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Introduction: Human brucellosis, a Brucella infection caused most common

zoonosis in the world, remains a serious public health burden in China. Brucella

chronic infection always causes immunosuppressive status and results in severe

organ or tissue damages. The aim of this work was to study the role of the

myeloid-derived suppressor cells (MDSCs) in human chronic brucellosis.

Methods: Fifty cases of chronic brucellosis and 40 healthy individual controls

were enrolled in this study. We analyzed the frequency and subsets of MDSCs in

PBMC between the chronic brucellosis and healthy control groups by flow

cytometry. Furthermore, we also measured the inflammatory-related cytokines

in serum samples and the MDSCs inhibition ability to the proliferation of T cells

in vitro.

Results:We found that the frequency of MDSCs in peripheral blood and the level

of IL-6 and IL-10 Th2 cytokines and Arginase-1 were significantly increased in

chronic brucellosis patients. In addition, we also found that the T cell function

was suppressed in vitro by co-culturing with MDSCs from brucellosis patients.

Conclusion: Our study described an increase of immunosuppressive MDSCs in

peripheral blood of chronic brucellosis patients. These results contribute to the

understanding of Brucella persistent infection, which may provide an insight for

effective treatment of chronic brucellosis patients in clinical practice.
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1 Introduction

Human brucellosis is one of the most common bacterial

zoonosis worldwide with over half a million new cases annually,

and an incidence rate in some countries exceeding ten cases per

million of population (Pappas et al., 2006). The disease is often

transmitted from infected animals or unpasteurized animal

products to humans, and the human to human transmission has

also been described by vertical or sexual routes (Tuon et al., 2017).

In humans, the brucellosis may cause many symptoms varying from

mild flu-like to severe complications such as the central and

peripheral nervous system, gastrointestinal, genitourinary,

musculoskeletal, and cardiovascular systems (Franco et al., 2007;

Galinska and Zagorski, 2013). Once infected, most cases firstly enter

the acute phase of the disease. If without proper treatment, the acute

phase may progress to chronic phase with relapse, development of

persistent localized infection and non-specific syndrome,

resembling the “chronic fatigue syndrome” (Corbel, [[NoYear]]).

The first line of defences against Brucella infection is innate

immunity. Autophagy is one of the main elimination mechanisms to

degrade intracellular pathogens. It involves the coordinated actions of

immune cells like macrophages, immune molecules like pattern

recognition receptors (PRRs), pathogen-associated molecular patterns

(PAMPs), and complement systems (Yang et al., 2024). Although

almost 90% of internalized Brucellae are killed with the first stage of

infection, some evade the cell-mediated immunity by stealthy

mechanisms which enable them survive along with the immune

responses and replicate within intracellular niches (Amjadi et al.,

2019). The previous research showed that chronic brucellosis

reduced lymphocyte proliferation and Th1 cytokine secretion such as

IFN-g, but it enhanced TGF-b production compared to acute

brucellosis (Ghaznavi et al., 2017).

Myeloid-derived suppressor cells (MDSCs) are a highly

heterogeneous cell population of myeloid origin with potent

immunosuppressive activity that comprises myeloid progenitor

cells, immature macrophages, immature granulocytes and

immature DCs (Gabrilovich and Nagaraj, 2009). The immature

myeloid cells differentiate into mature macrophages, granulocytes

and DCs under healthy conditions. However, in pathological

conditions such as cancer, trauma and some infectious diseases,

their maturation process was blocked, the PAMPs (LPS, flagellin,

viral proteins) and other soluble cytokine factors activated MDSCs

expansion, and a large number of MDSCs were released into

bloodstream (Penaloza et al., 2019). Meanwhile, the immune

suppressive factors such as arginase-1, inducible nitric oxide

synthase (iNOS) and reactive oxygen species (ROS) were also

increased (Rodriguez et al., 2009; Tacke et al., 2012; Wei

et al., 2015).

Many studies focused on the role of MDSCs in tumor

progression, accumulating in the micro-environment to escape

the immune response by suppressing the activity and

proliferation of T cells (Rodriguez et al., 2004; Qu et al., 2016).

MDSCs have also caused attention in infectious diseases such as

Mycobacterium tuberculosis, HIV and Aspergillus fumigatus

infections because MDSCs from these patients can prevent the

immune system from mounting effective immune response,
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resulting pathogen persistence and chronic infection (Medina and

Hartl, 2018). Nevertheless, the role of MDSCs in chronic brucellosis

has never been reported. In this study, we analyzed the frequency of

MDSCs in peripheral blood of chronic brucellosis patients using

HLA-DR-/lowCD11b+ CD33+ as the MDSC markers and furtherly

described the mechanism of MDSCs inducing immune suppression

in the patients.
2 Methods

2.1 Patients and healthy donors

The individuals who were risk for exposure to Brucellae were

tested for brucellosis antibody by Rose Bengal Test (RBT) and

confirmed by Standard Agglutination Test (SAT) (Tsingtao Sinova-

HK Biotechnology, China) in Guangzhou center for disease control

and prevention (CDC) of China from January 2018 to December

2021. Fifty cases of chronic brucellosis patients (age: 21-74 years;

mean age: 45.5 ± 13.24 years; 37 males and 13 females), and 40

healthy individual controls (age: 27-64 years; mean age: 41.43 ± 9.14

years; 30 males and 10 females) were enrolled, respectively. This

study was approved by the Ethics Committee of the Guangzhou

CDC, China.
2.2 Inclusion criteria

Patients who met the diagnostic criteria for brucellosis

guidelines “Diagnosis for brucellosis WS269-2019” issued by

National Health Commission of the People’s Republic of China in

2019 were included. The symptoms of the disease lasted for more

than six months without recovery, and the serological reaction

was positive.
2.3 Exclusion criteria

The exclusion criteria were as follows: (1) patients co-infected with

HIV or other infectious diseases; (2) patients with a history of tumor or

taking drugs for chemotherapy; (3) patients with lupus erythematosus

and other autoimmune diseases; (4) patients who used

immunosuppressive drugs, corticosteroids, and immunomodulators

for a long time.
2.4 Isolation of peripheral blood
mononuclear cells

Venous blood samples were collected from all subjects into

EDTA-2k tubes and centrifuged at a speed of 3500 rpm for 10 min.

Plasma samples were stored at -80°C. Buffy coat was diluted with D-

PBS(Invitrogen, USA) at the ratio of 1:1 (v:v) and mixed gently. The

suspension was transferred to a Corning tube containing 5ml of

Ficol (Histopaque-1077; Sigma Chemical Co). Gradients were then

subjected to centrifugation (2000rpm for 20 min at room
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temperature) and peripheral blood mononuclear cells (PBMCs)

were recovered from the D-PBS/histopaque interface. PBMCs were

washed in D-PBS at 1500rpm for 10min and then resuspended in

D-PBS at a density of 1×107cells/ml.
2.5 Flow cytometry

The frequency and subsets of MDSCs in PBMCs were

determined by flow cytometry with the following antibodies to

HLA-Dr, CD11b, CD33, CD14 and CD15. Flow cytometry was

performed by Beckman Coulter (Navios, USA), and the data was

analyzed by FlowJO (V10.8.0, USA). The isotype-matched

antibodies were used as controls.
2.6 Isolation of MDSCs

MDSCs were isolated from PBMCs by HLA-Dr negative

selection and followed by CD33 positive selection, using anti-

HLA-Dr and anti-CD33 antibody-coated magnetic beads

according to the manufacturer’s instructions (Miltenyi Biotech,

Germany). Briefly, 1.0×107 cells in 80ml of PBS buffer were

incubated with 20ml of HLA-Dr MicroBead Cocktail. The sample

was mixed well and incubated at 2-8°C for 10min. The mixture was

transferred to the separation columns (MACS MS column; Miltenyi

Biotech). The effluent was collected and incubated with 20ml of
CD33+ MicroBead Cocktail. The cells were washed with 1ml of PBS

buffer and the HLA-Dr- CD33+ cells were collected. Purity of the

separated cells was >90% by flow cytometry. CD3+ T cells were also

isolated as stated above using Pan T magnetic beads (Miltenyi

Biotech). CD4+ T cells and CD8+ T cells were isolated from PBMCs

of healthy controls using CD4+ and CD8+ MicroBeads respectively

(Miltenyi Biotech, Germany).
2.7 Measurement of T-cell suppression by
T cell proliferation assay and of
cytokine detection

The suppressive capacity of MDSCs was determined by the

mixed allogeneic lymphocyte reaction. HLA-Dr-CD33+cells were

isolated from the brucellosis patients as described. The responder

CD4+/CD8+ T cells from healthy controls were stained with 1.5mM
CFSE (Sigma, USA) according to the manufacture’s protocols. In a

standard way, 10,000 CD4+/CD8+ T cells in RPMI1640 medium

were seeded in 96 wells plates, and then 0, 10,000, 5000, 2500 HLA-

Dr-CD33+ cells were added to the T cells at ratio of 0:1, 1:1, 1:2, 1:4

(MDSCs:T cells). Anti-CD3/CD28 antibodies coated beads (Gibco,

USA) were also added and served as stimuli. The cell culture

medium was supplemented with 10% FBS (Gibco), penicillin-

streptomycin 100IU/ml (Gibco) and human recombinant IL-2

(Gibco). After incubation in humid atmosphere at 37°C and 5%

CO2 for 72 hours, T cells were harvested and analyzed by flow

cytometry. IFN-g in the co-cultured supernatants was measured

using an ELISA kit (Invitrogen, USA), according to the

manufacturer’s instructions.
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2.8 Enzyme-linked immunosorbent assay

All the serum or plasma samples of the participants and the

supernatants of mixed lymphocyte reactions were stored at -80°C.

The concentration of IL-2, IL-6, IL-10, TNF-a, TGF-b, IFN-g,
Arginase-1 and iNOS were determined by the ELISA kits

according to the manufacture’s protocols (IL-2 and IL-10:

Dakewei Biotec, China; IL-6, TNF-a and TGF-b: Biolegend, USA;
IFN-g and Arginase-1: Invitrogen, USA; iNOS: Biovision, USA. The
optical density (OD) value of the sample reaction was measured at

the 450nm by the microplate reader (Bio-Rad, USA).
2.9 Quantitative polymerase chain reaction
(RT-qPCR)

HLA-Dr-CD33+ cells were isolated as described previously. The

total RNA was extracted from MDSCs from chronic brucellosis

patients and healthy individual controls by using Trizol

(RNAsimple Total RNA Kit, Tiangen, China). The concentration

and the purity of RNA were measured by Qubit. RT-qPCR was

performed with SYBR One Step RT-qPCR kit (FastKing Real Time

One Step RT-qPCR, Tiangen, China) using b-actin gene as a control
for normalization of the data. Gene relative expression was

normalized to b-actin gene expression using the 2−DDCT method

(Livak and Schmittgen, 2001).
2.10 Measurement of arginase activity

MDSCs and T cells were isolated as described above. Cells were

cultured for 72h in RPMI medium supplemented with 10% FBS

(Invitrogen), penicillin-streptomycin 100IU/ml (Invitrogen).

Supernatant was collected and stored at -80°C. The arginase

activity was measured by Arginase Activity Colorimetric Assay

Kit according to the instruction (BioVision, USA).
2.11 Statistical analysis

Difference in normally distributed variables and non-normally

distributed variables between the two groups were tested by t-test

and Wilcoxon test, respectively. Statistical analysis was performed

using GraphPad Prism 8 (GraphPad Software Company, USA).

P<0.05 was considered significant.
3 Results

3.1 Frequency of MDSCs in PBMCs from
chronic brucellosis patients

Human MDSCs can be divided into two major subsets of

monocytic (M)-MDSC (HLA-Drlow/-/CD11b+/CD33+/CD14+/CD15-)

and polymorphonuclear (PMN)-MDSC (HLA-Drlow/-/CD11b+/
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CD33+/CD14-/CD15+) according to the different phenotype (Sade-

Feldman et al., 2016). The frequencies of these two subsets of MDSCs

in PBMCs from brucellosis patients were calculated in comparison

with the frequencies from healthy control cohorts (Figure 1A). The

frequencies of MDSCs, M-MDSCs and PMN-MDSCs were
Frontiers in Cellular and Infection Microbiology 04
significantly increased in chronic brucellosis patients than those in

healthy controls (P<0.001; Figure 1B). In six followed-up patients who

received antibiotics and symptomatic treatment for 2-3 months, the

frequency of MDSCs in PBMCs was detected significantly lower than

that before treatment (P<0.05; Figure 1C).
A B D

E F G H

C

FIGURE 2

Measurement of serum inflammatory-related cytokines from chronic brucellosis patients (CB) and healthy individuals (CTRL) by ELISA. (A) Arginae-1
(CB, n=24; CTRL, n=16); (B) IL-10 (CB, n=15; CTRL, n=16); (C) TGF-b (CB, n=16; CTRL, n=16); (D) IL-6 (CB, n=32; CTRL, n=24); (E) IFN-g (CB, n=16;
CTRL, n=8); (F) TNF-a (CB, n=24; CTRL, n=24); (G) IL-2 (CB, n=24; CTRL, n=24); (H) iNOS (CB, n=18; CTRL, n=14). **P<0.01; ***P<0.001; ns,
no significance.
A B

C

FIGURE 1

Frequency of MDSCs in PBMCs from chronic brucellosis patients and healthy controls. (A) Gating strategy of flow cytometry analysis for MDSCs in
PBMCs. (B) The frequency MDSCs, M-MDSCs and PMN-MDSCs in PBMCs from 50 chronic brucellosis patients (CB) compared with that from 40
healthy controls (CTRL). (C) The frequency of MDSCs in PBMCs from six followed-up chronic brucellosis patients before and after treatment.
*P <0.05, ***P <0.001.
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3.2 Higher immunosuppressive cytokines in
chronic brucellosis patients

The inflammatory-related cytokines (Arginase-1, iNOS, IL-10,

TGF-b1, IL-6, IFN-g, TNF-a and IL-2) were measured in serum

samples by ELISA from chronic brucellosis and healthy control

groups (Figure 2). The level of Arginase-1, IL-10, TGF-b1 and IL-6

was significantly higher in chronic brucellosis group than that

in healthy control group (P<0.01; Figures 2A-D), while the

level of IFN-g, TNF-a and IL-2 varied insignificantly between two

groups (P>0.05; Figures 2E-G), suggesting that the higher

immunosuppression cytokines in chronic brucellosis patients than

that in heathy individuals. The level of iNOS was statistically lower

in brucellosis patients than that in healthy individuals

(P<0.001; Figure 2H).
3.3 Chronic brucellosis patients’ MDSCs
suppress T cell proliferation in vitro

The MDSCs were isolated from chronic brucellosis patients and

co-cultured with CD4+/CD8+ T cells from healthy controls at the ratio

of 0:1, 1:1, 1:2 and 1:4 for 72 hours (Figure 3). In the culturing without

MDSCs (a ratio of 0:1), both CD4+ and CD8+ T cells showed a strong

proliferation ability (Figure 3), while in the co-culturing withMDSCs at

the ratio of 1:1, 1:2 or 1:4, T cell proliferations presented an inhibition

pattern clearly depending on the ratio of MDSCs than T cells

(P<0.01; Figure 4).

The IFN-g concentration in the CD4+ or CD8+ T cell co-cultured

supernatants withMDSCs was measured by ELISA, which showed that
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the IFN-g concentration was increased by the decreased ratio of

MDSCs in the co-culture of CD4+ or CD8+ cells (Figure 5).
3.4 Chronic brucellosis patients’ MDSCs
release arginase-1 and iNOS into the
circulation of the patients and the
co-cultures

The level of mRNA transcripts of Arginase-1 and iNOS were

detected higher in vitro in MDSCs from brucellosis patients than

that from healthy controls (Figure 6). Furthermore, the activity of

arginase and iNOS in the co-culture supernatants of MDSCs and

CD3+ T cells at a different ratio was tested. When brucellosis

patients’ MDSCs were not added to T cell cultures, the arginase

activity and iNOS releases were lower in the supernatants of T cell

cultures (Figure 7). When patient’s MDSCs were added to co-

cultivate with T cells at a ratio of 1:1, the level of Arginase activity

(Figure 7A) and iNOS releases (Figure 7B) was significantly

increased, of which the level of these two cytokines varied

according to the ratio of MDSCs than T cells. The data suggested

that MDSCs promoted releases of Arginase and iNOS.
4 Discussion

MDSCs were studied mostly in various cancers, which appeared

to increase in the blood of cancer patients (Gabrilovich and Nagaraj,

2009). MDSCs were also found to play an immune effect in acute or

chronic infectious diseases such as Staphylococcus aureus, Hepatitis
A

B

FIGURE 3

The measurement of CD4+ or CD8+ T cell proliferation with or without MDSCs co-culture for 3 days. (A) MDSCs were co-cultured with CD4+ T
cells at a ratio of 0:1, 1:1, 1:2 or 1:4. (B) MDSCs were co-cultured with CD8+ T cells at a ratio of 0:1, 1:1, 1:2 or 1:4.
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B and Candida albicans (Mencacci et al., 2002; Skabytska et al.,

2014; Li et al., 2020). In this study, we showed an increasing

frequency of MDSCs in peripheral blood of chronic brucellosis

patients (Figure 1B), which might be associated with an

immunosuppressive status of chronic brucellosis patients (Groth

et al., 2019), who had the higher level of serum IL-10 and TGF-b
compared to healthy individuals (Figures 2B, C).

MDSCs are absent or rare in the peripheral blood of healthy

people, constituting 0.5% of PBMCs (Almand et al., 2001; Rieber et al.,

2013). When cancer, inflammation and infection occur in hosts, the

number of MDSCs expands in microenvironment, tissue or peripheral

blood (Groth et al., 2019). On the one hand, MDSCs can benefit the

host by reducing the immune-mediated response that cause damage to

the host, such as in the polymicrobial sepsis, and also MDSCs can

prevent the sepsis-associated mortality (Sander et al., 2010). On the

other hand, MDSCs have strong ability to suppress effective T cell

immune response, resulting to pathogen persistence and chronic

infection (Sander et al., 2010). It has been reported that different

bacteria induce distinct MDSC subsets: the proportion of PMN-

MDSCs always increase in sepsis patients infected by Gram-positive
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bacteria, while M-MDSCs are always induced by Gram-negative

bacteria (Janols et al., 2014). In our study, two subsets of PMN-

MDSCs and M-MDSC were all accumulated in the blood of chronic

brucellosis patients and significant higher than those in healthy

controls, and the proportion of PMN-MDSCs is larger than that of

M-MDSCs (Figure 1B). Brucella persistent infection is often considered

by the “stealth strategy” to evade the innate and adaptive immune

response (Ahmed et al., 2016), while our study suggests that the

MDSCs may be a key factor contributing to Brucella

persistent infection.

Though the pathogenesis of Brucella infection has not been fully

understood, it is presumed that Brucella can evade the immune system

and cause T lymphocyte disorder, and lead chronic infection (Zheng

et al., 2019). Many reports show that T lymphocyte subsets and

immune responses between the acute and chronic phases of

brucellosis are often different (Rafiei et al., 2006; Skendros et al.,

2011; Ghaznavi et al., 2017). In our study, we found the Th1

cytokines such as IL-2, TNF-a and IFN-g, have no difference

between the chronic brucellosis and the healthy control groups, but

the Th2 cytokines such as IL-10 and IL-6 in brucellosis group are
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significantly higher than these in control group (P<0.001). These results

suggest that chronic brucellosis presents an immunosuppressive status.

MDSCs have an immunosuppressive function via suppressing the

proliferation and activity of T cells (Rieber et al., 2013; Li et al., 2015;

Onyilagha et al., 2018; Wang et al., 2019). In this study, we examined T

cell function by co-culturing with MDSCs from peripheral blood of

chronic brucellosis patients, showing that CD4+ and CD8+ T cell

proliferation and their IFN-g expression were largely inhibited by

MDSCs (P<0.001; Figures 3-5).

Besides MDSCs induced T cell dysfunction, several studies have

also reported that MDSCs can trigger T cell apoptosis in tumor

microenvironment as the relevant mechanism of tumoral immune

resistance (Zhu et al., 2017; Horton et al., 2018). Researchers found

that MDSCs in TiRP tumors expressed high levels of FasL and

caused T cell apoptosis by Fas-FasL apoptotic pathway (Zhu et al.,

2019). As a result, with the expansion of MDSCs in chronic

brucellosis, it might trigger T cell apoptosis by fasL-mediated

attack in vivo, which would strongly impair T cell function and

cause Brucella persistent infection in patients. However, this

hypothesis needs to be demonstrated furtherly.
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MDSCs are divided into two major subsets of PMN and M-

MDSCs based on their phenotypic and morphological features (Bronte

et al., 2016). We found that chronic brucellosis patients had higher

frequencies of PMN-MDSCs and M-MDSCs compared with healthy

individuals (P<0.001; Figure 1B), while the proportion of PMN-

MDSCs is higher than that of M-MDSCs. Both PMN-MDSCs and

M-MDSCs can express high level of Arginase-1, which converts L-

arginine into urea and L-ornithine, and then the shortage of L-arginine

inhibits T cell proliferation by decreasing the expression of CD3 z-
chain and preventing upregulation of the expression of cell cycle

regulators (Gabrilovich and Nagaraj, 2009). In addition, M-MDSCs

increase STAT1 and iNOS expression and NO level but not ROS

production, which inhibits the Janus kinase 3, STAT5 and MHC class

II expression and induces T cell apoptosis (Movahedi et al., 2008),

while PMN-MDSCs produce high level of ROS which induces post-

translational modification of T-cell receptors (Gabrilovich and Nagaraj,

2009). PMN-MDSCs and M-MDSCs also utilize different mechanism

of immune suppression: PMN-MDSCs are primarily in antigen-

specific manner, while M-MDSCs suppress T cells both in antigen-

specific and non-specific manners (Gabrilovich, 2017). In our study,
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the activity of arginase and iNOS was detected significantly increased

when MDSCs were added to co-culture with T cells (P<0.001;

Figures 7A, B), which might be an additional factor to impair T cell

function through above mechanisms in chronic brucellosis patients.

In summary, this study described an increase of

immunosuppressive MDSCs in peripheral blood of chronic

brucellosis patients, which might contribute to Brucella

persistent infection.
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