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Introduction: The homeostasis of the microbiome in lower respiratory tract is

crucial in sustaining normal physiological functions of the lung. Different

pulmonary diseases display varying degrees of microbiome imbalance;

however, the specific variability and clinical significance of their microbiomes

remain largely unexplored.

Methods: In this study, we delineated the pathogen spectrum and commensal

microorganisms in the lower respiratory tract of various pulmonary diseases using

metagenomic sequencing. We analyzed the disparities and commonalities of the

microbial features and examined their correlation with disease characteristics.

Results: We observed distinct pathogen profiles and a diversity in lower airway

microbiome in patients diagnosed with cancer, interstitial lung disease,

bronchiectasis, common pneumonia, Nontuberculous mycobacteria (NTM)

pneumonia, and severe pneumonia.

Discussion: This study illustrates the utility of Metagenomic Next-generation

Sequencing (mNGS) in identifying pathogens and analyzing the lower respiratory

microbiome, which is important for understanding the microbiological aspect of

pulmonary diseases and essential for their early and precise diagnosis.
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1 Introduction

Serving as a respiratory organ, healthy lungs facilitate the

exchange of O2/CO2 between blood and ambient air, which is

crucial for sustaining the body’s normal physiological functions.

Historically, the understanding of the microbiome in healthy lungs

was limited, with a prevailing belief that they are sterile (Dickson et al.,

2013). This belief stemmed from the lack of invasive sampling of the

healthy lungs and methodological constraints, such as the difficulties

to culture fastidious organisms. In 2010, Markus Hilty et al. utilized

16s rRNA sequencing to confirm the presence of bacteria in healthy

lungs, identifying bacterial genera such as Prevotella, Veronella,

Streptococcus, and Haemophilus in cytological brushes from the left

upper lobe (~2000 bacterial genomes/cm2 surface area) (Hilty et al.,

2010). In recent years, the advances of culture-independent molecular

diagnostic methods, particularly high-throughput sequencing

technologies, have significantly enhanced the identification of a

broad range of pathogens in a variety of biological specimens.

Studies utilizing nucleic acid sequencing of bronchoalveolar lavage

fluid (BALFs) have confirmed the presence of fungi, such as

Cladosporium and Aspergillus spp. and viruses, including

anellovirus, Gardnerella phages and Lactobacillus phages (Wilson

et al., 2019; Tian et al., 2022). Therefore, it is evident that the lung

harbors a microbiome. Being connected to the external environment,

human lungs experience a constant exchange of microorganisms

through the upper respiratory tract (oral and nasal cavities, pharynx,

and trachea) with each breath, leading to a dynamic microbial cycle

and ever-changing microbiome (Natalini et al., 2023). Conversely, the

microbiota absorbs nutrients and necessitates dynamic

microbiological diversity, self-renewal, and maintenance from both

the air phase (airways) and the fluid/cellular phase (i.e., alveoli and

their cellular components) within the biological niche of the lungs.

The homeostasis of the pulmonary microbiome is critical for the

normal physiological function of the lungs. Prior research has

indicated that various pulmonary diseases, including lung cancer

(Tsay et al., 2018), infectious pneumonia, interstitial pneumonia,

and non-infectious diseases such as bronchiectasis (Cox et al., 2017),

display alterations in the microbiome, including both pathogenic and

commensal organisms of the lower respiratory tract. On the other

hand, a close association was observed between pulmonary

microbiome and the development and progression of various

respiratory diseases, including asthma, chronic obstructive

pulmonary disease (COPD), cystic fibrosis (CF), non-CF

bronchiectasis, tuberculosis, COVID-19, and lung cancer (Chung,

2017; Hong et al., 2018; Ding et al., 2021; Llorens-Rico et al., 2021;

Ramsheh et al., 2021). However, the similarities and differences in the

microbiome across diseases and their clinical relevance remain

inadequately studied.

In this study, we analyzed data from patients diagnosed with

various lung diseases, admitted to the Department of Respiratory

Medicine at Fujian Provincial Hospital between 2019-2022. We

collected BALF, peripheral blood, and tissue samples (lung biopsies

obtained from lesions), along with the conventional microbiological

test results, routine clinical test results. Using mNGS on BALF, we

examined the spectrum of microorganisms present in the lower
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respiratory tract. Meanwhile, we analyzed the microbiome

composition and its association with the pulmonary disease. This

study indicates that mNGS is effective in identifying pathogens and

microbiome of the lower respiratory tract. Furthermore, distinct

pulmonary diseases are characterized by unique pathogen and

microbiome profiles. It enhances our understanding of the

pathology underlying various pulmonary diseases and may benefit

diagnosis and therapeutic approaches of these diseases.
2 Materials and methods

2.1 Patient enrollment

This retrospective study included 305 clinical samples from 208

patients, diagnosed with various lung diseases in the intensive care

unit (ICU) of Fujian Provincial Hospital between 12 June 2019 jand

19 July 2022. The types of diseases included interstitial pneumonia,

lung cancer, common or severe pneumonia, NTM pneumonia, and

bronchiectasis. Data including age, sex, exposure history,

comorbidities, onset, symptoms, imaging, laboratory tests,

diagnostic methods, treatment, and clinical outcomes, were

extracted from electronic medical records. The Ethics Committee

of Fujian Provincial Hospital approved the study, and all data were

anonymized before analysis. The study adhered to the Declaration

of Helsinki, with data procured from the General ICU of Fujian

Provincial Hospital.
2.2 Clinical sample collection and
DNA extraction

Bronchoalveolar lavage fluid (BALF), sputum, peripheral blood

and other samples were obtained from each patient, following the

acquisition of consent from either the patients themselves or their

surrogates. Experienced bronchoscopists collected the BALF samples

after administration of anesthesia with midazolam. Peripheral blood

underwent centrifugation at 1600g for 10 minutes, followed by a

further centrifugation of the supernatant at 16000g for 10 minutes to

isolate plasma. For other samples, genomic DNA was extracted from

1 mL of specimens. The resulting DNA underwent library

preparation (enzymatic fragmentation of genomic DNA, end

repairing, terminal adenylation and adaptor ligation) and

purification. All steps were performed according to a previous

study (Luan et al., 2021).DNA extraction and library preparation

from clinical samples were conducted utilizing a point-of-care

automation device (Matridx Biotechnology Co., Ltd, Hangzhou,

China) (Luan et al., 2021). The quality of extracted DNAs was

evaluated with a BioAnalyzer 2100 (Agilent Technologies; Santa

Clara, CA, United States), in conjunction with quantitative PCR, to

assess the adapters prior to sequencing. The name of the kit used for

NGSmaster was Matridx Biotechnology’s Next-Generation

Sequencing Reagent Kit (Cat. No. CW0531M). For DNA

extraction, we used a kit from Matridx, Cat. No. MAR002 and

followed SOPs provided by the manufacturer.
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2.3 Metagenomic next-
generation sequencing

Qualified DNA libraries were combined and sequenced using the

Illumina NextSeq500 system (50 bp single end; San Diego, CA,

United States). Each run included one negative control, consisting

of artificial plasma mixed with fragmented human genomic DNA,

and one positive control, comprising a mixture of inactivated bacteria,

fungi, and pseudoviral particles containing synthesized DNA or RNA

fragments of adenovirus and influenza A virus, for quality control.

Each sample generated a total of 10 - 20 million reads. Initially, raw

sequenced reads underwent quality control processing to eliminate

short (length < 35 bp), low-quality, and low complexity reads, along

with the adapter sequences. Sequences from the host were excluded

by aligning them to the human-specific database in NCBI

(GRCh38.p13), utilizing Bowtie2 (version 2.3.5.1). Clean reads were

then aligned to a curated in-house microbial database, which

incorporated sequences from the NCBI GenBank nucleotide (nt)

database and assembly database, as well as sequences assembled from

our own pure fungal cultures, with Kraken2 (version 2.1.2; confidence

= 0.5) for rapid taxonomic classification. The aligned microbial reads

underwent further validation through a secondary alignment to the

microbial database, utilizing Bowtie2. When inconsistencies arose

between the results of Kraken2 and Bowtie2, the classification of reads

was determined using BLAST (version 2.9.0) (Altschul et al., 1990;

Langmead and Salzberg, 2012; Wood and Salzberg, 2014). The

parameters and thresholds used in BLAST included: E-value

threshold: 1e-5; Identity cutoff: 90%; Alignment length cutoff: 100

base pairs. These thresholds were selected to ensure high confidence

matches and to minimize false positives. Prior to data analysis,

microbes identified in clinical samples were compared to those

detected in NTC (no template control). Microorganisms with reads

per million (RPM) above 10, or those not detected in NTC, were

retained for subsequent analysis. Essentially, all microbial species were

searched in PubMed to determine whether the organisms can cause

pneumonia. If yes, the microorganisms were classified as pathogens.
2.4 Pathogen reporting criteria

Microbial reads identified from a library were reported if: 1) the

sequencing data passed quality control filters (library concentration

> 50 pM, Q20 > 85%, Q30 > 80%); 2) negative control (NC) in the

same sequencing run does not contain the species or the RPM

(sample)/RPM (NC) ≥ 5, which was determined according to

previous studies as a cutoff for discriminating true-positives from

background contaminations (Schlaberg et al., 2017; Wilson et al.,

2019; Luan et al., 2021).
2.5 Statistical analysis

Categorical variables were represented as frequencies and

percentages and compared utilizing Fisher’s exact test. Continuous

data with normal distribution were represented as mean ± standard
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deviation (x ± s), while data with non-normal distribution were

represented by median (range). The Wilcoxon test or Kruskal-

Wallis test was employed to calculate differences and significance

for non-normal distribution data. Statistical analysis was conducted

using SPSS 26.0 (IBM Corporation). R (Version 4.2.1) was utilized for

data visualization. Specifically, unsupervised clustering methods,

referencing the core steps of limma, voom, fit, eBays were employed

for bivariate or multivariate difference analysis. The limma package’s

plotMDS illustrated the final similarities (or differences) between

samples, and results were output through the topTable method,

sorted by P-value. Before analyzing their relative abundance, RPKM

values of microbes underwent log2 transformation. The limma

package was utilized to analyze variations in the composition and

abundance of microbes between groups. Particularly, the FDR (False

Discovery Rate) method was employed to correct the primary P-value

for multiple comparisons. Subsequently, corrected P-values ≤ 0.05

were deemed statistically significant.
3 Results

3.1 Microbial detection in lower respiratory
tract samples from patients with different
lung diseases

In this retrospective study, we collected data from 277 patients

diagnosed with various pulmonary diseases at the Department of

Respiratory Medicine of Fujian Provincial Hospital between 2019

and 2022. A total of 208 patients met the inclusion criteria. The

patients were categorized into six groups based on the diagnosis:

lung cancer (CA), interstitial lung disease (IP), bronchiectasis

(BRO), common pneumonia (PN), NTM pneumonia (NTM), and

severe pneumonia (SP) (Figure 1A). Of the 208 patients, 185

provided BALF samples only and 21 patients had two types of

samples including BALF and others such as peripheral blood, tissue,

and pleural fluid. The sample distribution of the six groups were

shown in Supplementary Figure S1. Additionally, some patients had

BALF collected at two different time points, leading to a total of 305

samples (Figure 1B). We also obtained results from conventional

microbiological tests, routine tests, and clinical consultations.

The overall positivity rate of mNGS for pathogen detection was

78.36%, with 80.17%, 76.19%, 60.0%, and 63.16% for lower respiratory

tract specimens (LRTS), peripheral blood, pleural fluid, and tissue

samples, respectively (Figure 1C). Little overlap was observed among

the pathogens identified in peripheral blood, pleural fluid, and tissue

samples. In contrast, pathogens identified in BALF showed a higher

degree of concordance with those in peripheral blood and tissue

samples, at 28.7% and 29.6% respectively (Figure 1D).

The mNGS results were compared with the conventional

microbiological tests (CMTs). CMTs identified 31 distinct pathogens

for a total of 106 times, in contrast to mNGS that reported 110 distinct

pathogens for a total of 630 times (Figure 2A). Subsequently, we

ranked the top 10 pathogens based on frequency by both mNGS and

CMTs and three species were in common: Candida albicans,

Pseudomonas aeruginosa, and Staphylococcus aureus (Figure 2B).
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3.2 The lower respiratory pathogen
spectrum of different pulmonary diseases
and clinical relevance

The pathogen profile of different patient groups was analyzed,

revealing significant disparities. For instance, the lung cancer,

bronchiectasis, and NTM pneumonia groups primarily showed

bacterial infections with few viruses detected. The interstitial lung

disease group had bacteria, viruses, and fungi (Figures 3A–C).

Additionally, it was observed that over 70% of the samples in each

group showed mixed infections (Supplementary Figures S2, S3).

Using the Kruskal-Wallis rank sum test, we found enrichments

of distinct pathogens in different groups. For instance, the

bronchiectasis group showed an enrichment for Pseudomonas
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aeruginosa, and the detection of Tropheryma whipplei was higher

in lung cancer than other groups (Figures 3D, E). These findings

underscore the varying pathogen profiles associated with different

pulmonary diseases and their clinical implications.
3.3 Relationship between microbiome and
clinical relevance

The microbiological findings of mNGS include both pathogenic

and commensal microorganisms. Symbiotic microecology can

potentially influence the viability of pathogenic entities and may

even impact the progression or prognosis of lung diseases.

Consequently, we investigated the diversity of organisms in the
FIGURE 1

Schematic workflow of this study. (A) Overall research framework; (B) Explanation of sample types and numbers of different samples; (C) The
number of positive samples and positivity rate of different sample types detected by Mngs. LRTS, lower respiratory tract samples; PE, pleural effusion;
(D) Venn diagram was used to display the number of detected common and different pathogens among different sample types. The dots and
connecting lines of the intersection matrix indicate the intersections between the categories, the bars on the top indicate the intersection size
(number of pathogen types) of each category, and the black bars on the left of each row show the set size (number of pathogen types in total) for
each sample type.
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lower respiratory tract across various pulmonary diseases, which

revealed distinct compositions and diversities of microorganisms.

At the genus level, the lung cancer group was predominantly

characterized by Klebsiella and Pseudomonas, the interstitial lung

disease group by Pseudomonas and Candida spp. In addition, we

found enrichment of Pseudomonas in the bronchiectasis group,

Klebsiella and Pseudomonas in the common pneumonia group,

Pseudomonas, Klebsiella and Pseudomonas in the NTM pneumonia

group, Klebsiella and Pseudomonas in the severe pneumonia

group (Figure 4A).

Alpha diversity was evaluated using four indices: Shannon

(P=0.00086), Simpson (P=0.00044), Pielou (P=0.0018), and

InvSimpson (P=0.00044). The results indicated significant

differences in microbial diversity levels among disease groups

(Figure 4B). As for beta-diversity, the PERMANOVA analysis

indicates that there are statistically significant differences in
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community composition among the six patient groups with a p-

value of 0.015. The R² value of 0.05451 suggests that 5.451% of the

total variance is explained by differences between the groups, while

94.549% is attributed to within-group differences. The F-statistic of

1.4297 supports the presence of notable between-group differences.

Despite the significant p-value, the relatively low R² value indicates

that within-group variation plays a major role. This implies that

while the groups differ significantly in community composition,

individual variability within each group is substantial and warrants

further investigation. In addition, to quantify the discriminative

power of pathogen profiles among these groups, we performed a

bootstrap analysis calculating the area under the curve (AUC) for

each disease group. The result revealed distinct discriminatory

capabilities among the groups. The ‘OTHER’ group, which

amalgamated NTM pneumonia (NTM), lung cancer (CA),

interstitial lung disease (IP), and bronchiectasis (BRO) due to
FIGURE 2

Comparison of pathogens detected by traditional pathogen detection and mNGS. (A) Comparison of pathogen detection numbers and detection
frequencies between traditional pathogen detection methods and mNGS; (B) Top 10 pathogens detected by different detection methods, with red
indicating pathogens detected by both methods.
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limited sample size, exhibited an AUC of 0.8696, suggesting a high

accuracy in distinguishing this composite group from others. The

AUC of PN and SP groups were 0.7955 and 0.7470, respectively

(Supplementary Figure S4). To assess the similarity and disparity of

the microbiome, we enumerated the microorganisms found in
Frontiers in Cellular and Infection Microbiology 06
different groups. The results indicated that the common

pneumonia group had the highest diversity with 238 species,

contrasting with the bronchiectasis group, which had the lowest

(86 species). Besides the shared species, unique species were

identified in each group: four in the BRO group, 11 in the SP
FIGURE 3

Pathogen profile analysis. (A) Analysis of pathogen spectrum in lower respiratory tract samples, and the contribution of lower respiratory tract
samples from different groups. Each square refers to one specimen; (B) Pathogen distribution diagram, showing the distribution of bacteria, fungi,
and viruses in the Lung cancer (CA), interstitial lung disease (IP), bronchiectasis (BRO), common pneumonia (PN), NTM pneumonia (NTM), and severe
pneumonia (SP) groups; (C) Top 20 detected pathogens and their frequency in lower respiratory tract samples; (D) Pathogen stacked bar chart for
different groups; (E) Comparison of differentially detected pathogens among groups.
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group, 23 in the PN group, five in the CA group, and one in the IP

group. Notably, no species were unique to the NTM

group (Figure 4C).

We analyzed the correlation between microorganisms and the

clinical test results, such as the biochemical test of blood. We found

that Enterococcus faecalis showed a positive correlation with the

neutrophil count, CRP, and ESR, and a negative correlation with

lymphocyte count. Mycobacteroides abscessus showed a positive

correlation with lymphocyte count and a negative correlation with

white blood cell count, CRP, and ESR. Pseudomonas aeruginosa

exhibited a positive correlation with white blood cell count (Figure 5).
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3.4 Statistical analysis of age and sex in
relation to disease groups

We have performed a logistic regression analysis to evaluate the

relationship between age, sex, and disease groups. The results

showed that the coefficient for age was -0.07600, with a p-value of

0.08353, indicating a marginal effect on disease group classification

that is not statistically significant at the 0.05 level. The negative

coefficient suggests a slight decrease in the log-odds of being in a

specific disease group with increasing age. Conversely, the

coefficient for sex was -1.54491, with a significant p-value of
FIGURE 4

Symbiotic microbiota research. (A) The distribution of symbiotic microbiota in different disease groups; (B) Analysis of microbiota diversity, alpha
diversity research; (C) Venn diagrams show the comparison between different groups, the top shows the overlapping situation of symbiotic
microbiota between different groups, and the bottom shows the total number of symbiotic microbiota and the number of unique symbiotic
microbiota for each group.
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0.03920, demonstrating that sex was a statistically significant

predictor of disease group classification, with males having lower

odds of being classified in certain disease groups compared to

females. Combined with the result shown in Table 1, we found

that males were more likely to get pneumonia and severe

pneumonia than female.
4 Discussion

Despite the similarities in clinical presentations of various

pulmonary diseases, such as fever, cough, and structural changes

of the lung, the underlying pathological mechanisms differ

significantly (Yılmaz et al., 2017; Ren et al., 2020; Hoshina and

Takei, 2021; Mathew and Mugele, 2021). To study the pathological

mechanisms of different pulmonary diseases, researchers typically

used ex vivomethodologies, including cell and molecular biology as
Frontiers in Cellular and Infection Microbiology 08
well as in vivo animal models (Liao et al., 2019; Yang et al., 2021).

Several studies have explored disease pathology through data

mining and correlation analyses (Blanch et al., 2002; Rahman

et al., 2022). Conventional microbiological tests have low

detection rates, long turnaround time, and inability to identify a

broad range of potential pathogens. Owing to advancements in

diagnostic technology, mNGS has gained widespread acceptance for

the diagnosis of infectious diseases (Fang et al., 2022). It has shown

enhanced diagnostic efficacy compared to traditional methods,

particularly in identifying rare or emerging pathogens. Therefore,

in this study, we employed mNGS to evaluate the microbial profiles

from patients with different pulmonary diseases.

Humans andmicrobes have coexisted in a symbiotic relationship.

Termed as the second human genome, the human microbiome

encompasses a diverse array of microorganisms, including bacteria,

yeasts, archaea, fungi, protozoa, and viruses. These organisms and

their byproducts are crucial in modulating and maturing the local
TABLE 1 The patient information of different disease groups.

Group Age (years) Sex Underlying disease(s) Length of hospitalisation (Days)

Cancer 44-79 M (8), F (7) Yes (11), No (4) 4-50

Interstitial pneumonia 38-81 M (18), F (15) Yes (25), No (6) 4-34

Severe pneumonia 46-88 M (38), F (13) Yes (48), No (3) 1-66

Pneumonia 14-86 M (54), F (22) Yes (63), No (13) 2-46

NTM infection 36-82 M (5), F (5) Yes (6), No (4) 4-15

Bronchiectasis 23-82 M (3), F (9) Yes (8), No (4) 3-15
FIGURE 5

The association between clinical indicators and specific microbiota. Analysis of the correlation between important pathogens and clinical indicators
shows that [Candida] glabrata is positively correlated with NEU. Enterococcus faecalis is positively correlated with NEU, CRP, and ESR clinical
indicators while being negatively correlated with LYM. Mycobacteroides abscessus is positively correlated with LYM and negatively correlated with
WBC, CRP and ESR. Pseudomonas aeruginosa is positively correlated with WBC.
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microenvironments, including the immune niches of the tissues and

organs, and are pivotal in maintaining physiological homeostasis and

regulating the functions of organs under pathological conditions

(Tsay et al., 2021). Microorganisms inhabit nearly all surfaces of

the human body and the lung microbiome typically maintains a

dynamic equilibrium. However, this balance is perturbed during

diseases, leading to various pathological conditions and clinical

manifestations, including infection and inflammation.

Consequently, the imbalance and subsequent rebalancing of the

lung microbiome may represent pivotal mechanisms governing the

pathological conditions and progression of pulmonary diseases

(Dickson et al., 2018; Tsay et al., 2018).

The respiratory tract harbors ecological niches populated by

commensal and pathogenic microorganisms that are crucial for the

progression of diseases (Man et al., 2017; Goeteyn et al., 2023). In

the microbiota of healthy human lungs, a variety of microorganisms

are typically present, and their distribution and composition can

provide insights into respiratory health. In the lungs of healthy

individuals, the microbial landscape is predominantly shaped by

bacteria, with a few dominant phyla, such as Firmicutes

(Streptococcus and Staphylococcus), Proteobacteria (Haemophilus

and Pseudomonas), Bacteroidetes (Prevotella and Porphyromonas)

and Actinobacteria (Corynebacterium and Mycobacterium)

(Dickson and Huffnagle, 2015). Bacteria like Streptococcus and

Prevotella are often found in the lungs without causing disease,

playing roles in maintaining the microbial balance and potentially

stimulating the immune system, and Organisms like Pseudomonas

aeruginosa and certain Staphylococcus species, while sometimes

part of the normal microbiota, can become pathogenic under

certain conditions, such as in individuals with compromised

immune systems or underlying lung diseases (Dickson and

Huffnagle, 2015).

The microbial diversity within the lungs can be modulated by

various biotic and abiotic factors (Liu et al., 2022). An imbalance in

the respiratory microbiome can facilitate colonization by

opportunistic pathogens, culminating in respiratory infections,

including pneumonia (Wypych et al., 2019; Hernández-Terán et al.,

2021). Alterations in the microbiome are observed during infections

of the lower respiratory tract and are closely correlated with the

course and prognosis of pneumonia (Gu et al., 2019). Hence, a deeper

understanding of alterations in microbiome composition is

important for elucidating the role of pathogens in pulmonary

infections. Studies have uncovered the microbial composition of

the lungs in patients with bacterial meningitis (Moon et al., 2019),

refractory Mycoplasma pneumoniae pneumonia (Shi et al., 2022;

Deng et al., 2023), pulmonary tuberculosis (Chao et al., 2021; Zhang

et al., 2023), and invasive pulmonary aspergillosis (Hérivaux et al.,

2022) using untargeted pathogen metagenomics or 16S rRNA gene

sequencing. While 16S rRNA sequencing can identify bacterial

species, it lacks the resolution offered by metagenomic technologies,

such as shotgun sequencing, particularly in closely related species

(Gupta et al., 2019).

Distinct pulmonary diseases exhibited varying microbiological

features; for instance, we found microbial compositions of the lower

respiratory tract of patients having lung cancer, bronchiectasis, and

NTM pneumonia primarily consisted of bacteria. This is consistent
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with the understanding that bacterial communities can influence or

be influenced by the pathophysiology of chronic respiratory

diseases and cancer. For interstitial lung disease, common and

severe pneumonia, these conditions had a more diverse microbial

composition, including significant presences of fungi and viruses.

This suggests a complex interplay in these diseases, potentially

implicating more varied and severe pathogenic processes. Different

types of disease showed enrichment of microorganisms, exhibiting a

correlation with the clinical manifestations of each disease. For

instance, the enrichment of certain bacteria in lung cancer could

relate to the inflammatory and tumor-promoting environment,

whereas the presence of fungi and viruses in interstitial lung

disease could be linked to the disease’s multifactorial etiology

involving both immune response and environmental exposures.

Figures 3D, E illustrate the distribution of various bacteria

across different pulmonary diseases, highlighting their potential

roles in these conditions. Notably, Streptococcus pneumoniae

appears frequently in a variety of lung diseases, including

pneumonia, supporting its status as a primary pathogen (Shoar

and Musher, 2020). The data in these charts align with research on

the role of the microbiome in respiratory health, suggesting a

potential causative relationship between specific microbial

communities and diseases (Dietl et al., 2021). Additionally,

Figures 3D, E highlight the significant presence of Pseudomonas

aeruginosa in various pulmonary diseases, correlating with its

known impact on chronic conditions like cystic fibrosis and non-

CF bronchiectasis. The data from these charts show its prevalence

and distribution across disease groups, underlining the challenges

in managing this pathogen due to its resistance to multiple

antibiotics. These findings emphasize the need for targeted

antibiotic therapies to improve patient outcomes by effectively

managing Pseudomonas aeruginosa infections, supporting

ongoing research into tailored treatment strategies (Reynolds and

Kollef, 2021; Eklof et al., 2024).

The diversity of microbiome in the lower respiratory tract

varied among disease groups, with the highest diversity observed

in the lung cancer and interstitial lung disease groups, succeeded by

the common pneumonia and NTM pneumonia groups, and the

lowest diversity in the bronchiectasis and severe pneumonia groups.

High microbial diversity in lung cancer and interstitial lung disease

groups could be linked to the chronic and progressive nature of

these diseases, where a diverse microbial environment might

influence disease progression and response to treatment.

Common pneumonia and NTM pneumonia exhibited moderate

diversity, this intermediate level might reflect the specific

pathogenic involvement and the body’s immune response to these

conditions. Low diversity in severe pneumonia might indicate a

dominance by pathogenic microbes that outcompete other

members of the microbiota during acute disease phases. In

bronchiectasis, reduced diversity could be associated with chronic

infection or inflammation driven by a limited range of pathogens.

The AUC values obtained from our ROC analysis provide

valuable insights into the performance of our classification

models. The Combine group, with an AUC of 0.8696,

demonstrates robust classification ability, indicating a strong

relationship between disease types and pathogen abundance
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within this group. This suggests that the combined dataset

effectively captures relevant features, leading to better

discrimination between classes. In contrast, the PN and SP groups

exhibit lower AUC values of 0.7955 and 0.7470, respectively,

revealing comparatively weaker model performance. These

differences may highlight variations in how well the pathogen

abundance correlates with disease types across different datasets

or groups. The observed AUC values support the hypothesis that

microbial ecology could be closely related to disease states, with the

Combine group showing a more pronounced relationship. This

aligns with the notion that a comprehensive dataset might enhance

our ability to uncover associations between microbial communities

and diseases. However, the lower AUCs in PN and SP groups

suggest that additional factors or more nuanced features may be

needed to improve classification performance in these contexts.

Further investigation into these groups could reveal underlying

complexities in the relationship between pathogen abundance

and disease.

This study illustrates the use of mNGS in identifying pathogens

and analyzing the lower respiratory microbiome. Our findings

indicate that distinct pulmonary diseases show unique microbial

features, which may be linked to the pathophysiology of

different diseases.
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