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Science and Technology, The First People’s Hospital of Yunnan Province, Kunming, China,
3Department of Endocrinology, The First Affiliated Hospital, School of Medicine, Shantou University,
Shantou, China, 4The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China,
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Background: Growing evidence has shown that gut microbiome composition is

associated with Biliary tract cancer (BTC), but the causality remains unknown.

This study aimed to explore the causal relationship between gut microbiota and

BTC, conduct an appraisal of the gut microbiome’s utility in facilitating the early

diagnosis of BTC.

Methods: We acquired the summary data for Genome-wide Association Studies

(GWAS) pertaining to BTC (418 cases and 159,201 controls) from the Biobank

Japan (BBJ) database. Additionally, the GWAS summary data relevant to gut

microbiota (N = 18,340) were sourced from the MiBioGen consortium. The

primary methodology employed for the analysis consisted of Inverse Variance

Weighting (IVW). Evaluations for sensitivity were carried out through the

utilization of multiple statistical techniques, encompassing Cochrane’s Q test,

the MR-Egger intercept evaluation, the global test of MR-PRESSO, and a leave-

one-out methodological analysis. Ultimately, a reverse Mendelian

Randomization analysis was conducted to assess the potential for

reciprocal causality.

Results: The outcomes derived from IVW substantiated that the presence of

Family Streptococcaceae (OR = 0.44, P = 0.034), Family Veillonellaceae (OR =

0.46, P = 0.018), and Genus Dorea (OR = 0.29, P = 0.041) exerted a protective

influence against BTC. Conversely, Class Lentisphaeria (OR = 2.21, P = 0.017),

Genus Lachnospiraceae FCS020 Group (OR = 2.30, P = 0.013), and Order

Victivallales (OR = 2.21, P = 0.017) were associated with an adverse impact. To

assess any reverse causal effect, we used BTC as the exposure and the gut

microbiota as the outcome, and this analysis revealed associations between BTC

and five different types of gut microbiota. The sensitivity analysis disclosed an

absence of empirical indicators for either heterogeneity or pleiotropy.
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Conclusion: This investigation represents the inaugural identification of

indicative data supporting either beneficial or detrimental causal relationships

between gut microbiota and the risk of BTC, as determined through the

utilization of MR methodologies. These outcomes could hold significance for

the formulation of individualized therapeutic strategies aimed at BTC prevention

and survival enhancement.
KEYWORDS

genome-wide association study, comprehensive bidirectional mendelian
randomization, gut microbiota, biliary tract cancer, probiotics
Introduction

Gallbladder cancer (GBC) and cholangiocarcinomas (CCAs)

are cumulatively categorized under the umbrella term of biliary

tract cancers (BTCs) (Benson et al., 2023). GBC is recognized as the

principal malignancy impacting the biliary tract, characterized by

an exceedingly poor prognosis, particularly in advanced stages. This

is largely due to its aggressive invasion and the limited availability of

efficacious treatment options (Roa et al., 2022). CCA is

characterized as a highly lethal and heterogeneous primary liver

cancer that originates from the biliary epithelium (Tomlinson et al.,

2023; Ilyas et al., 2023). The incidence of BTC is on an upward

trajectory globally, btc continues to constitute a significant global

health concern. Projected mortality data pertaining to oncological

conditions in the United States indicate that by the year 2040,

hepatic and intrahepatic bile duct neoplasms are anticipated to

overtake colorectal cancer, ascending to become the third leading

etiology of cancer-associated fatalities (Rahib et al., 2021). However,

the etiological factors contributing to CCA remain inadequately

elucidated (Banales et al., 2020; Clements et al., 2020; Ouyang et al.,

2021; Sung et al., 2021). The obstacles of screening and early

detection persist, largely due to the infrequent manifestation of

distinctive symptoms in patients (European Liver Research

Association, (2023); Harding et al., 2023; Kelley et al., 2023). The

prompt diagnosis and categorization of BTC at its incipient stage is

of critical importance to enhance the probability of therapeutic

success. BTC may manifest as a consequence of the cumulative

accrual of both genetic and epigenetic modifications. This

pathogenesis is potentially modulated by a multitude of factors,

including host immune responses, dietary habits, environmental

elements, and microbial interactions (Nakamura et al., 2015;

Kamisawa et al., 2017; Clements et al., 2020; Choi et al., 2022;

Kendre et al., 2023; Jansson et al., 2023). The term ‘microbiome’

denotes the aggregate of genomic material stemming from
delian Randomization;

se variance weighting;

ine; GBC, Gallbladder

tide polymorphism.

02
microorganisms residing within a specific ecological niche

(Sender et al., 2016). These microorganisms are essential in a

range of host functions, including the modulation of immune

responses, providing defense against pathogenic microbes, and

managing metabolic regulatory processes (Honda and Littman,

2016; Brown et al., 2019).

The gastrointestinal tract and the liver share a profound anatomical

and physiological interrelation, often referred to as the “gut-liver axis.”

This axis governs not merely hepatic pathophysiological processes

but also influences intrahepatic and systemic immune dynamics

(Bubnov et al., 2019; Bubnov et al., 2017; Bubnov et al., 2015).

Consequently, the gastrointestinal microbiota plays a pivotal role in

regulating antineoplastic immune responses (Kudela et al., 2021). The

intestinal barrier functions as the initial line of defense, a disrupted

configuration of the intestinal microbiome, termed “dysbiosis,” has

been linked to compromised integrity of the intestinal barrier

(Peterson and Artis, 2014). The enhancement of our understanding

of the microbiome’s role is substantially driven by advancements in

high-throughput DNA sequencing and the refinement of

computational techniques. These technological developments

enable a more sophisticated examination of the microbiome’s

intricacies (Wang et al., 2021).Emerging empirical data increasingly

suggest that perturbations in the gut-liver axis may be instrumental in

the etiopathogenesis of a myriad of hepatic disorders, including BTC

(Scheufele et al., 2017; Ma et al., 2018; Schramm, 2018; Tripathi et al.,

2018; Molinero et al., 2019; Wang et al., 2022). A recent study by Ma

et al. confirmed that Helicobacter Species infection was associated

with an increased risk of BTC (Gros et al., 2023). Zhou et al. observed

a notably elevated prevalence of Helicobacter infections among

individuals diagnosed with BTC, in contrast to those presenting

with benign biliary conditions (Zhou et al., 2013). In the research

conducted by Murphy and associates, they determined that there was

a correlation between seropositivity to H. pylori proteins and an

augmented likelihood of BTC onset (Murphy et al., 2014). The most

efficacious approach to enhancing health outcomes appears to be

through proactive prevention measures. Probiotics, supported by a

robust body of evidence, demonstrate considerable potential in this

preventative capacity. This presents significant prospects for the

formulation of holistic strategies utilizing prebiotics for the
frontiersin.org
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promotion of healthful diets and the management and prophylaxis of

BTC (Liu et al., 2022). Previous scholarly inquiries have indicated the

potential of intestinal microbiota to act as an emergent biological

indicator for the prognostic assessment and preventive measures

concerning BTC (Plieskatt et al., 2013; Chng et al., 2016; Jia et al.,

2020; Chen et al., 2021; Zhang Q. et al., 2021; Zhang T. et al., 2021;

Mao et al., 2021; Abril et al., 2022; Binda et al., 2022; Ito et al., 2022;

Okuda et al., 2022; Wheatley et al., 2022; Chai et al., 2023; Elvevi

et al., 2023).

Nonetheless, the correlation between gut microbiota and BTC is

susceptible to modulation by environmental variables, lifestyle

choices, and additional confounding elements in observational

investigations. Such conditions circumscribe the ability to draw

causal inferences linking gut microbiota to BTC. The relationship

between host genetic factors and the gut microbiome in the context

of BTC necessitates more comprehensive exploration. Mendelian

Randomization (MR), a prevalent analytical technique employed

for investigating causal linkages between exposure variables and

resultant outcomes, has been utilized to probe prospective causal

affiliations between gut microbiota and a diverse array of medical

conditions (Liu et al., 2023; Xi et al., 2023; Min et al., 2023; He et al.,

2023; Li et al., 2023; Luo et al., 2023b). Consequently, we

endeavored to ascertain the causal linkage between these variables

at the genetic level through the application of MR techniques.

Furthermore, we sought to identify potential microbial biomarkers

conducive to disease prevention and amelioration in individuals

diagnosed with BTC.

In the present study, we hypothesized that the incidence of BTC

may be higher in patients with microbiota dysbiosis due to the fact

that microbiota dysbiosis induces immune disruption through the

gut-hepatic axis. Our objective is to attain personalized forecasting

and prophylaxis of BTC by identifying specific microbiota in

individual fecal samples that possess a causative association with

BTC. This endeavor aims to furnish a robust evidence-based

medicinal foundation for the formulation of an integrative service
Frontiers in Cellular and Infection Microbiology 03
model encompassing BTC health prediction, diagnosis,

intervention, prevention, and health augmentation.
Study design

The present MR investigation was conducted and documented

in compliance with the STROBE-MR guidelines, which are

designed to fortify the reporting quality of observational

epidemiological studies (Skrivankova et al., 2021a; Skrivankova

et al., 2021b). In order to evaluate our proposed hypothesis, we

selected genetic variants pertinent to features of gut microbiota (N =

18,340) as well as BTC (comprising 418 cases and 159,201 controls)

for our analysis. bidirectional MR approach was employed to

scrutinize the influence of gut microbiota on the susceptibility to

BTC development. MR integrates summary statistics from

Genome-Wide Association Studies (GWAS), thereby attenuating

the impact of confounding variables on the analysis. Figure 1

delineates the schematic representation of the research

methodology. The MR investigation adhered to three critical

assumptions to ensure the validity and reliability of the resultant

findings: (1) Instrumental variables (IVs) were distinctly correlated

with each GM taxon and exhibited no association with BTC;

(2) The IVs uniquely linked with each GM taxon demonstrated

no correlation with potential confounding variables; and (3) The

influence exerted by the IVs on BTC was mediated exclusively

through their respective associations with each GM taxon, devoid of

interference from extraneous variables.
Materials

We sourced Single Nucleotide Polymorphisms (SNPs)

correlated with gut microbial abundance from the GWAS

conducted by the MiBioGen consortium. This study encompassed
FIGURE 1

The study design of the present Mendelian randomization study of the associations of the gut microbiota and Biliary tract cancer risk.
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25 cohorts comprising a total of 18,340 participants and was geared

toward pinpointing genetic loci that exert an impact on the relative

abundance of gut microbes. This identification was achieved

through the analysis of 16S rRNA sequencing profiles

corresponding to the study subjects. Subsequent to their

collection, summary statistics from GWAS pertaining to 196

bacterial taxa were incorporated into the MR analysis

(Kurilshikov et al., 2021). We retrieved GWAS summary statistics

related to BTC from the BioBank Japan (BBJ). The BBJ serves as a

prospective genomic repository that has collaboratively amassed

DNA and serum specimens from a consortium of 12 medical

institutions across Japan. Investigations pertaining to BBJ received

ethical approval from both the Institutional Review Board at RIKEN

Yokohama Institute and the Ethics Committee at the Institute of

Medical Science, University of Tokyo (Ishigaki et al., 2020).
Selection of IVs

A rigorous sequence of quality control measures was

implemented to identify and select IVs that met the established

eligibility criteria, In alignment with the prevailing standards for

GM research, we selected IVs using a threshold of P < 1 × 10−5 for

screening (Zhang et al., 2023). The F-statistic serves as a

quantitative metric for assessing the robustness of the association

between genetic variants and the exposure variable, with a higher F-

statistic signifying a more potent instrumental variable. Only IVs

that manifest an F-statistic exceeding 10 are retained for further

analysis (Burgess et al., 2017). The calculation of linkage

disequilibrium (LD) between SNPs was performed utilizing the

European samples from the 1000 Genomes Project as the reference

panel. SNPs manifesting the lowest P-values were retained for

further study, provided they satisfied the criterion of R2 < 0.001

within a clumping window size of 10,000 kilobases. SNPs exhibiting

a minor allele frequency (MAF) below the threshold of 0.01 were

systematically excluded from the analysis.
Statistical analysis

The MR investigation was integrated to assess the causative

associations between 196 distinct microbial taxa and BTC. Utilizing

the Bonferroni correction method, we delineated the criteria for

statistical significance for the principal MR outcomes across various

taxonomic levels, ranging from phylum to genus. Specifically, for a

given taxonomic level that incorporates ‘n’ distinct bacterial taxa,

the threshold for statistical significance, after applying Bonferroni

correction, is determined as 0.05/n (Luo et al., 2023a). The inverse

variance-weighted (IVW) methodology was employed as the

principal analytical instrument for evaluating the influence of gut

microbiota on the susceptibility to BTC (González-Garcıá et al.,

2023).To enhance the robustness of our analytical approach, we

incorporated four supplementary MR techniques into our

investigation. These encompassed the simple mode, weighted

mode, MR-Egger, and weighted median strategies. A P-value of

less than 0.05 was considered to denote statistical significance in the
Frontiers in Cellular and Infection Microbiology 04
context of MR analysis. In consideration of the limited sample size

in the BTC GWAS, the statistical power for conducting a MR

analysis was ascertained via computations performed on the mRnd

website. (https://shiny.cnsgenomics.com/mRnd/) (Brion et al.,

2013). Within the context of the IVW method, the Cochran’s Q

test was employed to evaluate the extent of statistical heterogeneity

among the SNPs incorporated in each individual analysis. The

estimation of horizontal pleiotropy was conducted through the

utilization of the MR-Egger intercept test, a P-intercept value of

less than 0.05 serves as an indicative metric, suggesting the existence

of horizontal pleiotropy. To mitigate the impact of potential

confounding variables, we conducted an additional query using

the PhenoScanner database to ascertain whether the SNPs that

yielded significant MR estimates in this investigation were

concomitantly linked with other risk factors for BTC.

Furthermore, for those gut microbiota taxa exhibiting causal

relationships, we conducted advanced pleiotropy evaluations

utilizing the MR Pleiotropy RESidual Sum and Outlier (MR-

PRESSO) methodology, subsequently excluding any identified

outliers, Statistical evaluations were conducted utilizing the

TwoSampleMR and MR-PRESSO packages within the R software

environment (version 4.2.2).
Reverse MR analysis

To examine the potential causal relationship between BTC and

various bacterial genera, we conducted a reverse Mendelian

Randomization analysis, wherein BTC served as the exposure

variable and the composition of the gut microbiota was the

outcome variable. SNPs linked to BTC were employed as

instrumental variables for this analysis.
Ethical approval

In prior research endeavors, written informed consents were duly

obtained from all involved participants. Correspondingly, these

studies received the necessary approvals from relevant ethical

review committees (Kurilshikov et al., 2021; Ishigaki et al., 2020).
Results

In the present study, initial efforts were made to obtain effective

IVs using rigorous quality control. These IVs were then used in an

MR analysis to assess the putative causal relationship between 196

GM taxa and BTC. In every retained SNP, the F-statistic exceeded

the value of 10 (as detailed in Supplementary Table), signifying an

adequate level of statistical power in the correlation between the IV

and their corresponding bacterial taxa. For the entirety of the MR

outcomes, we undertook sensitivity assessments to scrutinize both

heterogeneity, as indicated by Cochran’s Q statistic, and pleiotropic

effects, as evaluated through MR-Egger regression and MR-

PRESSO methodologies.
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Causal effect of gut microbiota on BTC

In the MR investigation conducted on gut microbiota, utilizing

microbiota-associated SNPs as instruments, the initial analysis using the

IVW method discerned six specific taxa that exhibited the potential for

exerting causal influences on the occurrence of BTC. Utilizing the IVW

analytical method, it was discerned that the Family Streptococcaceae

(odds ratio (OR) 0.44, 95% confidence interval (CI) 0.21–0.94, P= 0.034);

Family Veillonellaceae (OR 0.46, 95% CI 0.24–0.88, P= 0.018); Genus

Dorea (OR 0.29, 95% CI 0.09–0.88, P= 0.018) exhibited a negative

correlation with BTC susceptibility. Conversely, the Class Lentisphaeria

(OR=2.21, 95% CI:1.15–4.25, P=0.017); Genus Lachnospiraceae FCS020

(OR=2.30, 95%CI:1.19–4.45, P=0.013) andOrder Victivallales (OR=2.21,

95% CI:1.15–4.25, P=0.017) were observed to have a positive association

with BTC risk (Figures 2A, B, 3A–L). The p-values derived from the

Cochran Q test and the MR-Egger intercept test exceeded 0.05. This

suggests compelling evidence supporting the lack of heterogeneity and

the absence of pleiotropy in the study (Table 1).
Frontiers in Cellular and Infection Microbiology 05
Causal effect of BTC on gut microbiota

In the bidirectional MR study, we examined the potential causal

linkage between BTC on gut microbiota. Our analysis revealed a

marked causal relationship between genetically inferred BTC and

an elevated abundance of the following genera: Anaerofilum

(OR = 1.02, 95% CI: 1.01–1.03, P = 0.026), Hungatella (OR =

1.02, 95% CI: 1.01–1.03, P = 0.026), Paraprevotella (OR = 1.02, 95%

CI: 1.01–1.03, P = 0.026), and Ruminococcaceae UCG010 (OR =

1.02, 95% CI: 1.01–1.03, P = 0.026). Conversely, a reduced

abundance was observed in the Genus Enterorhabdus (OR = 0.99,

95% CI: 0.97–0.99, P = 0.018) (Figures 2C, D, 4A–J). The

consistency of the outcomes was further assessed utilizing the MR

Egger approach. The obtained p-values exceeding 0.05 suggest a

lack of heterogeneity in our findings. Subsequent evaluation using

the MR-PRESSO methodology indicated the absence of significant

outliers and a lack of horizontal pleiotropy within our MR study

(P > 0.05) (Table 2).
B

C D

A

FIGURE 2

(A) Causal effect of gut microbiota with Biliary tract cancer Schematic representation of the MR analysis results. (B) Forest plot of the MR analysis
results. (C) Causal effect of Biliary tract cancer with gut microbiota Schematic representation of the Reverse MR analysis results. (D) Forest plot of the
MR analysis results. OR odds ratio, CI confidence interval, IVW inverse variance weighted method, Significant threshold was set at p-value <0.05 for
the Inverse Variance Weighted method (IVW).
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Discussion

The study at hand validates the initial hypothesis. The adopted

methodology underscores a paradigmatic transition from reactive

healthcare to a framework emphasizing predictive, preventive, and

personalized medicine (3PM/PPPM), targeting susceptible
Frontiers in Cellular and Infection Microbiology 06
segments of the populace. The worldwide prevalence of BTC has

consistently presented a considerable challenge to public health

initiatives over an extended period (Zhang Y. et al., 2021).

Biobanking is transitioning into a new epoch characterized by the

prominence of big data, in the age of big data, biobanking plays a

pivotal role in advancing predictive, preventive, and personalized
B C

D E F

G H I

J K L

A

FIGURE 3

(A–L) Scatter plots of significant causality of the GM and BTC. Scatter plot of the effect size and 95% confidence interval of each SNP on GM and
BTC risk. The horizontal axis reflects genetic effect of each SNP on GM. The vertical axis represents the genetic effect of each SNP on BTC risk.
Leave-one-out analysis for the impact of individual SNPs on the association between GM and BTC risk. By leaving out exactly one SNP, it
demonstrates how each individual SNP influences the overall estimate.
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TABLE 1 Summary results of MR (Target Gut microbiome on Biliary tract cancer).

-
SSO

Heterogeneity Horizontal pleiotrop

Cochran’s
Q

P
value

Egger
intercept

SE
P

value

9 3.460 0.629 -0.034 0.182 0.859

8 3.460 0.629 -0.034 0.182 0.859

2 8.212 0.694 -0.056 0.155 0.723
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Taxa exposure outcome Nsnp Methods Beta SE
OR

(95%CI)
P

value
M

PRE

Class Lentisphaeria
Biliary
tract cancer

6

MR-Egger 1.014 1.231
2.76

(0.25-30.82)
0.456

0.

Weighted median 1.009 0.431
2.74

(1.18- 6.39)
0.019

Inverse
variance weighted

0.791 0.334
2.21

(1.15- 4.25)
0.017

Simple mode 1.036 0.651
2.82

(0.79-10.11)
0.172

Weighted mode 1.112 0.509
3.04

(1.12- 8.26)
0.080

Order Victivallales
Biliary
tract cancer

6

MR-Egger 1.014 1.231
2.76

(0.25-30.82)
0.456

0.

Weighted median 1.009 0.442
2.74

(1.15- 6.53)
0.022

Inverse
variance weighted

0.791 0.334
2.21

(1.15- 4.25)
0.017

Simple mode 1.036 0.581
2.82

(0.90- 8.82)
0.134

Weighted mode 1.112 0.530
3.04

(1.08- 8.60)
0.090

Family Streptococcaceae
Biliary
tract cancer

12

MR-Egger -0.120 1.955
0.89

(0.02-40.94)
0.952

0.

Weighted median -0.514 0.557
0.60

(0.20- 1.78)
0.355

Inverse
variance weighted

-0.817 0.386
0.44

(0.21- 0.94)
0.034

Simple mode -0.036 0.890
0.96

(0.17- 5.52)
0.968

Weighted mode 0.077 0.811
1.08

(0.22- 5.30)
0.925
R

6

6

6
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TABLE 1 Continued

-
SSO

Heterogeneity Horizontal pleiotrop

Cochran’s
Q

P
value

Egger
intercept

SE
P

value

0 7.912 0.893 -0.023 0.055 0.677

8 0.971 0.986 -0.010 0.107 0.928

4 7.393 0.687 0.100 0.062 0.145

(Continued)
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Taxa exposure outcome Nsnp Methods Beta SE
OR

(95%CI)
P

value
M

PRE

Family Veillonellaceae
Biliary
tract cancer

15

MR-Egger -0.533 0.681
0.59

(0.15-2.23)
0.447

0.

Weighted median -0.435 0.474
0.65

(0.26-1.64)
0.358

Inverse
variance weighted

-0.785 0.334
0.46

(0.24-0.88)
0.018

Simple mode -0.272 0.783
0.76

(0.16-3.53)
0.732

Weighted mode -0.419 0.453
0.66

(0.27-1.60)
0.370

Genus Dorea
Biliary
tract cancer

7

MR-Egger -1.105 1.473
0.33

(0.02-5.94)
0.486

0.

Weighted median -1.232 0.757
0.29

(0.07-1.29)
0.103

Inverse
variance weighted

-1.231 0.603
0.29

(0.09-0.95)
0.041

Simple mode -1.826 1.117
0.16

(0.02-1.44)
0.153

Weighted mode -1.221 0.855
0.29

(0.06-1.58)
0.203

Genus
Eubacterium hallii
Group

Biliary
tract cancer

11

MR-Egger -0.062 0.665
0.94

(0.26- 3.46)
0.927

0.

Weighted median 0.622 0.487
1.86

(0.72- 4.85)
0.201

Inverse
variance weighted

0.838 0.351
2.31

(1.16- 4.61)
0.017

Simple mode 1.198 0.716
3.31

(0.81-13.49)
0.125

Weighted mode 0.619 0.446
1.86

(0.77- 4.46)
0.195
R
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medicine, ensuring optimal treatment for each patient at the

appropriate juncture. In this research, we harnessed expansive

GWAS summary-level data through MR analysis to scrutinize the

putative causal linkage between the gut microbiota and BTC. The

results indicate that different constituents of the gut microbiota

might either augment or attenuate BTC risk. In the context of big

data, biobanking facilitates the transition towards a more

individualized healthcare framework. PPPM offers an innovative

methodology for addressing BTC-related disorders.The current

research revealed that taxa from the Family Streptococcaceae,

Family Veillonellaceae, and the Genus Dorea exhibited a negative

correlation with BTC susceptibility. Conversely, taxa from the Class

Lentisphaeria, Order Victivallales, and the Genus Lachnospiraceae

FCS020 Group demonstrated a positive association with BTC risk.

The Streptococcaceae family, particularly some strains of

Streptococcus, have been investigated for their potential role in

carcinogenesis (Re et al., 2023). One hypothesis is that they may

induce chronic inflammation, a known risk factor for cancer.

Chronic inflammation can lead to DNA damage, promoting

mutations and the initiation of cancerous growths. Furthermore,

certain Streptococcus species produce metabolites that may have

carcinogenic properties, potentially impacting the development of

BTC (Plieskatt et al., 2013; Daniel et al., 2023). Members of the

Veillonellaceae family are known for their role in the fermentation

of proteins and carbohydrates in the gut. The metabolites produced

during this process, such as short-chain fatty acids, can have both

protective and harmful effects. While some metabolites might have

anti-inflammatory and anti-carcinogenic effects, others may

contribute to the development of cancer. For BTC, the pathogenic

mechanism may involve the alteration of bile acid metabolism and

the gut-liver axis, which can lead to an imbalance in the liver’s

cellular environment, potentially contributing to carcinogenesis

(Mao et al., 2021; Button et al., 2023). Dorea, a less studied genus,

has been linked with various gastrointestinal diseases. Its role in

BTC could be associated with the modulation of the gut-liver axis

and immune responses. Dorea may influence the liver’s immune

environment, either promoting or inhibiting inflammation. In the

context of BTC, an altered immune response in the liver could

facilitate the development of cancerous cells or, conversely, provide

a protective effect (Mima et al., 2017).

In the bidirectional MR study, we examined the potential causal

linkage between BTC on gut microbiota. The gastrointestinal tract

harbors a diverse and intricate consortium of microorganisms,

collectively referred to as the gut microbiota. The portal vein

conveys metabolites originating from the gut to the liver.

Molecules such as bile acids, which are secreted by the liver,

modulate the microbial environment. Binda et al. delineated three

primary modalities through which gut microbiota potentially

instigate cancerous activities: firstly, through bacterial toxins and

metabolites; secondly, by altering both local and systemic immune

responses of the host; and thirdly, via metabolic alterations in both

the microbiota and the host (Binda et al., 2022). To a certain degree,

our findings concur with earlier research (Mao et al., 2021). In

clinical investigations analyzing stool samples from BTC patients,

there was a notable increase in alpha-diversity compared to healthy

counterparts. Specifically, the abundance of taxa such as
T
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Lactobacillus, Actinomyces, Peptostreptococcaceae, Alloscardovia,

and Bifidobacteriaceae was conspicuously elevated (Jia et al.,

2020). Nevertheless, the integration of such genetic information

into clinical protocols presents a formidable challenge. Our research

effectively established a connection between the gut microbiota and

BTC by employing MR, considering genetic data as IV, and

extrapolating the genetic association between the two entities.

This represents the inaugural MR study elucidating the causal

relationship between the gut microbiota and BTC, effectively

mitigating the influence of confounders. Furthermore, the

outcomes from the MR study hold significant relevance for public
Frontiers in Cellular and Infection Microbiology 10
health. They augment prior research concerning the gut microbiota

and BTC, offering a novel viewpoint on their genetic-level

association. In terms of disease prevention, timely modulation of

the gut microbiota can steer the prophylaxis of BTC disease.

Diagnostically, it’s imperative to prioritize BTC screenings for

individuals exhibiting gut microbiota disturbances. This research

utilized GWAS data on intestinal flora from European subjects and

BTC GWAS data from Japanese subjects. Consequently, the

population sample in this investigation offers a representative

cross-section. It is imperative to acknowledge the constraints

inherent to our research. First, the genetic information pertaining
B C

D E F

G H I

J

A

FIGURE 4

(A–J) In reverse MR analysis, Plots for “leave-one-out” analysis for causal effect of Biliary tract cancer on gut microbiota risk; In reverse MR analysis,
The scatter plots for association between Biliary tract cancer and gut microbiota.
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TABLE 2 Summary results of bidirectional MR (Biliary tract cancer on target Gut microbiome).

Heterogeneity Horizontal pleiotrop

Cochran’s
Q

P
value

Egger
intercept

SE
P

value

8.280 0.601 -0.006 0.011 0.608

7.957 0.632 0.010 0.009 0.293

4.998 0.891 -0.008 0.013 0.538

6.556 0.766 0.003 0.010 0.757
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Taxa exposure outcome Nsnp Methods Beta SE
OR

(95%CI)
P

value
MR-

PRESSO

Genus
Biliary
tract cancer Anaerofilum

11

MR-Egger 0.022 0.012
1.02

(1.00-1.05)
0.114

0.578

Weighted median 0.019 0.011
1.02

(1.00-1.04)
0.086

Inverse
variance weighted

0.016 0.007
1.02

(1.01-1.03)
0.026

Simple mode 0.021 0.015
0.97

(0.91-1.03)
0.179

Weighted mode 0.020 0.010
1.02

(1.00-1.04)
0.077

Genus
Biliary
tract cancer

Enterorhabdus 11

MR-Egger -0.024 0.010
0.98

(0.96-1.00)
0.047

0.652

Weighted median -0.015 0.009
0.99

(0.97-1.00)
0.106

Inverse
variance weighted

-0.014 0.006
0.99

(0.97-0.99)
0.018

Simple mode 0.016 0.015
1.02

(0.99-1.05)
0.317

Weighted mode -0.017 0.008
0.98

(0.97-1.00)
0.075

Genus
Biliary
tract cancer

Hungatella 11

MR-Egger 0.024 0.014
1.02

(1.00-1.05)
0.123

0.934

Weighted median 0.020 0.011
1.02

(1.00-1.04)
0.064

Inverse
variance weighted

0.016 0.008
1.02

(1.01-1.03)
0.047

Simple mode 0.017 0.015
1.02

(0.99-1.05)
0.287

Weighted mode 0.020 0.010
1.02

(1.00-1.04)
0.082

Genus
Biliary
tract cancer

Paraprevotella 11 MR-Egger 0.010 0.011
1.01

(0.99-1.03)
0.378 0.814
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TABLE 2 Continued

eta SE
OR

(95%CI)
P

value
MR-

PRESSO

Heterogeneity Horizontal pleiotrop

Cochran’s
Q

P
value

Egger
intercept

SE
P

value

0.009 0.008
1.01

(0.99-1.03)
0.281

0.013 0.006
1.01

(1.01-1.03)
0.048

0.022 0.015
1.02

(0.99-1.05)
0.165

0.009 0.008
1.01

(0.99-1.03)
0.282

0.015 0.008
1.02

(1.00-1.03)
0.088

0.912 4.703 0.910 -0.005 0.007 0.486

0.015 0.006
1.02

(1.00-1.03)
0.020

0.010 0.004
1.01

(1.00-1.02)
0.026

0.017 0.009
1.02

(1.00-1.04)
0.106

0.013 0.006
1.01

(1.00-1.03)
0.051
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variance weighted

Simple mode

Weighted mode

Genus
Biliary
tract cancer

Ruminococcaceae
UCG010

11

MR-Egger

Weighted median

Inverse
variance weighted

Simple mode

Weighted mode
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to BTC was sourced from GWAS. However, the relatively small

sample size of cancer cases could potentially skew the results of the

GWAS, given the imbalanced ratios between cases and controls;

Second, our projections may also be susceptible to inherent

limitations associated with Mendelian Randomization analysis,

including potential selection bias.

From a broader perspective, these bacteria and their

interactions with the host’s immune system, as well as their

metabolic by-products, are of significant interest in understanding

BTC. The gut microbiota can modulate systemic inflammation,

immune surveillance, and the metabolome, all of which are crucial

factors in carcinogenesis. It is essential to note that while these

associations are promising, they are complex and require further

research. Future studies should focus on elucidating the precise

mechanisms by which these bacteria influence BTC, potentially

leading to new therapeutic strategies. The rapidly evolving field of

microbiome research continually provides new insights into the

intricate relationship between the gut flora and various cancers,

including BTC.
Conclusion

Our inaugural systematic Mendelian randomization assessment

furnishes empirical support suggesting a potential causal linkage

between various gut microbiota taxa and BTC. This finding could

offer salient biomarkers that are advantageous for the early, non-

invasive detection of BTC. Furthermore, it might delineate

prospective targets for therapeutic strategies in addressing the

ailment. While extensive research is still needed to elucidate the

connections between the gut microbiome and BTC, burgeoning

mechanistic understandings are paving the way for innovative

interventions, including potential strategies for microbiota

modulation. Furthermore, these insights are shaping public health

recommendations concerning dietary and lifestyle habits to

preemptively combat these fatal malignancies. Additional

scholarly investigations are imperative to both authenticate

particular gut microbes linked to BTC and to substantiate the

underlying mechanism and causal relationship through animal

models and clinical studies. Ultimately, this progression will

facilitate the shift from reactive medical interventions to a PPPM

approach in the oversight of BTC.
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