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Structural and functional
alteration of the gut microbiota
in elderly patients
with hyperlipidemia
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Chuanzhou Gao3 and Jingyi Han1*

1Department of Clinical Laboratory, First Affiliated Hospital, Dalian Medical University, Dalian, China,
2Department of Microecology, College of Basic Medical Sciences, Dalian Medical University,
Dalian, China, 3Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
Objective: To investigate the structure, composition, and functions of the gut

microbiota in elderly patients with hyperlipidemia.

Methods: Sixteen older patients diagnosed with hyperlipidemia (M group) and 10

healthy, age-matched normal volunteers (N group) were included. These groups

were further subdivided by sex into the male normal (NM, n = 5), female normal

(NF, n = 5), male hyperlipidemia (MM, n = 8), and female hyperlipidemia (MF, n = 8)

subgroups. Stool samples were collected for high-throughput sequencing of 16S

rRNA genes. Blood samples were collected for clinical biochemical index testing.

Results: Alpha- and beta-diversity analyses revealed that the structure and

composition of the gut microbiota were significantly different between the M

and N groups. The relative abundances of Bacteroides, Parabacteroides, Blautia,

Peptococcus, and Bifidobacterium were significantly decreased, while those of

Lactobacillus, Helicobacter, and Desulfovibrio were significantly higher in the M

group. There were also significant sex-related differences in microbial structure

between the NM and NF groups, and between the MM and MF groups. Through

functional prediction with PICRUSt 2, we observed distinct between-group

variations in metabolic pathways associated with the gut microbiota and their

impact on the functionality of the nervous system. Pearson’s correlation

coefficient was used as a distance metric to build co-abundance networks. A

hypergeometric test was used to detect taxonomies with significant enrichment

in specific clusters. We speculated that modules with Muribaculaceae and

Lachnospiraceae as the core microbes play an important ecological role in the

intestinal microbiota of the M group. The relative intestinal abundances of

Agathobacter and Faecalibacterium in the M group were positively correlated

with serum triglyceride and low-density lipoprotein levels, while the relative

abundance of Bifidobacterium was negatively correlated with the serum

lipoprotein a level.
KEYWORDS
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1 Introduction

The prevalence of hyperlipidemia has increased in parallel with

the development of the social economy and improvements in living

standards (Teramoto et al., 2008). Hyperlipidemia is a medical

condition characterized by the abnormal concentration beyond the

normal range of one or more types of lipids in the bloodstream and

is a result of metabolic disorder (He and Ye, 2020). Abnormal blood

lipids affect normal physiological functions, and are closely related

to a variety of chronic metabolic diseases (DeBose-Boyd, 2017).

They are also considered a main predisposing factor of

cardiovascular illnesses, including atherosclerotic disease,

coronary heart disease, and myocardial infarction (Wang et al.,

2013; Oliveira and Raposo, 2020).

There are about 100 trillion non-pathogenic microorganisms in

the human intestine. The number of microorganisms per gram of

colon contents can reach 1012 (Kim and Jazwinski, 2018). The gut

microbial population collectively encodes millions of genes, which

gives it the ability to modify and regulate the physiological functions

of the host. Changes in the gut microbiota have typically been

related to age, host genes, lifestyle, and epigenetic changes (Adak

and Khan, 2019). There are differences in the gut microbiota of

healthy people of different physiological ages. For example, the gut

microbiota compositions of infants, adults, and the elderly are

different (Milani et al., 2017; Salazar et al., 2017). The diversity of

the gut microbiota in stool samples of children is significantly lower

than that of adults (Iglesias-Vázquez et al., 2020). Studies have

shown that the changes in the gut microbiota significantly with age

(O’Toole and Jeffery, 2015).

Chronic metabolic diseases such as hyperlipidemia and

hyperglycemia occur mostly in elderly people (Ducharme and

Radhamma, 2008). Further research has revealed a close

relationship between the gut microbiota and hyperlipidemia. Our

previous animal experiments showed that the gut microbiota of

mice with diet-induced hyperlipidemia is significantly different

from that of normal mice, and that the gut microbiota also affects

the metabolism of lipids and bile acids in mice (Chen et al., 2019).

Another study found that material energy metabolism, the

inflammatory response, and insulin resistance in the host all

involve the participation of the gut microbiota (Tosti et al., 2018).

Increasingly more scholars have come to believe that there is a

correlation between hyperlipidemia and the gut microbiota, and the

gut microbiota likely plays a role in the occurrence and

development of metabolic diseases such as hyperlipidemia

(Busnelli et al., 2018; Huang et al., 2019).

In this study, we used high-throughput sequencing of 16S rRNA

genes in the fecal microbiota of elderly patients with hyperlipidemia

and healthy elderly volunteers to examine differences in the gut

microbiota between the two groups and to identify correlations

between the gut microbiota and hyperlipidemia. This study may

provide guidance and new ideas for the prevention and clinical

treatment of hyperlipidemia.
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2 Materials and methods

2.1 Participants

The M group (n = 16) comprised patients who were previously

diagnosed with hyperlipidemia (total cholesterol [TC] > 5.7mmo/L)

and recruited from the First Affiliated Hospital of Dalian Medical

University. The normal (N) group (n = 10) comprised age-matched

healthy (TC < 5.2mmol/L) volunteers. The M and N groups were

subdivided by sex into the male normal (NM, n = 5), female normal

(NF, n = 5), male hyperlipidemia (MM, n = 8), and female

hyperlipidemia (MF group, n = 8) groups.

The inclusion criteria were as follows: 1) male or female; 2) meeting

diagnostic criteria for hyperlipidemia (M group only) without receiving

any lipid-lowering treatment for hyperlipidemia; and 3) body mass

index (BMI) within the range of 20–30 kg/m2 for all participants. The

exclusion criteria for all participants were as follows: 1) a history of

metabolic diseases, including diabetes and thyroid disease; 2) a history

of peptic diseases, including intestinal inflammatory ulcers; and 3) use

of antibiotics, probiotics, prebiotics, postbiotics, or immunosuppressive

agents in the previous 2 months. The study was conducted in

accordance with the principles of the Declaration of Helsinki, and

the study protocol was approved by the First Affiliated Hospital Ethical

Committee of Dalian Medical University (approval number: PJ-KS-

KY-2021–90).
2.2 Sample collection and DNA extraction

Blood samples were separated by centrifugation at 3000 rpm at 4°C

for 20 min to obtain serum, which was used to measure levels of the

following: uric acid (UA), homocysteine (HCY), fasting blood glucose

(FBG), alanine aminotransferase(ALT), aspartate aminotransferase

(AST), creatinine (Cre), prealbumin (PAB), albumin (ALB), globulin

(GLB), total protein (TP), alkaline phosphatase (ALP), g-glutamyl

transpeptidase (g-GT), total bilirubin (T-BIL), lipoprotein a (LPa),

TC, triglycerides (TG), high -density lipoprotein (HDL), and low-

density lipoprotein (LDL).

Fresh samples of feces (200 mg) were collected from each

participant into a sterile container and immediately stored at −80°

C until further processing. The Stool DNA Isolation Kit (Foregene,

China) was used to extract genomic DNA from stool samples, in

accordance with the manufacturer’s instructions.
2.3 16S rRNA gene amplification
and sequencing

The V3-V4 hypervariable variable regions of genomic DNA

samples were amplified by polymerase chain reaction (PCR)

using primers 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and

806R (5’-GGACTACHVGGGTWTCTAAT-3’). PCR products were
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subjected to 16S rRNA gene high-throughput sequencing by Shanghai

Maggi Biomedical Technology Co., Ltd., using an Illumina MiSeq

PE300. The 16S rRNA gene sequences were defined as one operational

taxonomic unit (OTU) based on 97% similarity. The abundance-based

coverage estimator (ACE) index, observed species (Sobs) index,

Shannon diversity index, and Faith’s phylogenetic diversity (PD)

were used to reflect the alpha diversity of samples. Principal

component analysis (PCA) and principal co-ordinates analysis

(PCoA) were used to analyze beta diversity. Linear discriminant

analysis (LDA) was used to screen for dominant microbial

communities (Huang et al., 2021). Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States (PICRUSt)

was applied to predict functional profiles of the gut microbiota

resulting from reference-based OTU picking against the Greengenes

database. The predicted genes were then summarized by Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

categorization. Pearson’s correlation coefficients were calculated using

the difference-rich OTU, and network analysis was conducted. Gephi

was used for topology analysis and visualization purposes.

2.4 Statistical analysis

All experimental data are presented as the mean ± standard

deviation (SD). SPSS version 22 (IBM, USA) was used to analyze
Frontiers in Cellular and Infection Microbiology 03
and process data. Statistical analysis of KEGG pathway data was

performed with STAMP v2.1.3 using Welsh’s t-test (P < 0.05). R

software version 3.5.2 was used to analyze bioinformatics results.

Graph Pad Prism Version 8 (Graph Pad Software Inc., USA) was

used to draw statistical charts. One-way analysis of variance

(ANOVA) and Duncan’s multiple range tests were used to

analyze statistical data. A P value < 0.05 was considered to

indicate statistical significance; *P < 0.05, **P < 0.01,

***P < 0.001.
3 Result

3.1 Basic clinical information and serum
biochemical indicators in elderly
hyperlipidemia patients and
healthy volunteers

Age and BMI were not significantly different between the M and

N groups (P > 0.05; Table 1). Serum lipid levels (TC, TG, HDL,

LDL, LPa) were significantly higher in the M group than in the N

group (P < 0.05; Table 1). There were no significant between-group

differences in other serum parameters (UA, HCY, FBG, ALT, AST,

Cre, PAB, ALB, GLB, TP, ALP, g-GT, T-BIL; P > 0.05; Table 1),
TABLE 1 Basic clinical information and biochemical indicators of the patient.

Parameters
Normal
Group
(n=10)

Hyperlipidemia
Group
(n=16) P

Gender 1

Male 5 8

Female 5 8

Age years 62.40 ± 7.34 66.31 ± 4.96 0.117

Body mass index (BMI) kg/m2 24.52 ± 2.27 24.93 ± 2.24 0.658

Uric acid (UA) mmol/L 311.51 ± 63.7 359.06 ± 98.43 0.188

Homocysteine (HCY) mmol/L 10.74 ± 2.50 12.09 ± 4.16 0.367

Fasting blood glucose (FBG) mmol/L 5.00 ± 0.51 5.15 ± 0.53 0.488

Alanine aminotransferase (ALT) U/L 21.00 ± 7.97 19.61 ± 12.41 0.762

Aspartate aminotransferase (AST) U/L 19.00 ± 5.75 22.54 ± 6.94 0.207

creatinine (Cre) mmol/L 65.10 ± 9.10 66.83 ± 14.85 0.751

Prealbumin (PAB) mg/L 247.78 ± 63.10 268.81 ± 38.41 0.371

Albumin (ALB) g/L 41.31 ± 2.13 40.70 ± 4.90 0.717

Globulin (GLB) g/L 23.80 ± 3.28 26.02 ± 2.95 0.103

Total Protein (TP) g/L 65.11 ± 4.92 66.72 ± 6.75 0.532

Alkaline phosphatase (ALP) U/L 68.00 ± 13.84 73.00 ± 17.41 0.465

g-glutamyl transpeptidase (g-GT) U/L 21.00 ± 9.74 26.62 ± 19.38 0.413

Total bilirubin (T-BIL) mmol/L 13.52 ± 5.49 11.12 ± 3.53 0.217

(Continued)
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indicating the comparability between the hyperlipidemia and

healthy groups.
3.2 Quality evaluation of DNA
samples and 16S rRNA gene
amplification and sequencing

Fecal DNA samples with a concentration > 50 ng/µL and a

purity ratio of A260/A280 > 1.8 were used to prepare libraries and

conduct sequencing (Supplementary Table 1). We used the

extracted data volume as the abscissa and the Sobs and Shannon

index values as the ordinate to draw the rarefaction curve. Curve

flatness was used to determine that the amount of sequence data

was sufficient. As shown in Supplementary Figure 1, the sparse Sobs

and Shannon curves of the M and N groups both tended to be

stable, indicating that the depth of the sequencing data was

sufficient to cover most of the microbial information.
3.3 Distinctions in relative
abundances of gut microbes
between elderly hyperlipidemia
patients and healthy volunteers

The compositions of the gut microbiota at the phylum and

genus levels are shown in Figure 1. There were obvious changes in

the gut microbiota in the M group. At the phylum level, the top nine

most prevalent phyla are shown in Figure 1A. Firmicutes and

Bacteroidetes were the dominant phyla in all samples, followed by

Desulfobacterota, Campilobacterota, Actinobacteriota and

Deferribacterota. The abundances of Campilobacterota and

Deferribacterota were significantly higher in the M group than in

the N group (P < 0.0001). In the M group, the abundance of

Proteobacteria and Cyanobacteria was significantly decreased (P <

0.0001). At the genus level the relative abundances of Bacteroides (P

= 0.001), Parabacteroides (P < 0.0001), Blautia (P < 0.0001),

Peptococcus (P < 0.0001), and Bifidobacterium (P < 0.0001) were

significantly decreased, whereas those of Lactobacillus (P = 0.004),

Helicobacter, and Desulfovibrio (P = 0.004) were significantly

increased in the M group compared with those in the N

group (Figure 1B).
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3.4 Distinctly different patterns of the gut
microbial interactions between in elderly
hyperlipidemia patients with hyperlipidemia
and normal healthy volunteers

Alpha-diversity analyses of the gut microbiota in the N and M

groups are shown in Figures 2A–D. The Sobs (P = 0.008) and

Shannon (P = 0.047) indices based on Kruskal–Wallis analysis

showed that the richness and diversity of the gut microbiota were

significantly lower in the M group compared with those in the N

group. The ACE index (P = 0.023) and Faith’s PD (P = 0.002)

metrics further confirmed this result.

Figure 3A illustrates the beta-diversity of the gut microbiota in

the two groups as hierarchical cluster trees at the OTU level based

on Bray–Curtis dissimilarity (Figure 3A). PCA and PCoA revealed

that the microbial structures of the M and N groups were

significantly different (Figures 3B, C), supporting the difference in

gut microbiota composition between healthy individuals and

hyperlipidemia patients shown above. Next, we used LDA of

effect size (LEfSe) to further screen for dominant microbial

communities between the two groups at the genus level. The

results indicated that Lactobacillus was enriched in the M group,

whereas Parabacteroides and Lachnospiraceae-NK4A136 were

enriched in the N group (Figures 3E, F). Bacterial typing analysis

categorized the gut microbiota of the N and M groups into four

types (Figure 3D). Coincidentally, when sex was considered as a

grouping element, elderly healthy participants and hyperlipidemia

patients were divided into four groups.
3.5 Influence of sex differences on gut
microbiota characteristics between in
elderly hyperlipidemia patients with and
hyperlipidemia and normal
healthy volunteers

To further investigate the potential impact of sex on

the distribution of intestinal microbes, we analyzed the male and

female subgroups of elderly healthy volunteers and hyperlipidemia

patients (Figure 4). There were significant differences in gut

microbial diversity between the male and female subgroups

within both the N and M groups, with significant clustering
TABLE 1 Continued

Parameters
Normal
Group
(n=10)

Hyperlipidemia
Group
(n=16) P

Total cholesterol (TC) mmol/L 3.78 ± 0.91 6.21 ± 0.50 < 0.001

Triglyceride (TG) mmol/L 0.99 ± 0.32 1.72 ± 0.54 0.001

High-density lipoproteins (HDL) mmol/L 1.05 ± 0.20 1.25 ± 0.25 0.046

Low-density lipoproteins (LDL) mmol/L 2.07 ± 0.64 3.83 ± 0.45 < 0.001

Lipoprotein a (LPa) mg/L 127.89 ± 93.93 348.31 ± 149.79 0.001
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observed on PCA and PCoA. Among the elderly healthy volunteers,

the NF subgroup was rich in Parabacteroides, whereas the NM

subgroup was rich in Bacteroides. Among the elderly patients with

hyperlipidemia, Lachnospiraceae-NK4A136 was enriched in the MF

subgroup, whereas Lactobacillus and Alistipes were enriched in the

MM subgroup.
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3.6 Potential functions and identification
of co-abundance networks of OTUs
in the two groups

KEGG level 2 functional pathway analysis indicated that the

nervous system, amino acid metabolism, biosynthesis of other
A

B

FIGURE 1

Analysis of the composition of gut microbiota in the N and M group. (A) Microbial distributions of different groups at the phylum level. (B) Microbial
distributions of different groups at the genus level. N: normal group (n=10). M: hyperlipidemia group (n=16). **P<0.01, ***P<0.001, ****P<0.001
compared with the normal group.
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secondary metabolites, endocrine system, transport and catabolism,

excretory system, signaling, and cellular processes were significantly

reduced in the M group compared to those in the N group.

Conversely, infectious disease (bacterial), genetic information

processing, circulatory system, drug resistance (antineoplastic),

and aging pathways were significantly increased in the M group

compared to those in the N group (Figure 5A).

At level 3, a total of 51 pathways exhibited significant differences

between the two groups. Among the top 10 dominant KEGG

pathways, the relative abundances of the glutamatergic synapse,

GABAergic synapse, kanamycin and gentamicin biosynthesis,

neomycin, the PI3K-Akt signaling pathway, and hepatocellular

carcinoma were significantly lower in the M group than in the N

group. Conversely, mineral absorption, platinum drug resistance,

and the MAPK signaling pathway (plant) displayed significantly

higher abundances in the M group than in the N group (Figure 5B).

Functional prediction with PICRUSt 2 revealed distinct variations

in metabolic pathways associated with the gut microbiota and their

impacts on the functionality of the nervous system between the two

groups. Sequence-based characterization, which focuses on how

individual taxa within the gut microbiome relate to the host, does

not reveal the complex interactions that take place between taxa within
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microbial communities. Microbes cooperate in networks to provide

critical nutrients for each other’s growth and survival. The

identification of microbial communities is important for

understanding their biological impact on the human body, but is

hampered by our inability to culture most microbes. We hypothesized

that generating OTU abundance modules from lists of differential

OTUs between the two groups would allow us to identify associations

with differential changes in function in elderly hyperlipidemia patients.

Figures 5C and D illustrate the more intricate network structure in

group M compared to that in the N group, implying reduced stability

of the intestinal microbiota in elderly patients with hyperlipidemia.

Subsequent examination of the modules revealed that those containing

Muribaculaceae and Lachnospiraceae as central microbial species hold

significant ecological relevance in elderly patients with hyperlipidemia.
3.7 Correlation between altered gut
microbiota and blood lipids in elderly
patients with hyperlipidemia

The Spearman’s correlation coefficient was used to assess the

relationship between the gut microbiota and blood lipid levels. In
A B

DC

FIGURE 2

Alpha diversity of the gut microbiota in the N and M group. (A) Sobs index of OUT level. (B) Pd index of OUT level. (C) Shannon index of OUT level.
(D) Ace index of OUT level. N: normal group (n=10). M: hyperlipidemia group (n=16). *P<0.05, **P<0.01, ***P<0.001, compared with the
normal group.
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A B

D E F

C

FIGURE 3

Analysis of the structure and communities of gut microbiota in the N and M group. (A) The microbial composition with the cluster at the OTU level. (B)
Principal component analysis (PCA) with the cluster. (C) Principal co-ordinates analysis (PCoA) with cluster. (D) Bacteria typing analysis. (E) Cladogram.
(F) LDA distribution. N: normal group (n=10). M: hyperlipidemia group (n=16).
A B

D E F

C

FIGURE 4

Analysis of the structure and communities of gut microbiota in the NF, NM, MF and MM groups. (A) microbial composition with the cluster at the
OTU level. (B) principal component analysis (PCA) with cluster. (C) principal co-ordinates analysis (PCoA) with cluster. (D) bacteria typing analysis.
(E) cladogram. (F) LDA distribution. NF group, the female normal group; NM group, the male normal group; MM group, the hyperlipidemia male
patient group; MF group, the hyperlipidemia female patient group. NM, male normal group (n=5); NF, female normal group (n=5); MM, the
hyperlipidemia male patient group (n=8); MF, hyperlipidemia female patient group (n=8).
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the correlation heat map shown in Figure 6, blue represents positive

correlations between bacteria and serum parameters, while red

represents negative correlations (Figure 6). Specifically,

Agathobacter and Faecalibacterium in the intestine of elderly

patients with hyperlipidemia were positively correlated with

serum TG and LDL levels, while Bifidobacterium was negatively

correlated with the serum LPa level (Table 2).
4 Discussion

In recent years, increasingly more studies have shown that the

normal gut microbiota is inextricably linked with the metabolism of

the body, and may regulate blood lipids (Patterson et al., 2016; Hills

et al., 2019; Silva et al., 2020). In this research, we focused on

exploring hyperlipidemia-related changes in the gut microbiota

of elderly men and women. We found that the relative
Frontiers in Cellular and Infection Microbiology 08
abundances of Bacteroides, Parabacteroides, Blautia, Peptococcus,

and Bifidobacterium in the gut microbiota were significantly

reduced, while those of Lactobacillus, Helicobacter, and

Desulfovibrio were significantly increased with hyperlipidemia.

Similar results have been observed in previous studies of patients

with dyslipidemia, reporting varying degrees of changes in gut

microbes, including Lactobacillus, Bifidobacterium, Bacteroidetes,

Enterococcus, Enterobacteriaceae species, Clostridium, in which the

proportion of Lactobacillus was upregulated (Song et al., 2017;

Gargari et al., 2018; Jia et al., 2021; Guo et al., 2022).

Under normal circumstances, certain common intestinal

bacteria produce cholesterol oxidase to accelerate the

degradation of cholesterol, thereby participating in maintaining

the normal level of cholesterol in the body. In addition, beneficial

bacteria in the intestines, such as Clostridium, Bifidobacterium,

Bacteroides, and Enterococcus produce bound bile acid hydrolase,

which converts bound bile acid into free bile acid (Cai et al., 2022;
A

B

D

C

FIGURE 5

Functional prediction and co-abundance networks. (A) STAMP analysis for the inferred metabolic pathway in level 2. (B) STAMP analysis for the
inferred metabolic pathway in level 3. (C) The co-abundance networks of the N group. (D) The co-abundance networks of the M group. N: normal
group (n=10). M: hyperlipidemia group (n=16).
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Pushpass et al . , 2022). However, under conditions of

hyperlipidemia, the living environment of the gut microbiota

undergoes significant changes, with the low relative abundances

of Bifidobacterium and Bacteroides leading to an increase in

accumulated cholesterol.

Some studies reporting the effects of lactic acid bacteria and

fermented dairy products on blood lipids found that lactic acid

bacteria, including Bifidobacteria lower serum cholesterol levels

(Schoeler and Caesar, 2019). Most of these bacteria act on TG,

TC, HDL, and LDL in the serum, thereby reducing blood lipids. It

has also been reported that the content of TG in the serum of

patients with hyperlipidemia is significantly negatively correlated

with Bifidobacterium and Lactobacillus, and positively correlated

with Enterobacteriaceae and Enterococcus (Osman et al., 2005). Our

study found that the abundances of Agathobacter and

Faecalibacterium in the intestines of elderly patients with

hyperlipidemia were positively correlated with serum TG and

LDL levels, while Bifidobacterium abundance was negatively

correlated with the serum LPa level.

Gut microbial diversity changes throughout the human life

span and is known to be associated with the sex of the host. The

latest research has shown that many characteristics, including

sex, age, TG and uric acid levels, obesity, and lifestyle, have

significant impacts on the gut microbiota (Portune et al., 2017;

Just et al., 2018; Ma et al., 2020). One study found that the gut

microbiota is obviously dependent on sex, with higher alpha-

diversity in women than in men (de la Cuesta-Zuluaga et al.,
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2019). Consistently, our research showed significant sex-related

impacts on the microbiota structure and diversity of patients

with hyperlipidemia. Beta-diversity analyses performed on the

Bray-Curtis distance matrix showed different hierarchical cluster

trees at the OTU level between healthy elderly males and females

and between elderly males and females with hyperlipidemia.

PCA and PCoA also showed significant differences in the

microbial structure between elderly male and female patients

with hyperlipidemia.

Numerous studies have established correlations between

abundances of Muribaculaceae and Lachnospiraceae and

metabolic diseases. Muribaculaceae bacteria are involved in the

synthesis of short-chain fatty acids and influence the host’s

metabolic function (Song et al., 2022; Bai et al., 2023).

Lachnospiraceae bacteria possess the capacity to reduce

inflammation and have been associated with cancer and

neurological diseases (Shen et al., 2021; Du et al., 2023).

This study has one main limitation. While our aim was to

explore sex- and hyperlipidemia-related changes in the gut

microbiota in elderly patients, the number of participants was

limited. We are currently conducting animal and cell experiments

to further validate and explore the underlying mechanisms of

our results.

In summary, the structure and composition of the gut

microbiota in elderly patients with hyperlipidemia appear to

undergo significant changes that are closely related to serum lipid

levels and metabolic pathway activity. We also discovered sex-
FIGURE 6

Analysis of the correlation between serum lipid parameters and gut microbiota in patients with hyperlipidemia. “0” means no correlation; “0-(0.5)”
means positive correlation; “0-(-0.5)” means negative correlation. Data were analyzed by Spearman test. *P<0.05, **P<0.01. LPa, Lipoprotein a;
TC, total cholesterol; TG, triglycerides; HDL, High-density lipoprotein; LDL, Low-density lipoprotein.
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related differences in the distribution of the gut microbiota.

Interestingly, modules with Muribaculaceae and Lachnospiraceae

as the core microbes played an important ecological role in the gut

microbiota of elderly patients with hyperlipidemia. Consideration

of the relationship between the gut microbiota and hyperlipidemia

should include the impact of sex differences.
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