109 (5.2) 8 (1.9)

Congestive Heart
Failure(%)

9966 (33.2) 178 (8.5) 44 (10.5)

Peripheral Vascular
Disease(%)

3832 (12.8) 34 (1.6) 2 (0.5)

Cerebrovascular
Disease(%)

5580 (18.6) 160 (7.6) 46 (11.0)

Dementia(%) 1145 (3.8) 3 (0.1) 1 (0.2)

Chronic Pulmonary
Disease(%)

8215 (27.3) 195 (9.3) 2 (0.5)

Rheumatic Disease(%) 1074 (3.6) 7 (0.3) 10 (2.4)

Peptic Ulcer Disease(%) 873 (2.9) 16 (0.8) 10 (2.4)

Paraplegia(%) 2047 (6.8) 6 (0.3) 10 (2.4)

Renal Disease(%) 7202 (24.0) 214 (10.2) 18 (4.3)

Malignant Cancer(%) 3990 (13.3) 123 (5.9) 99 (23.6)

Metastatic Solid(%)
Tumor(%)

1897 (6.3) 18 (0.9) 68 (16.2)

Aids(%) 234 (0.8) 5 (0.2) 0 (0.0)

Liver Disease(%) 4063 (13.5) 61 (2.9) 45 (10.7)

Diabetes(%) 9339 (31.1) 84 (4.0) 46 (11.0)

(Continued)
TABLE 2 Continued

Characteristic Mimic iv
dataset

eICU
dataset

BFH
dataset

Outcomes

Los in ICU(d)
3.83
[2.71, 6.47]

1.92
[1.04, 3.62]

1.00
[1.00, 3.00]
FIGURE 2

Nomogram to predict the outcomes of blood culture.
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horizontal coordinate represents the threshold probability of

predicting blood culture positive, which ranges from 0-1; the

vertical coordinate represents the net benefit after benefits minus

drawbacks, with a larger interval of the probability distribution of

the net benefit. Three models are compared in the figure,

represented by lines of three different colors. The first one is the

black parallel horizontal line above the horizontal coordinate, which

is the ideal model, that is, it is considered that none of the patients

will develop bloodstream infections, so there is no intervention at

all, and the net benefit resulting from it is 0. The second one is the

gray line in the figure, which is presented in three lines, and it will

show its confidence intervals. And this set of lines indicates a

pessimistic attitude that blood culture positive secondary will occur

in all patients. That means the net benefit through intervention

when all patients are at high risk and have a poor prognosis. The

third is the group of lines in red, with the thicker line in the center

being the actual modeling line and its confidence interval on either

side. That is, the predicted probabilities below are used to determine

the circumstances under which a higher net benefit can result when

going to intervention. The bottom axis represents the ratio of the

payoff to the benefit curve, and it can be seen that when intervening

at 40%, the payoff to benefit ratio is 2:3, and at 60%, the payoff to
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benefit ratio is 3:2, at which point the benefit is much smaller,

suggesting that the negative impact of blood culture positive would

be significant. Most of the region of the decision curve for this

model is greater than 0, indicating some clinical validity. However,

it should be noted that the model did not agree well with the

eICU dataset.
4 Discussion

BSI is a significant cause of healthcare-associated infections in

the ICU, with high mortality rates and increased length of stay and

costs. Approximately 47.3% of ICU patients with BSIs receive

inappropriate or no antibiotic treatment within the first 24 hours

of onset (Tabah et al., 2012; Lee et al., 2007). Study has shown that

establishing an effective predictive model can minimize unnecessary

antibiotic usage in pediatric patients (Esbenshade et al., 2020).

However, to the best of our knowledge, there are no studies using

data collected immediately on ICU admission to predict BSI and

externally validate. Our study successfully developed a predictive

model for identifying the likelihood of subsequent bloodstream

infections. We presented the model using a nomogram that allows
B

C D

A

FIGURE 3

ROC curves of the Training dataset (A), Internal validation dataset (B), eICU validation dataset (C) and BFH validation dataset (D).
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assessment of the risk of bloodstream infections in ICU patients at

the time of admission using commonly used available clinical data.

The AUROC of the training dataset was 0.83, and the AUROCs of

the external validation dataset were 0.88 and 0.75. In a few minutes

or less, healthcare professionals can assess the risk of bloodstream

infections in ICU patients. This provides valuable information for

making timely clinical decisions based on the risk of

bloodstream infections.

MIMIC-IV database is a global widely known public database in

the field of critical care, many scholars have applied MIMIC-IV

database for their research, which is relatively comprehensive in

terms of variables, mature in terms of data extraction, and

reproducible, so we applied MIMIC-IV database for the

construction of the model. When Mark Verway compared

patients with positive cultures with those with negative cultures,

the adjusted 30-day mortality risk for positive BSIs was 1.47.

Interestingly, this risk escalated to 2.62 when these patients were

compared with matched datasets without blood culture testing

(Verway et al., 2022). Our study also found that more variables

were statistically significant in the univariate analysis in patients

with BSI and those without blood cultures. So we included both

patients with BSI and those without blood cultures in the modeling
Frontiers in Cellular and Infection Microbiology 08
process. We then validated the model using data from all ICU

admissions in the two external validations.

The predictive model in our study is primarily based on

clinically common variables, including Glasgow Coma Scale

(GCS) score, Sequential Organ Failure Assessment (SOFA) score,

heart rate, respiratory rate, body temperature, white blood cell

count, red cell distribution width (RDW), whether renal

replacement therapy was used on day 1 and presence of liver

disease. Our study includes a comprehensive array of data,

including critical illness scoring, vital signs, laboratory indicators

and baseline conditions. The variables we included are consistent

with other studies. Temperature, white blood cells, and SOFA scores

are risk factors often incorporated into predictive models of

bloodstream infections (Van Steenkiste et al., 2019; Hertz et al.,

2022; Schwenzer et al., 1994; Pereira et al., 2012), some articles have

incorporated heart rate, respiratory rate, and the presence of renal

replacement therapy (Lorente et al., 2022; Montrucchio et al., 2022;

Previsdomini et al., 2012).RDW is known to be associated with

mortality, an elevated RDW at admission is linked to adverse

outcomes in the short and long term for both adult and neonatal

patients (Dankl et al., 2022). However, RDW has limited diagnostic

value for sepsis (Hu et al., 2020). Nathan Jones and Frederik Boetius
B

C D

A

FIGURE 4

Calibration curves of the nomogram in the Training dataset (A), Internal validation dataset (B), eICU validation dataset (C) and BFH validation
dataset (D).
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Hertz analyzed the value of some biomarkers in assessing the risk of

bloodstream infections, the AUC reporting on the discriminatory

power between 0.5017-0.8243, but they were not conduct externally

validated (Jones et al., 2021; Hertz et al., 2022). The variables in our

predictive model included criticality scores, baseline conditions and

laboratory indicators, which may explain the better results of our

model, in addition, we validated our predictive model with an

external dataset.

In our study, AUC did not declined in the BFH dataset, but

declined more significantly in the eICU dataset, and we considered

several reasons for this: Firstly, The eICU dataset is not well

populated due to limited availability of microbiology interfaces

(Pollard et al., 2018). The eICU database contains more than

200,000 patients but only 100 blood culture positive patients were

ultimately included in our study, so we randomly selected 2000

blood culture negative patients to collectively form the validation

set, but this may have the problem of data bias. Secondly,

comparison of the variables in the three datasets revealed

statistically significant differences in baseline characters,

suggesting that there may be differences in the type and severity

of patients admitted, which may account for the decline in AUC.
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The AUC of our model is above 70% in both external validation

sets, In our opinion, the presence of differences in the baseline data

is more conducive to expand the application of the predictive

model. In the BFH data, a large proportion of patients with

cerebrovascular disease and tumors can be seen, which may

indicate that the model may be more valuable for extension to

patients with tumors and cerebrovascular disease. Thirdly, the small

number of positive results in the eICU and BFH databases may also

lead to bias in the performance of the models, which might be

reduced by expanding the sample size.

Our study has several limitations. First, there is insufficient

baseline data for the three centers, which may not be conducive to

exploring why the efficiency of the model decreases, but this does not

affect the verification and use of the model. Second, we did not collect

data on the source of the pathogens or variables such as procalcitonin

(PCT) and albumin due to the high missing values in the MIMIC-IV

database and the non-routine measurement in some centers. The

inclusion of these variables could potentially improve the efficiency of

the predictive model. Third, the model has not been prospectively

validated. We plan to conduct a multicenter, prospective validation

study of this bloodstream infection prediction model.
B

C D

A

FIGURE 5

Decision curve analysis (DCA) for the nomogram in theTraining dataset (A), Internal validation dataset (B), eICU validation dataset (C) and BFH
validation dataset (D).
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5 Conclusion

In our study, we developed a predictive model for bloodstream

infections in critically ill patients on the first day of ICU admission. We

employed a nomogram as a visual tool to facilitate an intuitive and

practical assessment of bloodstream infection risk. This nomogram

utilizes available clinical data from the patient’s first day in the ICU.

Such a tool may help determine whether to initiate or modify antibiotic

therapy and reduce healthcare resources. Further research should focus

on improving the classification performance and conducting a larger

external validation to assess the clinical impact of the model.
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