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High-fat diets induce
inflammatory IMD/NFkB
signaling via gut microbiota
remodeling in Drosophila
Jun Wang, Jiaojiao Gu, Jianhan Yi, Jie Li, Wen Li
and Zongzhao Zhai*

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life
Sciences, Hunan Normal University, Changsha, China
High-fat diets (HFDs), a prevailing daily dietary style worldwide, induce chronic

low-grade inflammation in the central nervous system and peripheral tissues,

promoting a variety of diseases including pathologies associated with

neuroinflammation. However, the mechanisms linking HFDs to inflammation

are not entirely clear. Here, using a Drosophila HFD model, we explored the

mechanism of HFD-induced inflammation in remote tissues. We found that

HFDs activated the IMD/NFkB immune pathway in the head through remodeling

of the commensal gut bacteria. Removal of gut microbiota abolished such HFD-

induced remote inflammatory response. Further experiments revealed that HFDs

significantly increased the abundance of Acetobacter malorum in the gut, and

the re-association of this bacterium was sufficient to elicit inflammatory

response in remote tissues. Mechanistically, Acetobacter malorum produced a

greater amount of peptidoglycan (PGN), a well-defined microbial molecular

pattern that enters the circulation and remotely activates an inflammatory

response. Our results thus show that HFDs trigger inflammation mediated by a

bacterial molecular pattern that elicits host immune response.
KEYWORDS
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Introduction

Obesity and diabetes are growing in prevalence globally. These metabolic disorders are

tightly related to diets and in turn associated with neurodegenerative diseases, particularly

Alzheimer’s disease and related dementias. Recent studies indicate that high fat diets (HFD)

activate early inflammation in mouse brains (Elzinga et al., 2022) and rapidly cause

memory deficits (Mclean et al., 2018). In animals ingesting HFDs, an increase in

inflammatory parameters and oxidative stress and a decrease in mitochondrial oxidative

capacity in the brain were observed. These alterations parallel with modulation of Brain-
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Derived Neurotrophic Factor (BDNF), a key signaling molecule that

links brain synaptic plasticity and energy metabolism (Cavaliere

et al., 2019).

Inflammatory signaling is thought to play a critical role in brain

functions, and there is considerable evidence linking the immune

and inflammatory pathways to neurodegenerative diseases in

humans (Lucin and Wyss-Coray, 2009). Drosophila studies also

show that aberrant activation of the IMD/NFkB pathway is widely

implicated in neurodegenerative diseases (Petersen et al., 2012; Cao

et al., 2013; Kounatidis et al., 2017). In addition, activation of the

IMD/NFkB pathway has been observed in fly head in numerous

conditions, including ageing (Kounatidis et al., 2017) and ingestion

of high-fat diets (Hemphill et al., 2018). The IMD/NFkB pathway in

Drosophila is triggered by the recognition of diaminopimelic acid

(DAP)-type peptidoglycan (PGN) from the cell wall of Gram-

negative bacteria and Bacillus species by surface-bound pattern-

recognition receptor PGRP-LC and cytosolic receptor PGRP-LE.

Binding of PGN to the receptors initiates a signaling cascade,

involving Imd, a death domain protein homologous to

mammalian RIP (receptor interacting protein), the caspase 8-like

protease Dredd, dTAK1 (TGF-b activated kinase 1), and the IKK

complex (including Kenny (key)). This eventually leads to the

activation of the NFkB factor Relish (Rel) that activates

transcription of genes including those coding for secreted

immune effectors and negative regulators of the pathway

including the amidase PGRP-LB and PGRP-SCs that

enzymatically degrade PGN thus restricting prolonged

inflammation (reviewed in Zhai et al., 2018b). Antimicrobial

peptides (AMPs) including Diptericin B (DptB) (Lee et al., 2001)

function as the immune effectors of insects that are best known in

host defense and regulation of the commensal microbiome (Hanson

and Lemaitre, 2020). Recent pioneer work comprehensively

dissecting the in vivo function of AMPs has revealed both synergy

and remarkable specificity of individual AMPs in host defense

(Hanson et al., 2019), and has shed light on AMP evolution

driven by ecology-relevant bacteria (Hanson et al., 2023). In

addition, AMPs were also linked to the maintenance of long-term

memory in Drosophila (Barajas-Azpeleta et al. , 2018).

Overexpression of individual AMP genes either in neurons or glia

was sufficient to trigger neurodegeneration, pointing to a cytotoxic

effect of high levels of AMPs and inflammation to the fly brain (Cao

et al., 2013).

Mechanisms linking HFDs and immune activation remain

elusive. Commensal gut microbiota exerts profound effects on

both the intestinal and systemic immune homeostasis. A

disruption in the microbial composition of the gut has been

associated with many neurological disorders with inflammatory

components in mammals (Janakiraman and Krishnamoorthy,

2018). Such neuroinflammation is a common feature of virtually

every central nervous system (CNS) diseases, and is being

increasingly recognized as a mediator of cognitive decline and

neurodegenerative diseases (Kumar, 2018). As gut microbiota is

deeply impacted by environmental factors such as diets (Rothschild

et al., 2018), it is interesting to define how diets and microbiota

interact to shape neuroinflammation. Microbial metabolites

modulate CNS inflammation (Rothhammer et al., 2016). For
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instance, bacterial PGN derived from the commensal gut

microbiota can translocate into the brain via circulation where it

is sensed by specific pattern-recognition receptors of the innate

immune system. One interesting study showed that the absence of a

PGN-recognition receptor, Pglyrp2, led to alterations in the

expression of the autism risk gene and sex-dependent changes in

social behaviour, reminiscent of mice with manipulated microbiota

(Arentsen et al., 2017), thus suggesting communication between the

gut microbiota and the developing brain.

In this study, we aim to establish a causal link of HFDs to

remote inflammation using the genetically tractable animal model

Drosophila melanogaster. This led to the identification of a critical

role of the gut microbiota remodeling in shaping remote

inflammatory response.
Results

HFD triggers remote immune response in
the fly head

By adding 30% coconut oil into our conventional fly diet (CD),

a high-fat diet was used to feed flies for 5 days before the expression

of IMD/NFkB activity readout, DptB, was measured. DptB

expression in the midgut did not show any difference between

flies raised on CD and HFD (Figure 1A), suggesting that the local

gut immunity was not altered by a HFD. In addition, the abdominal

fat body and the Malpighian tubules did not show upregulation of

DptB upon HFD either. Interestingly, we found that the fly head,

which includes the brain, eyes, head cuticles and head fat bodies that

interiorly attach to the cuticle, consistently upregulated DptB

expression (Figure 1A). DptB is expressed in the head fat body

cells as previously shown using a reporter gene (Barajas-Azpeleta

et al., 2018), suggesting remote activation of IMD signaling in the

fat tissue of the head by HFD. mRNA levels of several additional

immune effectors including DptA, AttD, CecA1, Dro, BaraA, Mtk,

Drs and IM3 (BomS3) were also measured from the head of flies

raided on CD and HFD, and none of them differed significantly

between the two diet conditions (Figure 1B). Thus, HFD appears to

specifically induce DptB but not other effectors only in the head

fat body.

Using a Relish null mutant, we found HFD-induced activation

of DptB was completely Relish-dependent (Figure 1C). To further

study if HFD-induced activation of DptB was mediated by the

canonical IMD/NFkB pathway, a number of other flies mutant for

key components of the IMD pathway were analyzed. In mutants

with blocked IMD signal transduction (TAK1, Key and Dredd

mutants), HFD-induced DptB upregulation was totally abolished

as that in Relish mutant flies (Figure 1D). Interestingly, the

induction of DptB by HFD required the pattern recognition

receptor PGRP-LC that locates to the plasma membrane but not

the cytosolic PGN receptor PGRP-LE. Of note, the higher level of

DptB expression in the head of PGRP-LE mutant flies raised on CD

is consistent with a recent observation that gut-specific depletion of

PGRP-LE caused systemic immune activation during gut infection

due to the inability to control gut bacteria (Joshi et al., 2023). Taken
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together, HFD upregulated fat body immunity dependent on the

canonical IMD pathway.

To rule out the possibility that HFD causes damages to the gut

epithelium and consequently makes a leaky gut, we first measured

the expression of three proposed fly cytokines (Unpaired 2 (Upd2),

Upd3 and Spaetzle (Spz)) (Woodcock et al., 2015; Yu et al., 2022) in

the midgut, the head, the abdominal fat body and the Malpighian
Frontiers in Cellular and Infection Microbiology 03
tubules of flies raised under CD and HFD, but again failed to detect

any difference (Figures 1E–G). Furthermore, Smurf assay

measuring gut permeability (Rera et al., 2012) also argued against

a general defect in the integrity of the intestinal epithelium as we did

not detect any positive individuals with pathological gut

permeability in both CD and HFD conditions (data not shown).

These results reinforced that instead of causing an immune
B

C D

E F

G

A

FIGURE 1

HFD remotely activates the IMD/NFkB immune pathway. (A, E–G) Normalized DptB (A), upd2 (E), upd3 (F) and spz (G) mRNA levels in the head, the
fat body, the gut and the Malpighian tubules of flies raised on CD and HFD for 5 days. (B) Normalized DptA, AttD, CecA1, Dro, BaraA, Mtk, Drs and
IM3 mRNA levels in the head of flies raised on CD and HFD. (C, D) Normalized DptB mRNA levels in the head of wild type control (w1118), Relish
mutant (RelE20), Dpt mutant (Dptsk1), PGRP-LE mutant (PGRP-LE112), PGRP-LC mutant (PGRP-LCE12), Dredd mutant (DreddB118), TAK1 mutant
(TAK1D10) and Kenny mutant (keyc02831) flies raised on CD and HFD. Data are presented as mean ± SEM from three independent experiments. Each
dot represents an independent replicate. Statistical significance is presented as *p < 0.05, **p < 0.01, ***p < 0.001.
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activation or epithelial damages locally in the gut, HFD led to

inflammation remotely.
HFD promotes remote inflammation via
microbiota remodeling

The IMD pathway is activated by sensing bacterial PGN. We

therefore hypothesized that changes in the gut microbiota may

underline the inflammatory response to the HFD in fly head. To test

this idea, we removed the gut bacteria either by feeding flies a

cocktail of antibiotics in the adult stage or by generating axenic flies

that are not confronted with any microbes from birth onwards (Guo

et al., 2014). We first confirmed both methods efficiently eliminated

bacteria from flies (data not shown). Then, such microbe-less flies

were raised either on CD or on HFD conditions and measured for

DptB expression in the head. We found that DptB induction by the

HFD was totally repressed using both methods, pointing to a role of

gut microflora in causing inflammation in remote tissues

(Figures 2A, B).

Then we sought to detect changes in the gut microbiota due to

HFD. We quantified overall microbial load by measuring colony-

forming units (CFUs) in flies raised on CD and HFD, using selective

plates to identify Lactobacillae (MRS), Acetobacteriaceae (MFM),

and bacteria grown on nutrient-rich medium (LB). The bacterial

load increased in flies raised on HFD compared to CD in all the

three culturing media (Figures 2C). This implies a general increase

in bacterial load. To further dissect the microbiota structure, 16S

metagenomic analyses were performed using six biological

replicates for flies raised on each culturing conditions concerning

the potential variability of the microbiome. This analysis uncovered

that our HFD significantly altered the composition of the microbial

community in comparison with that of flies raised on a CD. Linear

discriminant analysis Effect Size (LEfSe) method revealed that

Acetobacter was the most enriched genus upon HFD feeding. On

the other hand, flies fed a CD exhibited enrichment of species

belonging to Faecalibacterium, Escherichia, Bacteroides as well as

some uncultured bacteria. To our surprise, while most of the
Frontiers in Cellular and Infection Microbiology 04
bacterial genera showed similar relative abundance in CD and

HFD conditions, Acetobacter species consistently increased their

composition in the gut microflora of flies fed with the HFD

(Figures 3A, B). This made Acetobacter the top bacterium in HFD

condition. We further validated the increase of Acetobacter species

using quantitative PCR measuring 16S rRNA regions specific for

Acetobacter and identified a 15-fold increase in the amount of

Acetobacter (Figures 3C, D). Thus, Acetobacter strongly increased

their abundance in the intestine of flies raised on our HFD.

Laboratory-reared Drosophila melanogaster harbors a simple

gut microbiome with only several dominating bacterial species that

belong to the Lactobacillus and Acetobacter genera (Broderick et al.,

2014). However, we noticed that even in our CD condition, the

abundance of Lactobacillus and Acetobacter species in our

laboratory were generally very low, potentially suggesting a strong

impact of diets and environmental factors on the structure of gut

microbiome (Martino et al., 2017).
Acetobacter malorum recapitulates HFD-
induced inflammation by increasing
circulating PGN

We next sought to identify the Acetobacter species nourished by

the HFD and see if it underlies HFD-induced inflammation in

remote tissues. By plating on mannitol agar serial dilutions of

homogenized gut of flies raised on HFD, uniform colonies with

similar morphological features were seen. Ten representative

isolates were cultured and characterized by PCR amplification

followed by sequencing of the 16S rRNA gene. We found that

they all represented the same bacterial species, with the closest

relationship to a previously isolated Acetobacter malorum strain

JCM 17274 using BLAST search (Figure 4A). The JCM 17274 strain

can only be traced back to the following study (Cleenwerck et al.,

2002) without detailed information whether it belongs to a gut

commensal of flies. We named our strain as Acetobacter malorum

Z2311. To test if the Acetobacter malorum Z2311 strain mimicked

HFD-induced effects, we mono-associated axenic flies with our
B CA

FIGURE 2

HFD-induced gut microbiome remodeling is required for remote immune activation. (A, B) DptB mRNA levels in flies with gut bacteria removed either
via an antibiotic cocktail in the adult (A) or using bleaching method to make axenic flies (B), raised on CD and HFD. Note that microbe-less flies did not
show immune activation in HFD condition. (C) The bacterial load (CFUs) in flies raised on CD and HFD. Culturing media used were Luria-Bertani medium
(LB), Man-Rogosa-Sharpe medium (MRS) and Mannitol Ferment Medium (MFM). Data are presented as mean ± SEM from three independent
experiments in A and B and from six independent experiments in C. Statistical significance is presented as *p < 0.05, **p < 0.01.
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Z2311 strain and found this strain produced a strong upregulation

of DptB in the head, to a comparable level of Ecc15 oral infection

(Figures 4B, C). Ecc15 belongs to the phytopathogenic bacterial

genus Erwinia (now Pectobacterium) and is a well characterized

strain used to induce fly immune response (Buchon et al., 2009b;

Zhai et al., 2018a). In addition to local gut immune response, oral

Ecc15 infection also activates a systemic immune response that is
Frontiers in Cellular and Infection Microbiology 05
dependent on the IMD pathway (Basset et al., 2000). To see if oral

ingestion of the Z2311 strain resulted in an infection-like condition,

flies were fed with bacteria of different concentrations ranging from

OD600 0 to 20, and checked for DptB expression in both the gut and

the head. While Acetobacter malorum Z2311 had only very mild

induction of DptB in the gut across all the concentrations tested, it

induced DptB expression for around 70 folds in the head at OD600
B

C D

A

FIGURE 3

HFD upregulates Acetobacter in the gut microbiome. (A, B) Linear discriminant analysis Effect Size (LEfSe) to determine differentially enriched
bacteria in flies fed CD or HFD. (A) and relative abundance of bacteria in the genus level in flies fed a CD or a HFD measured with 16S amplicon
sequencing (B). Six biological replicates were performed for both CD and HFD conditions. (C) The abundance of Acetobacter from the 16S amplicon
sequencing. (D) The relative bacterial load analyzed by qPCR using Acetobacter species-specific primers. Data are presented as mean ± SEM from
three independent experiments in (D). Each dot represents an independent replicate. Statistical significance is presented as *p < 0.05, **p < 0.01.
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20 (Figure 4D). This implies that the Acetobacter malorum Z2311

bacteria trigger only very limited local gut immune response thus

remain largely unnoticed by the gut epithelium, but instead are

competent to induced remote DptB expression in the head.
Frontiers in Cellular and Infection Microbiology 06
Gut-bacteria-derived PGN can translocate into the hemolymph

that bathes most adult organs and tissues and activate the IMD/NF-kB
pathway remotely (Charroux et al., 2018). We wondered if HFD-

induced elevation of Acetobacter malorum Z2311 activated immune
B C D

E F

G H

A

FIGURE 4

Acetobacter malorum is sufficient to induce remote inflammation in head via increasing circulating PGN. (A) The phylogeny based on 16S rRNA
sequence indicating the relationship of Acetobacter malorum Z2311 (Am Z2311) isolated in this study with several most closely related Acetobacter
species. (B, C) DptB mRNA levels in the head of flies fed with Am Z2311 (B) or Ecc15 (C) on a conventional diet. (D) Normalized DptB mRNA levels in
the head and the gut of flies ingesting Am Z2311 of increasing concentrations. (E, F) Hemolymph PGN quantification from 100 female adults in each
condition using enzymatic kinetics with 100ng/mL PGN as positive control. Note that flies were either raised on CD and HFD conditions (E), or
raised on a CD condition but re-associated with the Am Z2311 strain (F). Each figure is the presentative result of three independent measurements.
(G) DptB mRNA levels in the head of flies lacking amidase PGRPs, PGRP-LBKO and PGRP-SCKO raised on CD and HFD conditions. Note that HFD did
not further increase the head inflammation in both PGRP-LBKO and PGRP-SCKO

flies. (H) The bacterial load (CFUs) of Am Z2311 after equal amount
of bacteria being cultured on CD and HFD fly media for 2 days without the presence of Drosophila. Data are presented as mean ± SEM from three
independent experiments. Each dot represents an independent replicate. Statistical significance is presented as *p < 0.05, **p < 0.01, ***p < 0.001.
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response in remote tissues by increasing PGN release into the

circulation. Silkworm Larvae Plasma (SLP) assay was used to

quantify circulating bacterial PGN in the hemolymph (Troha et al.,

2019). We found that the amount of circulating bacterial PGN was

significantly higher in flies raised on HFD than on CD (Figure 4E).

Furthermore, mono-association of flies with Acetobacter malorum

Z2311 significantly increased circulating bacterial PGN (Figure 4F).

Further supporting the role of PGN in promoting remote immune

activation, flies carrying deletions each removing key amidase PGRPs

(PGRP-LB and PGRP-SCs) showed higher DptB expression already

under CD, but did not further increase their immune activation under

HFD (Figure 4G). This is consistent with the notion that the inability to

remove PGN locally from the gut and systemically form the circulation

renders flies to uncontrolled immune activation. Finally, to better

dissect the host-microbe interactions in a nutritional environment,

we have measured the growth of Acetobacter malorum Z2311 by

directly culturing them in both control and HFD fly media in the

absence ofDrosophila. Interestingly, the Z2311 strain grew much faster

on HFD than on control diet (Figure 4H), supporting that Z2311 itself

is better adapted to the high-fat environment. It remains interesting to

test in future whether this Acetobacter malorum strain also impacted

the host adaptation to the HFD condition. In sum, our study supports

that HFD-induced changes in the gut microbiome increased the

systemic release of PGN that remotely activates immune response.
Discussion

Reminiscent of human studies, HFDs have been reported to cause

a variety of pathologies in Drosophila. HFD-fed flies exhibited

increased levels of triglyceride and alterations in insulin/glucose

homeostasis (Heinrichsen et al., 2014). A HFD also caused cardiac

lipid accumulation, reduced cardiac contractility and severe structural

pathologies, reminiscent of diabetic cardiomyopathies (Birse et al.,

2010). In addition, flies fed a lipid-rich diet presented a systemic

activation of JAK/STAT signaling, reduced insulin sensitivity,

hyperglycemia, and a shorter lifespan, features that were all

dependent on a macrophage-Unpaired 3 axis (Woodcock et al.,

2015). Unpaired 3 has a counterpart in mammals called Interleukin-

6, which has previously been associated with diseases induced by HFDs

in mice (Han et al., 2013). With this work, we added a mechanistic link

between HFD-induced inflammation and gut microbiota remodeling

using Drosophila model. Our study unexpectedly identified a single

bacterium that became exceptionally enriched in the gut microbiome of

animal ingesting a HFD, and showed this bacterium has a remarkable

ability to remotely activate immune response through releasing its cell

wall components, the PGN, into the circulation. Remarkably, the

specific induction of DptB but not other AMPs by HFDs, a

condition that we showed in this work to greatly enrich the

Acetobacter bacterium Z2311, is in concert with a recent work

showing that DptB is specifically required for defense against

Acetobacter bacteria during AMP evolution driven by ecology-

relevant microbes (Hanson et al., 2023).

Gut microbiota is not essential for development and survival of

Drosophila, but resident bacteria profoundly impact fly physiology

and behaviors (Schretter et al., 2018; Zhai et al., 2018b; Jia et al.,
Frontiers in Cellular and Infection Microbiology 07
2021). Gut dysbiosis, which is characterized by a loss of normal

bacterial community structure and an increase in bacterial load, has

been considered a major risk factor contributing to intestinal

pathology and organismal ageing (Buchon et al., 2009a; Guo

et al., 2014; Clark et al., 2015; Li et al., 2016; Zhou and Boutros,

2020; Chen et al., 2022). Enteric infection was reported to remotely

exacerbate the progression of Alzheimer’s disease in a Drosophila

model (Wu et al., 2017). Thus, while normal microbiota provides

the host with essential immune and metabolic benefits, its

deregulation contributes to the initiation/progression of diseased

states. Lactic and acetic acid bacteria are key gut microbiome

members in flies (Broderick, 2016). Acetobacter commensals

significantly impact Drosophila development (Shin et al., 2011;

Consuegra et al., 2020a, b), food choice and reproduction (Elgart

et al., 2016; Leitao-Goncalves et al., 2017), metabolism and

behaviors (Newell and Douglas, 2014; Fischer et al., 2017), and

lifespan (Obata et al., 2018; Onuma et al., 2023). Of note, a recent

work interestingly uncovered the significance of commensal

bacterial PGN specificity in determining the gut bacterial impact

on the immune activation (Onuma et al., 2023). Acetobacter and its

PGN activated DptA expression in the gut while the Lactobacillus

strain and its PGN had much weaker potency to do so. Together

with our results that HFDs led to a specific overrepresentation of

Acetobacter in the microbiome and caused an inflammatory

response in remote tissues, it appears that PGN from Acetobacter

acts as a strong elicitor of systemic immune response.

However, we still do not completely understand the underlying

mechanisms of HFD-induced remote immune activation that our

study found unique at least in the following three ways. First, HFD-

induced DptB activation was restricted to the fat body in the head but

did not occur in the other systemic tissues examined. This seems

inconsistent with the role of circulatory PGN as a bacteria-derived

inflammatory molecular pattern, but varied sensitivity of respective

tissues to PGN may be at work. Differences in gene expression and

function between the head fat body and abdominal fat body were

reported previously (Benes et al., 1990; Sun et al., 2017; Barajas-

Azpeleta et al., 2018), likely reflecting their developmental origin.

The anterior portion of the larval fat body becomes encapsulated

within the head following head eversion, and possibly undergoes

limited subsequent histolysis during insect metamorphosis,

contrasted to the fat body cells located in the abdominal segments

where the remaining larval fat body cells are fully replaced during

young adult stage (Jowett and Postlethwait, 1981; Benes et al., 1990).

Therefore, we speculate that the head fat body retains features of larval

fat cells, but this requires verification experimentally. Second, DptB but

not other genes encoding AMP examined in this study was specifically

upregulated by HFD. This may suggest different levels of IMD

activation required for respective AMP to be induced, while we

cannot exclude the possibility that DptB is induced by specific

environmental conditions. Indeed, various IMD outputs do not

always show uniform alterations in response to genetic and microbial

factors (Bonnay et al., 2014; Onuma et al., 2023). Third, it is striking

that the Acetobacter bacterium isolated in this study barely altered the

local DptB expression profile of the gut while it acted as a competent

inducer of DptB remotely in the head. It will be interesting to check in

future if this Acetobacter species sheds PGN mainly in the polymeric
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form that is not sensed by PGRP-LE-dependent epithelial immunity

but activates PGRP-LC-dependent systemic immunity in the head fat

body (Figure 1D) (Bosco-Drayon et al., 2012; Neyen et al., 2012).

It is now well accepted that HFDs induce a systemic chronic low-

grade inflammation in both the CNS and peripheral tissues in

mammals (Duan et al., 2018). High fat consumption also causes

overproduction of circulating free fatty acids. It was hypothesized

that alterations in the gut microbiota triggered by HFDs as well as

the direct effects of free fatty acids on intestinal cells may be the initial

step in causing systemic inflammation. Indeed, germ-free mice

exhibited neither obesity nor overproduction of inflammatory

cytokines in the intestine even on HFDs (Backhed et al., 2004;

Turnbaugh et al., 2009). On the other hand, a higher bacterial

diversity in the gut microbiome negatively correlated with the

possibility to develop adiposity and inflammation in a human cohort

study (Le Chatelier et al., 2013). Increased amounts of free fatty acids

from HFDs may directly act on intestinal epithelial cells to modify

intestinal permeability, enhancing the translocation of microbial

metabolites such as LPS and PGN across the gut epithelium and to

the circulation. This in turn activates the immune cells through pattern

recognition receptors that further promote the production of

proinflammatory cytokines (Ding et al., 2010; Kim et al., 2012; Wu

et al., 2017). Thus, the gut microbiota, free fatty acids, the immune cells,

and circulating cytokines likely act collectively downstream of HFDs to

cause a systemic low-grade inflammation in remote tissues. Indeed,

circulating cytokines and microbial molecular patterns have been

reported to reach the hypothalamus and initiate inflammation

through processes such as microglial proliferation (Rothhammer

et al., 2016; Tan and Norhaizan, 2019; Hersey et al., 2021; Elzinga

et al., 2022). Here, a similar mechanism is likely operating in flies

ingesting a HFD, in which HFD changes the gut microbiota likely due

to a metabolic adaption by the host and the gut microbes to the

potential higher amount of free fatty acids or other lipid metabolites,

and further indirectly alters NFkB activity remotely in the head.

We now know that the host-microbe interactions are largely

shaped by the nutritional environment (Martino et al., 2017). Our

data support that Acetobacter malorum can better utilize the rich

nutrients contained by HFDs and therefore thrives in such nutrient-

rich environment, with a similar mechanism as reported before

(Martino et al., 2018). However, it is currently unclear if the increase

in Acetobacter malorum benefits the host by promoting metabolic

adaption to HFDs. As nutritional environment dominates over host

genetics in shaping human gut microbiota (Rothschild et al., 2018),

in future, it will be interesting to determine the specific changes of

gut microbiota caused by HFDs that are related to the increased

neuroinflammation in humans.
Materials and methods

Drosophila husbandry

Fruit flies were cultured in 21°C and under 60% humidity with a

12:12 light dark cycle. Conventional fly diet (CD) contains per liter

32.3g yeast, 69.2g corn flour, 9.2g soybean meal, 61.5mL syrup, 1.7g

Nipagin methyl ester and 7.7g Agar. The high-fat diet (HFD) was
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made by adding into CD 30% coconut oil (w/v). Unless otherwise

noted, flies were cultured on CD or HFD for 5 days before they were

analyzed. Fly strains used in study are isogenic w1118 as wild type,

RelE20, PGRP-LBKO, PGRP-SCKO, PGRP-LE112, PGRP-LCE12,

DreddB118, TAK1D10, keyc02831and Dptsk1.
Axenic flies

Flies were allowed to lay eggs on apple juice agar plates

(containing 2% agar and 50% apple juice) for 4 hours at 25˚C.

The eggs were then collected with deionized water using a brush

and net baskets. We washed the eggs three times with 70% ethanol,

and disinfected them with bleach diluted with deionized water. The

eggs were then washed thoroughly with deionized water before

being transferred to sterilized food supplemented with an antibiotic

cocktail (500mg/mL Ampicillin; 50mg/mL Tetracycline; 200mg/mL

Rifamycin) used previously (Jia et al., 2021). To make microbe-less

flies starting only from the adulthood, flies were conventionally

raised to 3-5 days post eclosion, and shifted to food supplemented

with the antibiotic cocktail mentioned above. The axenic state of

flies was confirmed by culturing method.
Smurf assay

Flies were cultured on CD with blue dye (Sigma, UAS, Cat.

#861146) for 1 day after they were treated on CD or HFD for 5 days.

Smurf flies that have a leaky gut were recorded as those exhibiting a

visible blue color throughout their hemocoel within the body cavity

(Rera et al., 2012).
Colony-forming units assay

CO2 anesthetized flies were surface cleaned with 70% ethanol and

homogenized in group of 15 flies with the Bertin Precellys Evolution

Homogenizer. Then, their homogenates were serially diluted and

plated on plates made with either Luria-Bertani medium (LB), Man-

Rogosa-Sharpemedium (MRS) orMannitol FermentMedium (MFM).

After the plates were cultured in 29°C for 48 hours, colonies were

manually counted and calculated as CFU/fly.

To check bacterial growth rate in the CD and HFD fly media in

the absence of Drosophila, 40mL (OD600 0.001) Acetobacter

malorum Z2311 was added to sterilized CD and HFD food tubes

and cultured at 21°C for 2 days. The tubes were washed with 1mL

sterile water that was serially diluted and plated on LB plates. The

plates were cultured at 29°C for 48 hours, and then colonies were

manually counted and calculated as CFU/tube.
Isolation of Acetobacter malorum
strain Z2311

Homogenate of fruit flies fed with HFD was cultured on

selective MFM medium for Acetobacter. Multiple single colonies
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were picked, cultured and sequenced using universal primers (27F:

5 ’ -AGAGTTTGATCCTGGCTCAG-3 ’ and 1429R: 5 ’ -

GGTTACCTTGTTACGACTT-3’) for the bacterial 16S rRNA to

confirm their identity. The sequences of our isolated Acetobacter

malorum strain (accession number: PRJNA1063874) were Blast

searched, and the phylogenetic tree was drawn together with the

most closely related Acetobacter species using MEGA11. For re-

association experiment, Acetobacter malorum Z2311 was orally fed

to flies for 12 hours at concentrations of OD600 0.1, OD600 0.5,

OD600 1, OD600 5, OD600 10 and OD600 20. In another experiment,

Acetobacter malorum Z2311 and Ecc15 were orally fed to flies for 12

hours at the concentration of OD600 20. The feeding of bacteria was

done essentially via soaking into a filter paper fully covering fly food

as previously described (Zhai et al., 2018a).
Hemolymph PGN detection

Hemolymph collection and PGN quantification were done

essentially according to a recent paper (Chen et al., 2022). Briefly,

to collect hemolymph, 100 decapitated female adults were

centrifuged at 1500g for 15min at 4°C, followed by a 5 min

heating at 70°C. The supernatant was collected and further

centrifugated at 12000g for 10 min at 4°C. The extracted

hemolymph was 1:10 diluted before PGN quantification. SLP-HS

Single Reagent Set II (Fujifilm Wako Pure Chemical Corporation,

Japan, Cat. #296-81001) was used to detect PGN in the hemolymph

according to the manufacturer instructions.
16S rRNA amplicon sequencing

Whole flies were used for 16S rRNA sequencing. Flies were surface

cleaned before being processed further. Bacterial DNA was co-

extracted with fly genomic DNA and amplified with primers (343F:

5’-TACGGRAGGCAGCAG-3’; 798R: 5’-AGGGTATCTAATCCT-3’)

specific for bacterial 16S rRNA gene (V3/V4 region). Sequencing

library preparation and MiSeq (Illumina) high-throughput

sequencing were done in oebiotech (Shanghai, China). Sequencing

data were processed using standard procedure and raw sequencing data

are available under BioProject ID PRJNA1047347.
Quantitative PCR

Total RNA was extracted from the head, the fat body, the gut and

the Malpighian tubules of 15-20 flies using RNAiso Plus (TaKaRa,

Dalian, China, Cat. #9109). cDNA was synthesized using the

PrimeScript RT reagent Kit (TaKaRa, Dalian, China, Cat. #RR037A).

0.2-0.5mg total RNA was used for reverse transcription with oligo (dT),

and the 1st strand cDNA was diluted 10-20 times with water and

further used in real time PCR. Real time PCR was performed in at lease

duplicate for each sample using LightCycler 480 SYBR Green (Roche,

Switzerland, Cat. #04887352001) on a q225 qPCR System from

Quantagene (Kubo Technology, Beijing, China). Bacterial DNA

contained in the fly gut was extracted using a Bacteria DNA Kit
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(TIANGEN, China, Cat. #DP302). The expression value was calculated

by DDCt method, and the relative expression was normalized to RpL32

or GAPDH. Primers used are shown in Table 1.
Statistical analysis

Data are shown as means ± SEM from at least three replicates of

each experiment. Statistical significance between two groups was

calculated with Unpaired Student’s t test to assess differences using

GraphPad Prism 9. Statistical significance is presented as *p < 0.05, **p

< 0.01, ***p < 0.001.
TABLE 1 Sequence of primers used for qPCR.

Genes Sequence

RpL32_F TCTGCATGAGCAGGACCTC

RpL32_R ATCGGTTACGGATCGAACAA

DptA_F GCGCAATCGCTTCTACTTTG

DptA_R CCTGAAGATTGAGTGGGTACTG

DptB_F ACTGGCATATGCTCCCAATTT

DptB_R TCAGATCGAATCCTTGCTTTGG

Drs_F AAGTACTTGTTCGCCCTCTTC

Drs_R CACAGGGACCCTTGTATCTTC

BaraA_F GGTAATGGCGGCGTCTATATT

BaraA_R AGCCACCGTTACCGAAATC

CecA1_F CTCAGACCTCACTGCAATATCAA

CecA1_R CCAGAATGAGAGCGACGAAA

Mtk_F GCAACTTAATCTTGGAGCGATTT

Mtk_R GGTCTTGGTTGGTTAGGATTGA

AttD_F GTATACCTCTCCAAGTGGCAATC

AttD_R TTAACTCCGGTGCCGAAATC

IM3_F GGTACACTTGGCTGCTCTATG

IM3_R GCTTGACTCCCGCGTATTAG

Dro_F TCGAGGATCACCTGACTCAA

Dro_R GATGACTTCTCCGCGGTATG

Upd2_F ACCATTGCTGTTCGGATAGG

Upd2_R AGCAGAAGAGCCTCAACGAG

Upd3_F CCAGAACCAGGAATCCAGTG

Upd3_R GCCAAGGCGAGTAAGATCAG

Spz_F CTCAGACGAGCGATTCCTTT

Spz_R TGGCCTGTTTGTACTCATCG

GAPDH_F TAAATTCGACTCGACTCACGGT

GAPDH_R CTCCACCACATACTCGGCTC

Acetobacter_F TAGTGGCGGACGGGTGAGTA

Acetobacter_R AATCAAACGCAGGCTCCTCC
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