
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Yolanda López-Vidal,
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Study on the effects of intestinal
flora on gouty arthritis
Niqin Xiao †, Xiaoyu Zhang †, Yujiang Xi, Zhenmin Li,
Yuanyuan Wei, Jiayan Shen, Lin Wang, Dongdong Qin*,
Zhaohu Xie* and Zhaofu Li*

Yunnan University of Chinese Medicine, Kunming, China
Gouty arthritis (GA), a metabolic and immunologic disease, primarily affects

joints. Dysbiosis of intestinal flora is an important cause of GA. The metabolic

disorders of intestinal flora leading to GA and immune disorders might play an

important role in patients with hyperuricemia and established GA. However, the

exact mechanisms, through which the dysbiosis of intestinal flora causes the

development of GA, are not fully understood yet. Moreover, several therapies

commonly used to treat GA might alter the intestinal flora, suggesting that

modulation of the intestinal flora might help prevent or treat GA. Therefore, a

better understanding of the changes in the intestinal flora of GA patients might

facilitate the discovery of new diagnostic and therapeutic approaches. The

current review article discusses the effects of intestinal flora dysbiosis on the

pathogenesis of GA and the cross-regulatory effects between gut flora and drugs

for treating GA. This article also highlights the modulatory effects of gut flora by

traditional Chinese medicine (TCM) to lower uric acid levels and relieve joint pain

as well as provides a summary and outlook, which might help guide future

research efforts.
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1 Introduction

Studies have shown that the dysbiosis of intestinal flora induces gouty arthritis (GA) in

people along with certain genetic and environmental factors (FitzGerald et al., 2020). GA,

the most common inflammatory disease, is caused by abnormal purine metabolism, leading

to metabolic and immunological imbalances (Jati et al., 2022). GA, an acute relapsing

arthritis, is characterized by redness, swelling, and heat pain, often affecting single joints,

such as the joints of the lower limbs. The initial symptoms appear in the first

metatarsophalangeal joints. The epidemiological data of gout indicated a global

prevalence of 1–4% with an incidence rate of 0.1–0.3%. Moreover, the prevalence rate is

increasing yearly (Song J. et al., 2022). The male-to-female ratio ranges from 3:1–10:1, with

a higher incidence rate in males (Ragab et al., 2017; Mbuyi and Hood, 2020). GA affects

3.9% of adults and 8.7% of people over 80 years of age, and current treatments may be
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ineffective, mainly due to the presence of comorbidities (Yang et al.,

2024). The pathogenesis of GA is complex. It is currently believed

that it arises from the combination of elevated levels of uric acid.

This metabolic disease occurs when uric acid exceeds its saturation

level in blood or tissue fluids, leading to the formation of

monosodium urate (MSU) crystals. These crystals deposit locally

in the joints, inducing inflammatory reactions and tissue

destruction (Ragab et al., 2017; Mbuyi and Hood, 2020; Wang

et al., 2024). However, the exact pathogenesis of GA remains

unclear. Gut, the largest immune organ, contains over 100 trillion

microbial cells, including more than 1,000 different species (De

Sordi et al., 2017). It is known as the “second brain” or “second gene

pool” (Ragab et al., 2017). Studies have suggested that numerous

diseases are associated with disorders of the intestinal flora, which

plays a crucial role in human metabolism and immune function

(Cho and Blaser, 2012; Lynch and Pedersen, 2016; De Sordi et al.,

2017; Ragab et al., 2017; Liu et al., 2023). Recent studies are

emphasizing its distal effects and are not limited to the gut only

(Consortium, H. M. P, 2012). Recent studies, both in animals and

clinical settings, showed that changes in intestinal flora were

associated with GA development, suggesting its use in monitoring

the onset, progression, and recovery of GA (Milani et al., 2017;

Surana and Kasper, 2017; Shin and Kim, 2018). This indicated the

existence of a gut-joint inflammatory axis (Chen et al., 2023). It has

been proposed that gut flora and its metabolites play an important

role in several processes, including purine metabolism, extrarenal

excretion of uric acid, protection of the intestinal barrier, and

regulation of immune function (Shao et al., 2017; Bach Knudsen

et al., 2018; Shin and Kim, 2018; Chu et al., 2021; Yin et al., 2022).

The essential and conditionally essential amino acids, short-chain

fatty acids (SCFAs), lipopolysaccharides (LPS), etc. are the main

metabolites of intestinal flora. In the human body, intestinal flora

metabolizes approximately 1/3 of uric acid. Intestinal flora secretes

uric acid transporter protein, which transports uric acid from

blood to the intestinal lumen. Moreover, physiological flora,

including Lactobacillus produce SCFAs, thereby promoting the

decomposition of uric acid; The intestinal flora of patients with

GA has decreased physiological flora, such as Bifidobacterium,

Lactobacillus, butyric acid bacteria, Clostridium, and pre-cecal

bacilli. There is an increase in the opportunistic pathogenic flora,

such as Bacteroides、Bacteroides mucronosus and Bacteroides

xylosus (Siezen and Kleerebezem, 2011; Wu et al., 2011; Guo

et al., 2016; Lin et al., 2020; Wen et al., 2020; Chu et al., 2021;

Wu et al., 2021; Yang et al., 2021; Song S. et al., 2022). Briefly, GA

patients exhibit changes in their intestinal flora, which are

characterized by a decrease in physiologic flora and an increase in

opportunistic pathogenic flora, leading to changes in intestinal

flora metabolites.

The current study reviewed the effects of gut flora dysbiosis on

GA pathogenesis and the cross-regulatory effects between gut flora

and drugs used to treat GA. This study also discussed the

modulatory effects on gut flora by traditional Chinese medicine

(TCM) to lower uric acid and alleviate joint pain. It was

hypothesized that intervening in the GA pathogenesis at an

earlier stage through the gut-immunity-joint inflammation axis
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coupled with the development of novel strategies to treat GA

might offer valuable insights for future research endeavors.
2 Influence of intestinal flora on the
pathogenesis of GA

Several studies have demonstrated the role of intestinal flora in

the pathogenesis of GA, which mainly includes purine metabolism

disorders that affect uric acid levels, regulation of inflammatory

factors and immune responses, and damage to the intestinal

mucosal barrier.
2.1 Disorders in intestinal flora affect uric
acid levels

The intestinal flora affects uric acid levels through several

mechanisms. First, the excessive production of uric acid leads to

an increase in essential and conditional amino acids in the

metabolites of intestinal flora in GA patients, resulting in purine

synthesis and metabolic disorders. At the same time, a large amount

of xanthine oxidase (XOD) and LPS are produced. XOD oxidizes

hypoxanthine and xanthine to uric acid, leading to the production

of a large amount of uric acid (Liu et al., 2012; Vadakedath and

Kandi, 2018). The GA patients exhibit higher levels of gram-

negative bacteria, such as Escherichia coli. Moreover, LPS, a cell

wall component of gram-negative bacteria, enhances the synthesis

and activity of XOD (Shu and Mi, 2022). Second, disordered

intestinal flora leads to a reduction in uric acid excretion. Studies

have revealed that the principal transporters responsible for uric

acid excretion are solute carrier family (SLC) 2 member 9 (SLC2A9)

and ATP binding cassette subfamily G member 2 (ABCG2), and

their expressions facilitate the excretion of uric acid (Merriman,

2015; Xu et al., 2016). However, in GA patients, impaired

production of SCFAs by the intestinal flora results in reduced

production of uric acid transporters and metabolites, such as

hydrolases and uricase, by the intestinal epithelial cells. This

decline subsequently lowers uric acid excretion (Merriman, 2015;

Maiuolo et al., 2016; Xu et al., 2016; Pan et al., 2020; Yin et al., 2022).

Therefore, the intestinal flora impacts purine metabolism,

contributing to elevated uric acid levels, which in turn triggers the

deposition of MSU crystals and initiates a cascade of immune-

inflammatory reactions following deposition.
2.2 Inflammatory factors and regulation of
the immune response

Researchers have examined the distal effects of intestinal flora and

suggested that it can influence inflammation in GA patients by

modulating the intestinal inflammatory response (Chang et al.,

2014; Sun et al., 2017; Ratajczak et al., 2019; Balaguer et al., 2022;

Chen et al., 2022; Gou et al., 2022). Bifidobacterium plays a key role in

inhibiting the release of inflammatory factors (Xue et al., 2017;
frontiersin.org
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Li et al., 2022). Moreover, a reduction in the abundance of

Bifidobacterium in the intestines of GA patients results in increased

inflammatory factor release. Disrupted intestinal flora leads to

abnormal activation of innate immune cells, thereby increasing the

levels of the pro-inflammatory cytokines interleukin-12 (IL-12) and

IL-23 and decreasing those of the anti-inflammatory cytokines, such

as IL-10 and transforming growth factor b (TGF-b) (Zhang et al.,

2020). SCFAs, the most commonmetabolites of intestinal flora, play a

key role in immune regulation in GA. SCFAs facilitate the

communication between the intestinal flora and immune system

and can maintain the anti-inflammatory/pro-inflammatory balance

(Ganapathy et al., 2013; Ratajczak et al., 2019). Moreover, SCFAs

activate T lymphocytes and B lymphocytes, leading to the

production of various inflammatory factors and antibodies. They

also regulate the functions of intestinal macrophages and dendritic

cells in immune response, primarily through the inhibition of

inflammatory factors, promotion of regulatory T (Treg) cell

differentiation, and mediation of reduced inflammation (Ratajczak

et al., 2019). Additionally, SCFAs bind to and activate the nuclear

transcription factor Peroxisome Proliferator-Activated Receptor g
(PPARg), which antagonizes Nuclear Factor-kappa B (NF-kB)
signaling, thereby inducing anti-inflammatory effects in the gut. In

vitro studies demonstrated that SCFAs could reduce inflammation by

inhibiting the activation of NF-kB and upregulating the expression

levels of PPARg in human HT-29 colonic epithelial cells (Bach

Knudsen et al., 2018). In contrast, the GA patients with disrupted

intestinal flora showed a reduced abundance of various probiotics,

resulting in lower SCFA levels. This reduction led to a decrease in

Treg cells (Milani et al., 2017; Zhou et al., 2018; Zheng et al., 2023)

and a subsequent reduction in the expression levels of PPARg (Zhou
et al., 2018). LPS can activate the immune system via Toll-like

receptors 4, which further activates macrophages and neutrophils,

leading to increased production of tumor necrosis factor and

interleukin1-b; this results in the activation of the inflammatory

response (Loeser et al., 2022). LPS can also induce pyroptosis

mediated by inflammasomes, such as Nod-like receptor pyrin

domain containing 3 (Zhao et al., 2018), thus promoting the

development of arthritis.

Distal effects of intestinal flora may play an important role in

the immune mechanism of GA. Disturbed intestinal flora leads to a

decrease in important beneficial bacteria such as bifidobacteria, a

decrease in SCFAs, and an increase in LPS production, which leads

to an anti-inflammatory/pro-inflammatory imbalance and the

appearance of elevated levels of inflammatory factors, leading to

the development and progression of GA.
2.3 Damage to the intestinal
mucosal barrier

The intestinal mucosal system constitutes a significant portion of

the human immune system and is closely related to the intestinal

flora. The disrupted intestinal flora in GA patients damages the

intestinal epithelial cells by producing toxic substances, including

hydrogen sulfide, reactive oxygen species, reactive nitrogen species,

etc., thereby reducing the protective barrier effect of the intestinal
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epithelial cells (Chen et al., 2022). The impaired function of the

intestinal mucosal barrier triggers immune dysfunction, leading to

the induction of more pro-inflammatory factors. Bifidobacterium, an

intestinal probiotic, can improve the gastrointestinal mucosal barrier

function by inhibiting harmful bacteria (Li et al., 2022). Moreover,

SCFAs, the metabolites of intestinal flora, affect immune function by

repairing the mucosal barrier (Zhou et al., 2018). In GA patients, both

Bifidobacteria and SCFAs are reduced in the intestinal tract (Chu

et al., 2021; Yang et al., 2021), while the disordered intestinal flora

produces toxic substances. This leads to impaired mucosal barrier

function, which cannot be restored in time, ultimately causing an

increase in the pro-inflammatory factors.
3 Markers of intestinal flora for the
diagnosis of GA

Human gut is inhabited by more than 1,000 bacterial species;

however, only 150–170 species are commonly found in the body

(Patterson et al., 2016). Various diseases may be characterized by

unique intestinal flora (Xu et al., 2020). Intestinal flora can be used as a

non-invasive diagnostic and screening tool for diseases, including

hepatocellular carcinoma and gastric cancer (Zha et al., 2023).

Certain intestinal flora and their metabolites may be involved in GA

by influencing uric acid metabolism, modulating inflammatory

immune responses, and affecting the intestinal mucosal barrier, and

therefore may be markers of intestinal flora for the diagnosis of GA.

Studies have suggested that assessing the intestinal flora of GA patients

might offer an earlier, more sensitive, and non-invasive method for

detecting blood uric acid levels compared to conventional blood tests.

Reduction in the pre-cecal bacilli and butyrate synthesis are the unique

features of the gut flora in GA patients. A study by Zhuang Guo et al.

identified an increase in the abundances of Bacteroides mucronosus and

Bacteroides xylosus and a significant decrease in those of E. faecalis and

Bacteroides pseudoaceticus in GA patients. Furthermore, a diagnostic

model incorporating 17 GA-associated bacteria achieved an 88.9%

accuracy rate in a validation group, consisting of 15 trial members,

which was higher than that of the blood-uric acid-based method (Guo

et al., 2016). Butyrate, one of the most common metabolites of

intestinal flora, is a key communicator between intestinal flora and

the immune system, playing a vital role in keeping the anti-

inflammatory/pro-inflammatory balance. Moreover, it is one of the

most extensively studied intestinal flora metabolites significantly

associated with GA. Therefore, it is hypothesized that the reduction

of E. faecalis anterior and the decrease in butyrate synthesis could serve

as intestinal flora markers for diagnosing GA (Figure 1).
4 Cross-regulation between intestinal
flora and drugs used to treat GA

4.1 Indirect regulation of intestinal flora

Studies suggested that the dynamics of the drug and intestinal

flora could significantly affect the therapeutic effects of the drug
frontiersin.org
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(Džidić-Krivić et al., 2023). An increase in beneficial bacteria in the

intestinal flora might serve as an indicator of therapeutic efficacy.

Febuxostat is currently a commonly used uric acid-lowering drug,

which could improve the limitation of intestinal flora biodiversity in

GA patients (Wang Z. et al., 2022). Rats treated with allopurinol and

benzbromarone showed an increased abundance of Bifidobacteria

in their intestinal flora (Maier et al., 2018; Yu et al., 2018). Maier L

et al. showed that uric acid-lowering and anti-inflammatory drugs

could partially restore intestinal flora after 24 weeks of treatment

(Maier et al., 2018). Shi et al. (2020) observed that colchicine (COL)

exposure induced a significant change in the diversity of the

intestinal flora in mice (Jostins et al., 2012). Meanwhile, these

disordered intestinal bacteria exhibited a significant dose-

dependent effect. High doses of COL decreased the abundance of

intestinal flora, indicating its antimicrobial potential. A significant

shift in the dominant flora from the phylum Bacteroidetes to the

phylum Thick-walled was observed under high-dose COL

treatment, resulting in an increase in the ratio of Thick-walled to

Bacteroidetes. Thick-walled phylum promotes the production of

SCFAs and butyrate, which play a role in the treatment of GA by

promoting uric acid excretion and inhibiting inflammatory factors

(Jostins et al., 2012; Suzuki, 2013). Mäkivuokko et al. (2010) found

that the long-term use of Nonsteroidal Antiinflammatory Drugs
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(NSAIDs) increased the abundance of the genus Bacteroides and

decreased that of the Thick-walled phylum. Therefore, the short-

term use of NSAIDs can restore the intestinal flora to normal, which

may be one of its mechanisms of action (2013). However, the long-

term use of NSAIDs can increase the abundance of genus

Bacteroides in the intestinal flora, which in turn can increase

gastrointestinal risks; therefore, oral acid-suppressing and

stomach-protecting medications are needed for the protection of

patients taking long-term NSAIDs orally (Zádori et al., 2023).
4.2 Direct regulation of intestinal flora

Prebiotics play a vital role in enhancing human intestinal health by

inducing changes in bacterial composition and promoting the

production of SCFAs, which result in immune stimulation, improved

intestinal barrier function, and alteration of intestinal flora composition

to treat GA (Gao et al., 2020; Kondratiuk et al., 2020). Guo et al. (2021)

treated KO (Uox knockout) mice with inulin, a fermentable dietary

fiber. The results showed reduced levels of uric acid, increased

expression levels of ABCG2 in the intestine, decreased expression

levels and activity of hepatic XOD, and enhanced production of SCFAs.

The effects of probiotics in treating GA are similar to that of prebiotics.
FIGURE 1

Dysbiosis of gut microbiota in patients with GA results in decreasing the abundance of physiologic microbiota and increasing that of opportunistic
pathogenic microbiota. The disordered gut microbiota leads to impaired gastrointestinal mucosal barrier function, increased XOD and LPS, and
decreased SCFAs. This reduces the contents of main uric acid transporters for uric acid excretion, SLC2A9, and ABCG2, thereby leading to an
increase in uric acid and consequently triggering GA. The decrease in SCFA and the increase in LPS lead to the disorders of T-lymphocytes and
B-lymphocytes, which cause an increase in IL-6, IL-12, and IL-13 levels. This disorder of the autoimmune system increases the proportion of TH17
cells and decreases that of Treg cells. Consequently, this phenomenon enhances inflammatory reactions and leads to GA.
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Probiotics, comprising of live microorganisms, primarily strains of

Lactobacillus and Bifidobacterium, possessed anti-inflammatory and

blood uric acid-lowering properties in experimental mice studies

(Cleophas et al., 2017). Ni et al. (2021) showed that increasing the

number of Lactobacillus strains in mice led to reduced serum uric acid

levels, decreased XOD activity, increased SCFA production, decreased

LPS concentrations, ameliorated hepatic inflammation, and mild renal

injury. Wu et al. (2021) found that the Lactobacillus fermentum JL-3

strain could reduce uric acid levels and inflammatory response factors

in mice.

Fecal microbiota transplantation (FMT) is a therapeutic

approach that involves transferring physiological flora from the

feces of healthy individuals into the gastrointestinal tract of patients

to treat related diseases. It has emerged as a promising field of

clinical investigation (Xie Y. et al., 2022). Leichang Zhang et al.

showed that FMT significantly decreased the helper T cells (Th) 1

and Th17 cells and reduced the levels of interferon-g, IL-2, and IL-

17. However, it significantly increased Th2 and regulatory T cells

(Treg cells) as well as IL-4, IL-10, and TGF-b levels. Furthermore,

the study observed an improvement in routine blood cell count in

mice following FMT treatment (Zhang et al., 2021). Xie W. et al.
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(2022) conducted a study involving humans, where they explored

wash-mass transplantation (WMT). Their research indicated that

WMT resulted in reduced uric acid levels, a decreased frequency of

joint pain episodes, shortened episode duration, and an

improvement in intestinal barrier function (Xie Y. et al., 2022).

While the specific mechanisms and effects of FMT and WMT in the

treatment of hyperuricemia and GA are unclear and still need

further investigation, they offer valuable avenues for exploring new

approaches to treat GA.

Dietary modification is a very important step in treating GA

patients. Dietary fiber constitutes a significant component of their

daily nutritional intake and consists of undigested food components

in plant cell walls, including non-starch polysaccharides, lignin, etc

(van der Beek et al., 2017). Dietary fibers serve as the substrate for

anaerobic fermentation by intestinal flora and are mostly broken

down into SCFAs, predominantly butyrate, propionate, etc (Ma

et al., 2018). Butyrate acts as an agonist for certain G protein-

coupled receptors, facilitating the conversion of naïve CD4+ T cells

into immunosuppressive Tregs (Chen and Li, 2020). This process

aids in inhibiting inflammatory factors, promoting Treg cell

differentiation, and mediating inflammatory regression.
FIGURE 2

Indirect regulation of intestinal flora by febuxostat, allopurinol, benzbromarone and direct regulation of intestinal flora by inulin, Lactobacillus,
Bifidobacterium, FMT and dietary fiber, as well as the effect of traditional Chinese medicine (TCM) on the intestinal flora can restore the beneficial
intestinal flora and down-regulate the Seumuicacid, XOD, LPS, up-regulate the SCFAs, and ultimately down-regulate the secretion of
inflammatory factors.
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4.3 Research on Chinese medicine
regulating intestinal flora to lower uric acid
and improve arthritis

The potential mechanisms of several TCMs to treat GA have

been linked to their ability to regulate the patient’s intestinal flora

(Lin et al., 2020; Wang X. et al., 2022; Lin et al., 2023). Studies

demonstrated that the Quzhuo Tongbi Formula could improve the

structure and abundance of intestinal flora (Song et al., 2023). Chen

et al. (2020) revealed that the Dendrobium officinalis six formula

could regulate intestinal flora, thereby decreasing LPS production

and reducing the levels of blood uric acid. Moreover, it improved

the intestinal mucous membrane barrier and inhibited the

production of NF-kB, reducing the release of inflammatory

factors. Research has shown that resveratrol in Polygonum

cuspidatum can increase the intestinal physiological microbiota,

inhibit inflammatory factors (Zhou et al., 2024); Plantago can

inhibit XOD activity to achieve a uric acid-lowering effect (Liu

et al., 2022). Lin et al. (2023) used FMT to transfer the intestinal

flora of GA mice treated with Si Miao Formula or Allopurinol to

blank GAmice in order to investigate the therapeutic effects of FMT

on GA. The results showed that compared to Allopurinol, Si Miao

Formula showed a greater impact on the intestinal flora by

restoring the abundance of the genus Aspergillus and Helicobacter

pylori. Wang X. et al. (2022) found that flavored Baihu Formula

could restore the abundance of families Lactobacillaceae and

Bifidobacteriaceae to normal. Thus, restoring the intestinal flora

of GA patients to normal plays a role in treating GA (Figure 2).
5 Summary and outlook

Numerous studies have demonstrated the role of intestinal flora

in several diseases. In GA, intestinal flora participates in purine

metabolism, the inflammatory factors and immune responses, and

the intestinal mucosal barrier. Moreover, various ingredients of

drugs used to treat GA could regulate the function of immune cells

and reduce uric acid by normalizing the composition of intestinal

flora. The range of methods for treating GA, by restoring and

improving the intestinal flora, is increasing day by day. Moreover,

TCM presents promising avenues for targeting and regulating

intestinal flora in GA treatment. In the future, it might be

possible to treat GA by specifically targeting the intestinal flora

with TCM. It can be hypothesized that this approach might

potentially enable earlier intervention in the GA pathogenesis
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through the gut-immune-joint inflammation axis and the

development of more therapeutic strategies. Meanwhile, Intestinal

flora maybe used as a non-invasive diagnostic and screening tool

for GA. While some specific intestinal flora variations have been

associated with GA, the limited research in this area and the

substantial inter-individual differences in intestinal flora

emphasize the need for further investigations to determine the

diagnostic and therapeutic potential of intestinal flora and its

metabolites in GA.
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