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agent in human
pathological conditions
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Through complex interactions with the host’s immune and physiological

systems, gut bacteria play a critical role as etiological agents in a variety of

human diseases, having an impact that extends beyond their mere presence and

affects the onset, progression, and severity of the disease. Gaining a

comprehensive understanding of these microbial interactions is crucial to

improving our understanding of disease pathogenesis and creating tailored

treatment methods. Correcting microbial imbalances may open new avenues

for disease prevention and treatment approaches, according to preliminary data.

The gut microbiota exerts an integral part in the pathogenesis of numerous

health conditions, including metabolic, neurological, renal, cardiovascular, and

gastrointestinal problems as well as COVID-19, according to recent studies. The

crucial significance of the microbiome in disease pathogenesis is highlighted by

this role, which is comparable to that of hereditary variables. This review

investigates the etiological contributions of the gut microbiome to human

diseases, its interactions with the host, and the development of prospective

therapeutic approaches. To fully harness the benefits of gut microbiome

dynamics for improving human health, future research should address existing

methodological challenges and deepen our knowledge of microbial interactions.
KEYWORDS
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1 Introduction

Trillions of microorganisms, including bacteria, fungi, archaea, protozoa, and viruses,

reside within the human body, collectively representing a genetic repertoire that

encompasses approximately 100-150 times more genes than the host genome (Thomas

et al., 2017; Lkhagva et al., 2021b; Afzaal et al., 2022). Alterations in the microbiome’s

composition within an individual can profoundly affect overall health, with modifications

in microbial populations potentially leading to considerable changes in health outcomes
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(Voigt et al., 2015; Gacesa et al., 2022). Their composition is

modulated by factors such as mode of birth, feeding system,

dietary habits, lifestyle, exercise, drug use, and host genetics

(Chang and Kao, 2019; Hasan and Yang, 2019; Lkhagva et al.,

2021a; Nandwana et al., 2022; Kok et al., 2023).

The microbiota colonizes the human gut immediately after birth

(Milani et al., 2017), though some research has also reported that the

microbiome may colonize the human gut during the prenatal

period (Perez-Munoz et al., 2017; Xiao and Zhao, 2023). The mode

of delivery is a critical determinant in this process. In vaginal deliveries,

the infant’s gut is initially colonized by the maternal gut and

vaginal microbiota. Conversely, infants delivered via cesarean

section are predominantly exposed to skin and environmental

microbes from the hospital setting (Dunn et al., 2017). Facultative

anaerobes, such as Escherichia coli, Staphylococcus, and Streptococcus,

first colonize the infant gut following a vaginal delivery and, for a

few days, create an anaerobic environment that allows the survival

of strict anaerobes, such as Bacteroides and Bifidobacterium spp.

(Pantoja-Feliciano et al., 2013). Cesarean-section infants are enriched

with opportunistic pathogens, including Enterococcus, Enterobacter,

and Klebsiella species, and show disturbed transmission of Bacteroides

and Bifidobacterium spp. Breastfeeding can partially restore delayed

gut microbiota establishment (Shao et al., 2019; Guo et al., 2020).

The mode of early feeding (breastfeeding vs. formula feeding) plays a

major role in shaping the gut microbiota during the formative years.

Bezirtzoglou et al. (Bezirtzoglou et al., 2011) showed that

Bifidobacterium species were more than two times higher in

breastfeeding infants than in formula-fed infants. Over time, the

diversity of the gut microbiota is modulated by a range of factors,

including age, sex, dietary intake, pharmacological treatments, physical

activity, geographical location, and occupational environment.

The gut microbiome is integral to the maturation of the host

immune system, the metabolism of pharmaceuticals, the process of

digestion, cognitive function, the neutralization of toxins, the synthesis

of essential vitamins, and the establishment of a conducive

environment for commensal microorganisms. These functions

collectively contribute to pathogen defense and the prevention of

severe diseases (Abt and Pamer, 2014; Li et al., 2016a; Mohajeri

et al., 2018; Nguyen et al., 2019; Sasso et al., 2023). Probiotic

bacteria, often termed “beneficial” or “commensal” microorganisms,

are essential for sustaining a balanced and healthful microbial milieu

within the digestive system by suppressing pathogenic or “harmful”

microbes and regulating the pH of the gut. Dietary fibers and resistant

starches, which are not metabolized by endogenous digestive enzymes,

are fermented by the gut microbiota to produce short-chain fatty acids

(SCFAs) such as acetate, butyrate, and propionate within the colon.

SCFAs, particularly butyrate, are vital for maintaining the gut

microbiome’s equilibrium through various localized effects, including

the preservation of intestinal barrier integrity, enhancement of mucus

production, attenuation of inflammation, modulation of immune
Abbreviations: BFT, Bacteroides fragilis toxin; CAD, coronary artery disease; CD,

Crohn’s disease; CKD, chronic kidney disease; CRC, colorectal cancer; GF, germ-

free; GI, gastrointestinal tract; IBD, inflammatory bowel disease; IBS, irritable

bowel syndrome; PAGln, phenylacetylglutamine; SCFA, short-chain fatty acid;

TMAO, trimethylamine N-oxide.

Frontiers in Cellular and Infection Microbiology 02
responses, and potential reduction of the detrimental impacts

associated with pathogenic microorganisms (Vinolo et al., 2011;

Corrêa-Oliveira et al., 2016; Fang et al., 2021; Vinelli et al., 2022).

Non-digestible food supplements, called prebiotics, can selectively

stimulate the growth of beneficial microbes, such as Bifidobacterium

and Lactobacillus species (Rastall and Gibson, 2015). Prebiotics

contribute to the maintenance of a balanced microbial ecosystem in

the gut by supplying essential nutrients to beneficial microorganisms.

This support enhances digestive function, optimizes nutrient

absorption, and bolsters immune function, while also mitigating the

risk of gastrointestinal disorders (Guarino et al., 2020; You et al., 2022).

The disruption of the gut microbiota ecosystem, referred to as

dysbiosis, alters the normal gut flora and precipitates the onset of

diverse pathologies. This disruption leads to an overgrowth of

pathogenic bacteria and a decrease in beneficial microbes, which

compromises gut barrier integrity and triggers pro-inflammatory

responses and dysregulated immune function. Consequently,

dysbiosis is implicated in a wide array of diseases, including

neurodegenerative disorders, cardiovascular diseases, metabolic

syndromes, gastrointestinal disorders, COVID-19, and colorectal

carcinoma, as confirmed by both human and animal studies

(Degruttola et al., 2016; Hou et al., 2022). In this review, we

encapsulate the most recent research on the impact of the gut

bacteria on human diseases, focusing on its underlying mechanisms

and regulatory aspects. Moreover, we explicate the potential

mechanisms of microbial metabolism and its derivatives that

facilitate disease development and progression, offering insights

into potential targets for future preventive and therapeutic strategies.
2 The impact of the gut bacteria on
human health maintenance

Gut microbiota profoundly affects human health by impacting

immune system activity, metabolic functions, and the balance of

microbial communities essential for physiological stability. The gut

microbiota modulates the host’s innate and adaptive immune

responses through their components and metabolic products.

Metabolites produced by the gut microbiota are crucial in

maintaining the fundamental functions of the host. Conversely,

disruption in the production of these metabolites can contribute to

the pathogenesis of various diseases. Short-chain fatty acids (SCFAs)

aremicrobial metabolites that facilitate the differentiation of T cells into

effector T cells and regulatory T cells (Park et al., 2015). The peptides

B7 and B12, secreted by Bifidobacterium longum and Bacteroides

fragilis, respectively, play a role in modulating intestinal cytokine

production in patients suffering from inflammatory bowel disease

(IBD) (Fernández-Tomé et al., 2019). In an unhealthy infant, the gut

fosters a pronounced TH1 profile and a pro-inflammatory immune

response, leading to the secretion of IL-12 and interferon (IFN)-

gamma. This, in turn, causes tissue damage and disrupts normal

immune functions (Tamburini et al., 2016). Moreover, the gut

microbiome is crucial for the digestion of dietary fiber, as human

digestive enzymes are incapable of fermenting non-starch

polysaccharides (Holscher, 2017). The short-chain fatty acid

butyrate, generated from the microbial fermentation of dietary fiber,
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is essential for epithelial cell metabolism and functionality. It also

promotes the wound-healing response and fortifies epithelial barrier

functions in patients with inflammatory bowel disease (IBD) (Wang

et al., 2020). Furthermore, it contributes to the regulation of anti-

inflammatory responses and shows promise for therapeutic

applications in diseases such as intestinal neoplasia and

inflammatory bowel disease (IBD) (Salvi and Cowles, 2021).

Bifidobacterial strains impede the infection caused by Shiga toxin-

producing E. coli O157:H7, leading to increased acetate synthesis from

carbohydrates (Fukuda et al., 2011). A study involving germ-free (GF)

rats demonstrated impaired intestinal transit and diminished small

intestinal contractions compared to conventional rats (Husebye et al.,

2001). The enteric glial cell network is pivotal in regulating the function

of the intestinal epithelial barrier and modulating the intestinal

immune response (Inlender et al., 2021). The gut microbiota plays a

critical role in the postnatal development of enteric glial cell networks

within the intestinal mucosa and influences the colonization of glial

cells in the lamina propria of adult mice (Kabouridis et al., 2015). Gut

bacteria such as Bifidobacterium dentium and Akkermansia

muciniphila contribute to a healthier gut environment by promoting

intestinal mucus production and enhancing goblet cell function,

without causing significant degradation of mucin (Engevik et al.,

2019; Kim et al., 2021). Additionally, the human gut microbiome

participates in the chemical transformation of industrial chemicals and

pharmaceuticals into metabolites, which can influence their

bioavailability, bioactivity, and toxicity (Koppel et al., 2017).

Chemotherapeutic agents, such as doxorubicin, may induce severe

gastrointestinal complications, including enteric mucositis and

dysbiosis, and the intestinal microbiome has the capacity to

modulate these adverse effects (Blaustein et al., 2021). Specifically,

the intestinal bacterium Raoultella planticola can detoxify the

anticancer drug doxorubicin under anaerobic conditions through

glycosylation, thereby enhancing host survival. Similarly, E. coli and

Klebsiella pneumoniae strains facilitate the same biotransformation

process via analogous biosynthetic pathways, reducing toxicity in the

model eukaryote Caenorhabditis elegans by generating metabolites

(Yan et al., 2018). Furthermore, the intestinal bacterium Eggerthella

lenta can deactivate the cardiac drug digoxin, converting it to

dihydrodigoxin (Haiser et al., 2013). These findings underscore the

critical role of the gut microbiome in modulating drug metabolism and

its potential implications for therapeutic efficacy and safety. The gut

bacteria play a pivotal role in the maintenance of human health by

influencing a range of physiological processes, including immune

system regulation, nutrient metabolism, and disease prevention.

Their intricate interactions with the host contribute to overall well-

being and highlight the importance of maintaining a balanced

microbiome for optimal health outcomes.
3 The role of gut bacteria in
disease pathogenesis

The human gut bacteria are essential to multiple facets of host

physiology and health, with their dysregulation being strongly
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associated with numerous diseases. The gut microbiome significantly

affects gastrointestinal conditions such as inflammatory bowel disease

(IBD), irritable bowel syndrome (IBS), chronic constipation, and

colorectal cancer (CRC), as well as influencing a spectrum of

systemic disorders, including metabolic and neurodegenerative

diseases (Figure 1).
3.1 Gastrointestinal disorders and
complications associated with gut bacteria

3.1.1 Inflammatory bowel disease
Inflammatory bowel disease (IBD), a chronic inflammation of

the GI tract, is an umbrella term used to incorporate ulcerative colitis

and Crohn’s disease (CD) (Thompson-Chagoyan et al., 2005). The

development of IBD is complex and poorly understood due to its

multifactorial nature, which involves genetic factors, immune

dysfunction, imbalances in gut microbiota, environmental

influences, and various aspects of intestinal health (Yuan et al.,

2023) (Figure 2). The intestinal microbiota plays a crucial role in

IBD, as it involves a compromised immune tolerance that results in

an excessive immune reaction to gut bacteria. IBD patients

frequently exhibit a modified composition of the gut microbiome

(Zuo and Ng, 2018; Zhang et al., 2022). Patients with IBD often show

a decrease in gut microbiota diversity, particularly in Firmicutes.

This reduction can have adverse effects on mucosal integrity and

butyrate production, potentially leading to inflammation and

impacting cytokine production in the colon (Fernandes and

Andreyev, 2022). In patients with CD, anaerobic gram-positive

coccoid rods and gram-negative rods are more prevalent than in

their healthy counterparts (Van De Merwe et al., 1988); Bacteroides

and Bifidobacteria are poorly associated, whereas Enterobacteriaceae

are richest in CD (Seksik et al., 2003). The abundance of beneficial

bacteria is significantly decreased in patients with IBD. Kang et al.

(Kang et al., 2010) found that anti-inflammatory bacteria

Faecalibacterium prausnitzii and beneficial Ruminococcus species

are 5-10 times less abundant in patients with inflammatory bowel

disease (IBD) compared to the control group. Additionally,

pathobionts, which are typically commensal microbes that can

become harmful under certain conditions, are often found in

higher numbers in individuals with inflammatory bowel disease

(IBD) (Nagao-Kitamoto and Kamada, 2017). Gammaproteobacteria

become the most abundant when Firmicutes are reduced, and

evidence indicates that pathogenic E. coli strains accumulate in the

intestinal mucosa of patients with IBD, especially in CD (Kang et al.,

2010; Lapaquette et al., 2010; Mirsepasi-Lauridsen et al., 2019).

Enterotoxigenic Bacteroides fragilis colonizes patients with IBD,

where B. fragilis toxin (BFT) cleaves E-cadherin, reduces mucosal

barrier function, and increases epithelial cell proliferation and pro-

inflammatory cytokine IL-8 production (Sears, 2009). A recent study

conducted on a population revealed a significant link between the

use of antibiotics and the likelihood of developing inflammatory

bowel disease (IBD), which includes Crohn’s disease and ulcerative

colitis. This increased risk was observed across various age groups,
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especially in cases where the cumulative duration of antibiotic use

exceeded 30 days (Aniwan et al., 2018). Clostridium leptum group

bacteria, including Faecalibacterium prausnitzii, were significantly

reduced in IBD, shortening the production of SCFAs (Kabeerdoss

et al., 2013; Lopez-Siles et al., 2016). Fecal microbiome

transplantation might be a potential strategy to fight against IBD.

A combination therapy of fecal microbiome with an anti-

inflammatory diet helped patients with mild to moderate

ulcerative colitis feel better and improved their digestive tracts

(Kedia et al., 2022). A pilot study investigated the efficacy of

multi-session fecal microbiota transplantation (FMT) in managing

active ulcerative colitis (UC). Participants were administered 200 mL

of FMT from healthy donors through either colonoscopy or

gastroscopy, with evaluations conducted at baseline, week 7, and

six months after the intervention. Clinical improvements, including

reductions in inflammatory markers, were observed, alongside

significant alterations in gut microbiota composition. These

findings suggest that multi-session FMT effectively reconstitutes

gut microbiota and induces remission in UC patients

(Mańkowska-Wierzbicka et al., 2020). Probiotic bacteria, especially

engineered probiotics such as E. coli, Lactobacillus paracasei,

Bifidobacterium longum, Lactococcus lactis, and Bacteroides ovatus,

are effective therapeutic strategies in the treatment of IBD (Pesce

et al., 2022). The administration of intracolonic synbiotic treatment,
Frontiers in Cellular and Infection Microbiology 04
consisting of Bifidobacterium animalis subsp. lactis and xyloglucan,

demonstrated significant improvements in mucosal healing and

alleviation of colonic symptoms among patients with severe

ulcerative colitis (Bozkurt and Kara, 2020).

3.1.2 Irritable bowel syndrome
Irritable bowel syndrome (IBS) is a group of symptoms

characterized by abdominal discomfort and irregular bowel

movements (Saha, 2014). The pathophysiology of IBS is

multifactorial (Surdea-Blaga et al., 2012), including disturbed gut

motility (Shaidullov et al., 2021), visceral sensitivity (Li et al., 2020a),

neural dysfunction of the gut–brain axis (Suganya and Koo, 2020),

autonomous nervous system dysfunction (Mazur et al., 2012), and

psychological factors (Van Tilburg et al., 2013), which are implicated

in disease progression. Fecal SCFAs are biomarkers for diagnosing

IBS (Farup et al., 2016) and are produced by the microbial

fermentation of ingestible polysaccharides and proteins, through

which commensal microbiota communicate with the host

(Rasmussen et al., 1988; Natarajan and Pluznick, 2014). A study of

twenty-five subjects with IBS and 25 controls aimed to diagnose IBS

by measurement of fecal SCFA; the propionic acid–butyric acid ratio

(mmol/l) showed the best diagnostic properties, with a sensitivity of

92% and a specificity of 72% at a cut-off value >0.015 mmol/L (Farup

et al., 2016). In a recent study, 490 individuals with IBS and 122
FIGURE 1

Various factors, such as the use of antibiotics, excessive fat, sugar, and alcohol intake, changes in pH, excessive protein consumption, lifestyle
choices, stress, and depression influence the gut microbiome composition and can disrupt the delicate balance of the gut microbiota, leading to
various disorders and health conditions such as inflammatory bowel disease (IBD), irritable bowel syndrome (IBS), cardiovascular disease (CVD),
colorectal cancer, impaired brain functions, chronic kidney disease (CKD), metabolic dysfunctions and even viral infections like COVID-19.
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individuals without IBS were analyzed using metagenomic

sequencing. In IBS, alpha diversity was significantly lower, rich in

gram-negative bacteria, including Shigella species, and contained

disrupted metabolic pathways associated with short-chain fatty acid

and vitamin synthesis, whereas Eubacterium rectale and

Faecalibacterium prausnitzii were relatively sparse in individuals

with IBS (Phan et al., 2021). A systematic review and meta-analysis

aimed to evaluate the alterations in the intestinal microbiota in IBS

using qPCR to quantify bacterial groups. Additionally, there was a

significant decrease in Lactobacillus, Bifidobacterium and

Faecalibacterium prausnitzii in IBS compared with the

corresponding populations in healthy controls (Liu et al., 2017).

Another study reported an increased abundance of Dorea,

Ruminococcus, and Clostridium spp. and a reduction in Bacteroides,

Bifidobacterium, and Faecalibacterium in patients with IBS (Rajilic-

Stojanovic et al., 2011). Probiotics and prebiotics are commonly used

to treat the symptoms of irritable bowel syndrome (IBS). In a clinical

trial, two probiotic strains, Lactobacillus acidophilus DDS-1 and

Bifidobacterium lactis UABla-12, were found to improve abdominal

pain in individuals with IBS. These probiotics also help regulate bowel

movements, potentially relieving diarrhea or constipation, which are

common symptoms of IBS (Martoni et al., 2020). Another study

showed that supplementation of Bacillus coagulans MTCC 5856,

along with standard care, was safe and effective in treating

diarrhea-predominant IBS in patients, suggesting it as a potential
Frontiers in Cellular and Infection Microbiology 05
treatment option (Majeed et al., 2016). Furthermore, several other

probiotics, including Lactobacillus bulgaricus, Lactobacillus paracasei,

Lactobacillus reuteri, Lactobacillus plantarum, Pediococcus

acidilactici, Streptococcus thermophilus, Bifidobacterium infantis,

Bifidobacterium bifidum, Lactobacillus brevis, Bifidobacterium

longum, and Saccharomyces boulardii, have shown positive effects

on IBS symptoms (Chlebicz-Wojcik and Slizewska, 2021). The

prebiotic galactooligosaccharide promotes the growth of beneficial

gut Bifidobacterium in IBS patients, leading to a reduction in

symptoms such as flatulence, abdominal pain, and discomfort (Silk

et al., 2009). Psyllium fiber has also been found to reduce abdominal

pain and inflammation in IBS patients (Shulman et al., 2017;

Garg, 2021).

3.1.3 Celiac disease
Celiac disease is a critical autoimmune pathology that affects the

small intestine. Although gluten is the main trigger, the gut

microbiome also has a notable effect on the disease’s progression

(Marasco et al., 2016) (Figure 2). The gut bacteria from the phyla

Firmicutes and Actinobacteria, mostly Lactobacillus, Streptococcus,

Staphylococcus, Bifidobacterium, and Clostridium, is involved in

gluten metabolism (Caminero et al., 2014). A previous study

showed that rod-shaped bacteria were predominantly associated

with the intestinal mucosa of children with active and inactive

celiac disease, compared with the bacterial flora seen in the
FIGURE 2

The relationship between gut microbiome and gastrointestinal disorders. Left: A well-balanced gut microbiome promotes normal digestion, optimal
nutrient absorption, and supports a strong immune system, effectively protecting against disorders. Right: Dysbiosis in the gut resulting in reduced
diversity, abundance of pathogens, increased gut barrier permeability, reduce the production of short chain fatty acids (SCFA), disrupt metabolic
processes and trigger dysregulated immune responses leading to the development of inflammatory bowel disease (IBD), celiac disease, and
colorectal cancer. (Created with Biorender.com).
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controls (Forsberg et al., 2004). In their culture-dependent method,

Collado et al. (Collado et al., 2007) reported that the presence of

Bacteroides, Clostridium, and Staphylococcus was significantly higher

in fecal samples from patients with coeliac disease than in healthy

subjects. The gluten-free diet is a commonly recommended treatment

for patients with celiac disease. However, incorporating probiotics

and prebiotics into this diet can potentially restore the gut

microbiome, leading to improved gluten breakdown in the gut

(Olivares et al., 2014; Drabińska et al., 2020). Consequently, this

can reduce inflammation, enhance gut health, and decrease the

production of cytokines and antibodies that contribute to issues in

celiac disease. As a result, patients may experience fewer symptoms

and an overall better quality of life (De Sousa Moraes et al., 2014).

3.1.4 Colorectal cancer
The gut microbiota significantly influences the pathogenesis of

colorectal cancer (CRC) through its effects on microbial composition,

metabolic activity, and interactions with the host (Figure 2). Gut

microbial dysbiosis has been reported in patients with CRC, where

there is a lower abundance of commensal microbiota, especially

SCFA-producing bacteria, and a higher prevalence of pro-

inflammatory pathogenic microbes (Sanchez-Alcoholado et al.,

2020). Colonizing GF mice with the microbiota of patients with

CRC and their healthy counterparts, CRC fecal-receiving mice

develop epithelial hyperplasia and DNA methylation in the

intestine (Sobhani et al., 2019). Bacteroides fragilis is involved in

CRC pathogenesis with the production of Bacteroides fragilis toxins

(BFT) and biofilm (Cheng et al., 2020). Research has highlighted that

the bft gene, responsible for encoding BFT toxins, and biofilm

formation are essential virulence determinants contributing to

colorectal cancer (CRC) pathogenicity. The prevalence of BFT

toxin-producing and biofilm-forming strains of Bacteroides fragilis

is significant among patients with colorectal cancer (Jasemi et al.,

2020). However, it has been found that cell-free supernatants from

Clostridium butyricum can inhibit the growth of B. fragilis, prevent

biofilm production, and potentially serve as a biotherapeutic agent

against CRC (Shin et al., 2020). Studies using quantitative PCR and

16s rRNA gene sequencing methods have shown an increased

presence of Fusobacterium species and a reduction in the

Bacteroidetes and Firmicutes phyla in colorectal carcinoma (Kostic

et al., 2012). Research indicated that the supplementation of six viable

strains from Lactobacillus and Bifidobacterium strains significantly

lowered levels of proinflammatory cytokines, including TNF-a, IL-6,
IL-10, IL-12, IL-17A, IL-17C, and IL-22. Furthermore, this approach

was beneficial in reducing the incidence of post-surgical

complications in individuals with colorectal cancer (CRC)

(Zaharuddin et al., 2019). Another research revealed that a

prebiotic formulation containing fructooligosaccharide,

xylooligosaccharide, polydextrose, and resistant dextrin had

profound impacts on immune-related markers both prior to and

following surgical procedures in colorectal cancer (CRC) patients and

the administration of these prebiotics led to significant modifications

in the populations of commensal bacteria and opportunistic

pathogens within the patient cohort (Xie et al., 2019).
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3.2 Metabolic disorders associated with
gut microbiota

3.2.1 Obesity
Comprehending the intricate interactions between the gut

microbiome and obesity is crucial for devising effective strategies to

prevent and manage this escalating health concern (Figure 3).

Emerging evidence suggests an intrinsic link between microbial

dysbiosis and obesity (Joseph et al., 2020). Obesity and obesity-

associated complications are consequences of alterations in the

composition and function of the gut microbiota (Shin and Cho,

2020). Resveratrol intake enhances glucose metabolism and

maintains homeostasis, indicating its potential as a therapeutic

intervention for obesity. Treating obese mice with resveratrol reduces

gut dysbiosis, increases the Bacteroidetes-to-Firmicutes ratio, inhibits

the growth of Enterococcus faecalis, and promotes the growth of

Lactobacillus and Bifidobacterium (Qiao et al., 2014). Studies with

human subjects reported a significant reduction of the Firmicutes/

Bacteroidetes ratios in people with obesity compared with those in

healthy control (Verdam et al., 2013; Kasai et al., 2015; Duan et al.,

2021; Zhai et al., 2022a). In individuals with obesity, beneficial

microbiota such as Bifidobacterium, Faecalibacterium, and

Ruminococcaceae are significantly depleted, whereas Bacillus and

potential opportunistic pathogens such as Fusobacterium, Escherichia,

and Shigella increased (Gao et al., 2018). Mechanistically, the

microbiota of individuals with obesity is rich in indigestible

polysaccharide-degrading enzymes that produce increased levels of

acetate and butyrate (Martinez-Cuesta et al., 2021). Evidence indicates

that acetate is linked to obesity, with elevated acetate levels generated by

the gut microbiota activating the parasympathetic nervous system,

promoting insulin secretion, and leading to hyperphagia and obesity in

rodents (Perry et al., 2016). Dietary strategies, such as the

administration of probiotics, prebiotics, synbiotics, and fecal

microbiota transplants, may facilitate microbial reconstitution and

assist in controlling weight gain and associated health conditions.

The bacterium Akkermansia muciniphila is recognized for its anti-

obesity effects. It is well-tolerated and safe for consumption, and has

been shown to enhance insulin sensitivity, lower insulin levels, and

decrease cholesterol, underscoring its potential role in weight

management among individuals with overweight (Depommier et al.,

2019). Lactobacillus plantarum LMT1-48, for example, can reduce

body weight and abdominal fat by regulating lipogenic genes in adipose

tissue and the liver (Choi et al., 2020). Oral intake of Lactobacillus

fermentum strain 4B1 has been found to reduce body weight, adipose

tissue weight, and adipose cell size, similar to the effects of the drug

orlistat (Balolong et al., 2017). Lactobacillus mali APS1 has been shown

to restore the gut microbiome, regulate metabolism and appetite,

resulting in weight loss, reduced body fat, liver weight, fat

accumulation in the mesenteric adipose depot, and improved hepatic

steatosis compared to a diet lacking this probiotic strain (Lin et al.,

2016; Chen et al., 2018). Chung et al. (Chung et al., 2016) investigated

the efficacy of Lactobacillus reuteri JBD301 against obesity and found

that, like orlistat, Lactobacillus JBD301 absorbs free fatty acids and

excretes them in the feces, leading to significant weight loss in both
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mice and humans. Lactobacillus gasseri SBT2055 has multiple benefits

for the host, including reduced TAG absorption, accelerated energy

expenditure, improved glucose tolerance, increased butyrate

production, reduced inflammation, inhibited body weight gain, and

decreased fat accumulation. These effects may be linked to the

amelioration of adipose tissue inflammation and reduced expression

of lipogenic genes in the liver (Miyoshi et al., 2014; Shirouchi et al.,

2016). Bifidobacterium longum BORI and Lactobacillus paracasei

CH88, along with fermented ginseng, have demonstrated their ability

to reduce various obesity-related markers, including weight gain, lipid

deposition, adipocyte size, inflammation, fasting blood glucose levels,

and total cholesterol excretion in mouse models and human

intervention studies (Kang et al., 2018; Schellekens et al., 2021).

Arabinoxylans, a prebiotic derived from rice bran and wheat sources,

have the potential to reduce obesity by regulating lipid metabolism,

reducing inflammation through the manipulation of gut microbiota,

and promoting the production of beneficial short-chain fatty acids.

This highlights their potential as prebiotic agents for managing obesity

(Neyrinck et al., 2011; Luo et al., 2022).

3.2.2 Diabetes
The gut microbiota also affects diabetes, with disruptions in glucose

homeostasis leading to alterations in the host’s gut microbial

community, which subsequently contributes to the development of

type 2 diabetes mellitus (T2D) and associated comorbidities (Sharma

and Tripathi, 2019). An altered gut microbiome deteriorates intestinal

barrier function and hosts metabolic and signaling pathways, which
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results in the progression of T2D (Riedel et al., 2021) (Figure 3).

Differences in the gut microbiome between patients with T2D and

healthy controls have been reported in 16S rDNA amplicon sequencing

studies, where butyrate-producing Faecalibacterium, Bifidobacterium,

and Akkermansia were significantly reduced in patients with diabetes.

The abundance ofDoreawas significantly increased in individuals with

T2D (Li et al., 2020b). A previous study demonstrated that the

proportions of the phylum Firmicutes and class Clostridia were

significantly reduced in patients with diabetes compared with those

in the non-diabetic control group. At the same time, there was an

increased presence of Bacteroidetes and Proteobacteria. In addition, the

Bacteroidetes to Firmicutes ratio was significantly and positively

correlated with reduced glucose tolerance (Larsen et al., 2010).

Studies on mice have shown that supplementation with

Bifidobacterium genus supplements can improve glucose tolerance,

insulin secretion, and reduce inflammation (Cani et al., 2007).

Metformin and berberine have also been found to be effective in

reducing diabetic complications in mice by increasing the presence of

SCFA-producing bacteria (such as Butyricimonas, Coprococcus, and

Ruminococcus), while reducing opportunistic pathogens (such as

Prevotella and Proteus), body weight, blood glucose levels,

and intestinal inflammation (Zhang et al., 2019). Lactobacillus

strains, such as Lactobacillus reuteri 263 and a synbiotic combination

of mangiferin and Lactobacillus reuteri 1-12, have shown promise

in improving insulin resistance, hepatic steatosis, and blood

glucose levels in rats fed a high fructose diet (Hsieh et al., 2013;

Meng et al., 2023). Other lactobacillus strains, including Lactobacillus
FIGURE 3

Depletion of beneficial microbiome and abundance of pathogenic microbes in dysbiosis gut causes the elevated production of harmful metabolites
and reduces the short chain fatty acids and other beneficial metabolites resulting in type 2 diabetes, obesity cardiovascular diseases (CVD). BA, Bile
Acids; LPS, Lipopolysaccharides; BCCA, Branch Chain Amino Acids; TMAO, Trimethylamine N-oxide; ROS, Reactive Oxygen Species; PAGln,
Phenylacetylglutamine. (Created with Biorender.com).
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rhamnosus BSL, Lactobacillus rhamnosus R23, Lactobacillus plantarum

HAC01, Lactobacillus fermentum TKSN041, Lactobacillus gasseri

SBT2055, Lactobacillus sakei Probio65, Lactobacillus plantarum

Probio-093, Lactobacillus plantarum ZJUFB2, Lactobacillus

fermentum MF423, Lactobacillus salivarius AP-32, and Lactobacillus

reuteri GL-104, have also shown potential as therapeutic agents for

treating type 2 diabetes (Niibo et al., 2019; Farida et al., 2020; Hsieh

et al., 2020; Lee et al., 2021; Zhong et al., 2021a; Zhou et al., 2021).

In animal models, the probiotic strain Bifidobacterium animalis 01 has

been found to improve glucose metabolism and exhibit

hepatoprotective effects, while Bifidobacterium animalis ssp. lactis

GCL2505 (BlaG) reduces symptoms of metabolic syndrome,

including visceral fat reduction and improved glucose tolerance,

through modulation of the gut microbiota and increased acetate

levels (Aoki et al., 2017; Zhang et al., 2020). Akkermansia

muciniphila has been shown to improve glucose tolerance and

insulin sensitivity (Zhang et al., 2021). Clostridium butyricum has

beneficial effects in reducing high blood sugar levels (hyperglycemia)

and promoting the secretion of glucagon-like peptide-1 and insulin

(Jia et al., 2017). Anaerobutyricum soehngenii has been found to

improve insulin sensitivity by stimulating intestinal GLP-1

production (Koopen et al., 2022). Additionally, supplementation with

oligofructose-enriched inulin, a prebiotic substance, has been shown to

significantly improve glycemic control and reduce inflammatory

markers in women with T2D (Dehghan et al., 2014). Emerging

therapeutic strategies, including probiotic supplementation, prebiotic

intake, and microbial modulation, demonstrate potential in improving

glucose metabolism, insulin sensitivity, and reducing diabetic

complications. These findings underscore the gut microbiota as a

promising target for novel therapeutic approaches in managing and

preventing T2D.
3.3 The impact of gut bacteria on
cardiovascular disorders

Comprehending the interplay between gut dysbiosis and

cardiovascular disease offers significant insights into innovative

therapeutic and preventive strategies that target cardiovascular risk

mitigation through microbiota modulation. Homeostatic processes

mediated by host–microbial interactions govern physiological

balance and may activate various pathways, thereby contributing to

the progression of cardiovascular risk factors (Troseid et al., 2020).

Trimethylamine N-oxide (TMAO) and phenylacetylglutamine

(PAGln) are metabolites derived from gut microbiota that are

linked to cardiovascular disease. Elevated concentrations of TMAO,

which is produced by gut bacteria from dietary substrates such as

choline, phosphatidylcholine, and L-carnitine, are associated with an

increased risk of cardiovascular diseases, including congenital heart

disease and atherosclerosis (Chen et al., 2020; Zhen et al., 2023)

(Figure 3). TMAO induces the production of reactive oxygen species,

which induces inflammatory reactions and inhibits the reverse

cholesterol transport pathway, resulting in atherosclerosis (Zhu

et al., 2020). Phenylacetylglutamine (PAGln) promotes platelet

activation and enhances the likelihood of thrombosis by engaging

G protein-coupled adrenergic receptors on the platelet surface. This
Frontiers in Cellular and Infection Microbiology 08
interaction results in receptor activation by PAGln, which causes

excessive platelet stimulation, rendering them hyperreactive and

contributing to accelerated platelet aggregation and an increased

risk of thrombosis (Nemet et al., 2020; Yu et al., 2021). A study

suggests the effects of several strains of Lactobacillus on

atherosclerosis in ApoE-/- mice. They found that this probiotic

strain significantly reduced atherosclerotic lesion area, lowered

serum lipid levels, and decreased inflammatory markers. The

researchers attributed these effects to the probiotic's ability to

modulate gut microbiota composition and enhance intestinal

barrier function (Zhai et al., 2022b). A study by Li et al. (Li et al.,

2016b) explored the effects of Akkermansia muciniphila on

atherosclerosis in ApoE-/- mice. They found that A. muciniphila

supplementation reduced atherosclerotic plaque formation,

decreased inflammatory markers, and improved gut barrier

function. This study highlights the potential of specific probiotic

strains in targeting atherosclerosis. Short-chain fatty acids (SCFAs)

play a crucial role in regulating anti-inflammatory responses, lipid

metabolism, and gluconeogenesis. Bacteria that generate butyrate are

instrumental in impeding the advancement of atherosclerosis.

Moreover, butyrate demonstrates diverse pharmacological effects,

including the promotion of microbial homeostasis, reinforcement

of intestinal barrier function, and exertion of anti-inflammatory

activities (Amiri et al., 2021). The reduced amount of beneficial or

commensal bacteria, including Faecalibacterium prausnitzii and

Bacteroides fragilis, are observed in patients with coronary artery

disease (CAD) and type 2 diabetes and increased number of

opportunistic pathogens, such as Enterobacteriaceae, Streptococcus,

and Desulfovibrio, have observed in CAD patients without type 2

diabetes. Moreover, patients with CAD-DM2 possessed significantly

elevated levels of zonullin and TMAO, the pro-inflammatory

cytokine IL-1B, and lower levels of IL-10 (Sanchez-Alcoholado

et al., 2017). Gozd-Barszczewska et al. (Gozd-Barszczewska et al.,

2017) reported the dominance of Firmicutes and Bacteroidetes in

middle-aged men in eastern Poland, with improper levels of total

cholesterol and LDL-C rich in Prevotella and low in Clostridium and

Faecalibacterium. A Chinese report on patients with atherosclerosis

showed a lower abundance of Bacteroides and Prevotella, which are

rich in Streptococcus and Escherichia (Jie et al., 2017). The

opportunistic pathogen Collinsella is more prevalent in patients

with symptomatic atherosclerosis. In contrast, Roseburia and

Eubacterium are enriched in healthy controls (Karlsson et al., 2012).

Fecal microbiota transplantation (FMT) has demonstrated

efficacy in reestablishing microbial equilibrium within the gut and

alleviating myocarditis, thereby presenting a potential innovative

therapeutic modality for its management (Hu et al., 2019).

Modulating the gut microbiota via fecal microbiota transplantation

(FMT) has shown a pronounced effect on atherosclerosis in murine

models. Transplantation of control microbiota into atherosclerosis-

prone mice resulted in a reduction in the advancement of

atherosclerotic lesions. In contrast, the transfer of atherosclerosis-

prone microbiota into control mice exacerbated lesion progression.

These findings indicate that restoring microbial homeostasis in the

gut may serve as a viable therapeutic strategy for atherosclerosis (Kim

et al., 2022). A study found that clearing gut microbiota with

antibiotics and transplanting healthy fecal microbiota could
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alleviate cardiac fibrosis. This indicates that probiotics, specifically

Clostridium butyricum and Bifidobacterium pseudolongum, as well as

metabolite interventions, could offer new strategies for treating

cardiovascular disease (Wang et al., 2022). In obese mice with

obstructive sleep apnea (OSA) induced by a high-fat high-fructose

diet and intermittent hypoxia (IH), both Lactobacillus rhamnosusGG

(LGG) and LGG cell-free supernatant (LGGs) effectively protected

against heart dysfunction, cardiac remodeling, and inflammation.

This protection is potentially achieved through the up-regulation of

antioxidant pathways mediated by nuclear factor erythroid 2-related

factor 2 (Nrf2) (Xu et al., 2019). A six-week regimen of probiotic

supplementation in individuals with type 2 diabetes mellitus (T2DM)

resulted in significant improvements in cardiovascular disease-related

parameters, such as blood pressure and atherogenic indices.

Additionally, the Framingham risk score suggested potential

benefits in mitigating the risk of future cardiovascular events within

this cohort. Nevertheless, further empirical research is necessary to

validate these findings (Ahmadian et al., 2022).
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3.4 Gut bacteria influence on central
nervous system pathologies

3.4.1 Anxiety and depression
The bidirectional relationship between the gastrointestinal (GI)

and central nervous systems underscores their close connection. The

investigation into the gut microbiota’s role in the gut-brain axis has

sparked significant scientific interest, with research focusing on how

this axis affects neurodegenerative disorders, including anxiety and

depression. Recent studies have explored the potential links between

the gut microbiota and these mental health conditions (Figure 4).

Studies utilizing animal models have indicated that alterations in gut

microbiota composition, induced by stress, can influence host behavior

and interfere with normal behavioral patterns (Geng et al., 2019; Xu

et al., 2020). Compared to conventional specific pathogen-free (SPF)

mice, adult germ-free (GF) mice demonstrate reduced anxiety-like

behavior in the elevated plus maze, exhibit elevated expression of brain-

derived neurotrophic factor (BDNF), and show decreased expression of
FIGURE 4

Dynamic communication between the gut, brain, and gut microbiota in both health and disease states. In a state of health (Left diagram), balanced
gut microbiome promotes the synthesis of essential metabolites, including short-chain fatty acids (SCFAs), neurotransmitters, and anti-inflammatory
cytokines which positively impact brain functions, supporting cognitive health and emotional well-being. In contrast, an imbalance in the gut
microbiota (right diagram), disrupts the production of SCFAs, neurotransmitters, and anti-inflammatory cytokines and produces toxic metabolites.
These disturbances adversely affect brain health, contributing to cognitive disorders, mood disorders, and inflammation affecting the central nervous
system. Specifically, in Alzheimer’s disease, the production of amyloid plaques and neurofibrillary tangles is exacerbated by inflammatory processes
and the disruption of gut-brain signaling. In Parkinson’s disease, altered gut microbiota can increase alpha-synuclein aggregation and inflammation,
contributing to the degeneration of dopaminergic neurons. GABA, Gamma Amino Butyric Acid; SCFA, Short Chain Fatty acids; ENS, Enteric Nervous
System; BA, Bile Acids; LPS, Lipopolysaccharides; TMAO, Trimethylamine N-oxide. (Created with Biorender.com).
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serotonin (5-hydroxytryptamine) receptors in the brain (Neufeld et al.,

2011b; Chen et al., 2013). A subsequent study reported that the

offspring of germ-free (GF) mice, which exhibited reduced stress,

were colonized with specific pathogen-free (SPF) feces to introduce a

normal gut microbiota, followed by a reassessment of anxiety-like

behavior. The reconstitution of the gut microbiota did not normalize

the behavioral phenotype; anxiolytic behavior persisted in GF mice

colonized with SPFmicrobiota. This indicates that interactions between

the gut and the brain are crucial for the development of stress-related

systems in the central nervous system (Neufeld et al., 2011a). Increasing

evidence highlights the potential of gut bacteria-focused therapies,

including fecal microbiota transplantation (FMT), probiotics,

prebiotics, and synbiotics, in mitigating anxiety and depression.

Studies involving rats have shown that FMT from healthy donors

can improve depressive-like symptoms by restoring the gut microbiota,

decreasing intestinal inflammation, and reinforcing gut barrier integrity

(Rao et al., 2021; Hu et al., 2022). It also progressively alleviated

alcohol-induced anxiety and depression in mice (Xu et al., 2018). Fecal

microbiome used as adjunctive therapy significantly improved

depressive symptoms in patients with depression disorder 4 weeks

after transplantation (Doll et al., 2022). In patients with irritable bowel

syndrome with diarrhea, fecal microbiota transplantation has been

shown to substantially alleviate symptoms of anxiety and depression

(Lin et al., 2021a).

Mice fed the probiotic Lactobacillus rhamnosus showed decreased

depression and anxiety-like behavioral traits (Bravo et al., 2011).

Lactobacillus reuteri NK33 and Bifidobacterium adolescentis NK98

alleviate stress, depression, anxiety, and sleep disturbances through

the suppression of inflammation, improvement of the gut ecosystem

and increased brain-derived neurotrophic factor expression (Jang

et al., 2019). Daily supplementation with Lactobacillus plantarum P8

for 12 weeks notably reduces depression, anxiety, and pro-

inflammatory cytokines, while enhancing memory and cognitive

traits, particularly in women. This suggests that Lactobacillus

plantarum P8 may be an effective intervention for diminishing

these symptoms in stressed adults (Lew et al., 2019).

Akkermansia muciniphila and Clostridium butyricum were shown

to have antidepressant effects in mice with chronic stress by modifying

gut microbiota (Ding et al., 2021). They also increased serotonin, brain-

derived neurotrophic factor, and glucagon-like peptide-1 (Sun et al.,

2018). Bifidobacterium breve CCFM1025 and Bifidobacterium breve A-

1 are two promising psychobiotics. The former reduces depression and

related GI disorders by modulating the gut microbiota and tryptophan

metabolism, while the latter improves anxiety and depressive

symptoms in patients with schizophrenia through altered gut

microbiome (Okubo et al., 2019; Tian et al., 2022).

In a randomized controlled trial involving 80 students facing

examination stress, a multi-strain probiotic capsule intake with

glutamine (Bacillus coagulans Unique IS2, Lactobacillus rhamnosus

UBLR58, Bifidobacterium lactis UBBLa70, Lactobacillus plantarum

UBLP40 (each of 2x109 CFU); Bifidobacterium breve UBBr01,

Bifidobacterium infantis UBBI01 (each of 1x109 CFU) was found to

substantially reduce experienced stress, depression, anxiety, and cortisol

levels compared to the placebo group, with no adverse effects

(Venkataraman et al., 2021). Another triple-blind, placebo-controlled

study investigated the impacts of a multispecies probiotic strain
Frontiers in Cellular and Infection Microbiology 10
containing Bifidobacterium bifidum W23, Bifidobacterium lactis W52,

Lactobacillus acidophilus W37, Lactobacillus brevis W63, Lactobacillus

casei W56, Lactobacillus salivarius W24, and Lactococcus lactis W19

and Lactococcus lactis W58 supplement on cognitive reactivity to

sad moods in non-depressed individuals. The study found that

the probiotic group experienced a significant reduction in cognitive

reactivity to sad mood, particularly in rumination and aggressive

thoughts (Steenbergen et al., 2015). Apart from probiotics, prebiotics

such as fructo-oligosaccharides and galacto-oligosaccharides have

been shown to exert antidepressant effects in mice by altering gut

microbiota and enhancing short-chain fatty acid (SCFA) production

(Burokas et al., 2017).

3.4.2 Autism spectrum disorder, Parkinson’s
disease, schizophrenia, Alzheimer’s disease, and
prion disease

Gastrointestinal dysfunction is commonly reported in

Parkinson’s disease (PD), schizophrenia [SCZ], autism spectrum

disorder (ASD) Alzheimer’s Disease (AD), prion disease, and

promotes the onset of these diseases (Pfeiffer, 1998; Davies et al.,

2006; Kang et al., 2014; Patrono et al., 2021; Sohrabi et al., 2022;

Taniya et al., 2022) (Figure 4). Several studies have reported

alterations in the gut microbial community in patients with PD/

SCZ/ASD compared with the gut microbiota in healthy controls.

However, there is little harmony in the results on which groups of

microbiomes reduce or increase, and there are even conflicting

results (Strati et al., 2017; Zheng et al., 2019; Gorecki et al., 2019;

Afroz et al., 2021; Ha et al., 2021; Li et al., 2021b).

In PD Clostridium cluster IV, Akkermansia, Bifidobacterium,

and Lactobacillus are more abundant, and Faecalibacterium spp.,

Coprococcus spp., Blautia spp., Prevotella spp., and Prevotellaceae

are significantly reduced in the PD group compared with the

corresponding populations in the control group (Gerhardt and

Mohajeri, 2018; Bullich et al., 2019). In an alpha-synuclein-

overexpressing mouse model, the gut microbiota was required for

motor deficits, microglia activation, and alpha-synuclein pathology.

Specific microbial metabolites administered orally to GF mice

promote neuroinflammation and motor symptoms. Physical

impairments were observed in alpha-synuclein-overexpressing

mice colonized with microbiota from patients with PD compared

with microbiota transplants from healthy human donors (Sampson

et al., 2016). Fecal microbiota transplantation (FMT) may exert a

positive impact on both motor and non-motor symptoms in

individuals with Parkinson’s disease. Over a 12-week treatment

period, FMT was associated with increased gut microbiome

diversity, reduced constipation, and reported subjective

improvements in both motor and non-motor symptoms (Xue

et al., 2020; Kuai et al., 2021; Segal et al., 2021; Dupont et al.,

2023). In addition, a meta-analysis of nine randomized controlled

trials with 663 subjects found that oral probiotic intake substantially

improved motor symptoms, gastrointestinal symptoms, anxiety,

depression, and reduced laxative use and increased glutathione

levels in Parkinson’s disease patients (Chu et al., 2023). Probiotic

Bifidobacterium animalis subsp. lactis Probio-M8 with conventional

drug enhanced sleep patterns, reduced anxiety and GI disorders,

and positively changes intestinal microbes and metabolic pathways
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(Sun et al., 2022a). A mixture of multispecies probiotics containing

Lactobacillus acidophilus, Bifidobacterium bifidum, Lactobacillus

reuteri, and Lactobacillus fermentum improved motor behavior,

cognitive function, reduced oxidative stress, and neuronal damage

in rat model of Parkinson’s disease (Alipour Nosrani et al., 2021).

Aberrant metabolite production by the gut microbiota can

modulate immune responses and alter the gut microbiome profile in

individuals with autism spectrum disorder (ASD) (Oh and Cheon,

2020). One study reported lower levels of acetic acid and butyrate and

an elevated level of valeric acid in patients with ASD. In addition, the

butyrate-producing taxa Ruminococcaceae, Eubacterium,

Lachnospiraceae, and Erysipelotrichaceae decreased, and the

abundance of valeric acid-associated bacteria (Acidobacteria)

increased among subjects with autism (Liu et al., 2019). Another

study reported that mothers on a long-term high fat diet produced a

threat of ASD-like behavior in babies compared with chow-fed

mothers, and the gut microbiota differed, with a significant decrease

in Lactobacillus reuteri observed (Buffington et al., 2016). Fecal

microbiota transplantation (FMT) and probiotic supplementation

have demonstrated potential in mitigating the disorders associated

with autism spectrum disorder (ASD). In a clinical trial, FMT

treatment was observed to enhance gastrointestinal (GI) symptoms

and behavioral symptoms in children with ASD by modulating gut

microbiota composition and altering serum neurotransmitter levels.

This treatment reportedly reduced the abundance of Eubacterium

coprostanoligenes (Li et al., 2021a). Additionally, the probiotic

bacterium Limosilactobacillus reuteri was found to improve social

behavior in a mouse model of neurodegenerative disorders. This

improvement was achieved through the vagus nerve, oxytocin, and

biopterin pathways which restored synaptic plasticity in the ventral

tegmental area (Sgritta et al., 2019; Dooling et al., 2022). A three-month

administration of a multispecies probiotic, which includes Lactobacillus

acidophilus, Lactobacillus rhamnosus, and Bifidobacteria longum, has

demonstrated the ability to enhance beneficial gut bacteria, decrease

body weight, and significantly improve symptoms associated with

autism and gastrointestinal disorders (Shaaban et al., 2018). In a case

study, a 12-year-old boy with autism spectrum disorder (ASD)

underwent treatment using a multi strain probiotic mixture

consisting of 10 probiotics, including Bifidobacterium, Lactobacillus,

and Streptococcus genera. The results were astonishing, as the boy

experienced significant improvements in his autistic core symptoms

after just four months of probiotic treatment (Grossi et al., 2016).

The gut microbiome of individuals with schizophrenia (SCZ)

exhibits significant divergence from that of healthy controls or

individuals with metabolic syndrome. The SCZ gut is enriched with

Flavonifractor plautii, Collinsella aerofaciens, Bilophila wadsworthia,

and Sellimonas intestinalis. At the same time, there is a paucity of

Faecalibacterium prausnitzii, Ruminococcus lactaris, Ruminococcus

bicirculans, and Veillonella rogosae. Thirion et al. (Thirion et al.,

2023) conducted a study to examine the gut microbiome in

individuals with schizophrenia (SCZ). The researchers discovered

notable differences in the gut bacteria of SCZ patients compared to

both the healthy control group and the metabolic syndrome group.

Notably, they identified a connection between the biosynthesis of

tyrosine by gut bacteria and cognitive function in individuals with

SCZ. Antipsychotic agents, including Haloperidol, fluphenazine,
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chlorpromazine, quetiapine, risperidone, and aripiprazole, are

commonly prescribed for the treatment of schizophrenia. However,

it is important to note that these medications can have certain side

effects related to movement, such as tremors and dystonia. Prolonged

administration of these pharmacological agents may result in the

onset of uncontrollable orofacial muscle movements (Kang and Kim,

2011; Stroup and Gray, 2018). Conversely, a 12-week intervention

involving 60 patients with chronic schizophrenia utilized a probiotic

formulation consisting of Lactobacillus acidophilus, Bifidobacterium

bifidum, Lactobacillus reuteri, and Lactobacillus fermentum, along

with vitamin D. The findings revealed substantial improvements in

both overall and composite Positive and Negative Syndrome Scale

(PANSS) scores, signifying a reduction in clinical symptoms (Ghaderi

et al., 2019). A randomized, double-blind, placebo-controlled trial

was conducted to examine the effects of probiotic supplementation

on individuals diagnosed with schizophrenia. The trial utilized a

combination of Lactobacillus rhamnosus strain GG and

Bifidobacterium animalis subsp. lactis strain Bb12. The findings

indicated that the supplementation did not yield a significant

impact on the overall severity of symptoms experienced by these

patients. However, it was observed that the supplementation was

linked to a decreased likelihood of developing severe bowel

difficulties, a prevalent somatic symptom within this population

(Dickerson et al., 2014). In addition, complex polyphenols are

broken down by the gut microbiota into smaller molecules, which

has several health effects including changing the composition of the

gut flora. Additionally, polyphenols have important roles in memory,

learning, and cognitive processes by shielding neurons from damage

and inflammation (Filosa et al., 2018). There is no concrete proof

linking the pathophysiology and patho-biochemistry of

schizophrenia in humans to a disruption in the intake of

polyphenols from food. However, some polyphenols, such as

quercetin, have been effectively added to clozapine, an

antipsychotic drug used to treat schizophrenia (Schwartz,

2016).Alzheimer’s disease is a progressive neurodegenerative

disorder characterized by cognitive decline, memory loss, and

behavioral changes. It is marked by the accumulation of amyloid-b
plaques and neurofibrillary tangles in the brain (Peddinti et al., 2024).

The gut-brain axis involves various pathways, including neural,

endocrine, and immune mechanisms, through which the gut

microbiota can influence brain function and potentially contribute

to the development of AD (Ullah et al., 2023). Gut dysbiosis, an

imbalance in the gut microbiota composition, can lead to increased

intestinal permeability and the release of pro-inflammatorymolecules

(Di Vincenzo et al., 2024). These molecules can cross the blood-brain

barrier, triggering neuroinflammation and potentially contributing to

AD pathogenesis (Peddinti et al., 2024). Some studies have suggested

that certain gut bacteria can produce amyloid proteins, which may

contribute to the accumulation of amyloid-b in the brain, a hallmark

of AD (Chen et al., 2022). Dysbiosis in the gut microbiota can lead to

increased oxidative stress, which has been implicated in the

pathogenesis of AD (Chen et al., 2022). A study by Li et al. (Li et

al., 2019a) found that individuals withmild cognitive impairment and

AD had similar alterations in their gut microbiota composition

compared to healthy controls. Vogt et al. (Vogt et al., 2017)

observed alterations in the gut microbiome of AD patients,
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suggesting a potential role of gut microbiota in AD pathogenesis.

Nagpal et al. (Nagpal et al., 2019) found that a modified

Mediterranean ketogenic diet modulated the gut microbiome and

short-chain fatty acids in association with Alzheimer’s disease

markers in subjects with mild cognitive impairment. This suggests

that dietary interventions targeting the gut microbiota may have

potential in managing AD. A study by Saji et al. (Saji et al., 2019)

revealed a relationship between gut microbiome composition and

mild cognitive impairment in patients without dementia, indicating

that gut microbiota alterations may precede the development of AD.

Saiyasit et al. (Saiyasit et al., 2020). demonstrated that gut dysbiosis

develops before metabolic disturbance and cognitive decline in high-

fat diet-induced obese conditions. This suggests that gut microbiota

alterations may be an early event in the pathogenesis of AD.

Prion diseases, on the other hand, are rare but fatal

neurodegenerative disorders caused by the misfolding of prion

proteins, leading to brain damage and various neurological

symptoms (Soto and Satani, 2011). Some studies have proposed

that gut microbiota may influence the misfolding of prion proteins,

a key process in the development of prion diseases (Mahbub et al.,

2024). Gut microbiota plays a crucial role in maintaining intestinal

barrier integrity. Disruption of this barrier could potentially

facilitate the entry of prions into the body (Mahbub et al., 2024).
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The gut microbiota’s influence on the immune systemmay affect the

body’s response to prion proteins and their accumulation (Mahbub

et al., 2024). Quigley et al. (Quigley, 2017) reviewed the role of the

microbiota-brain-gut axis in neurodegenerative diseases, including

prion diseases. The review highlighted the potential influence of gut

microbiota on protein misfolding and neuroinflammation, which

are key processes in prion diseases. Although not specifically

focused on prion diseases, research by Cox and Weiner (2018) on

microbiota signaling pathways in neurologic diseases provides a

framework for understanding how gut microbiota might influence

prion disease progression (Cox andWeiner, 2018). The relationship

between gut microbiota and neurodegenerative disorders,

particularly Alzheimer’s disease and prion diseases, represents a

promising area of research with potential implications for disease

prevention and treatment. The gut-brain axis emerges as a critical

pathway through which gut microbiota may influence the

development and progression of these disorders. This growing

body of evidence linking gut microbiota to neurodegenerative

disorders opens new avenues for understanding and potentially

treating these complex diseases. As our knowledge in this field

expands, it may lead to novel therapeutic approaches and preventive

strategies, offering hope for those affected by Alzheimer’s disease,

prion diseases, and other neurodegenerative disorders.
3.5 Mechanistic insight of gut bacteria on
renal pathology

Renal disorders, encompassing a range of pathological

conditions affecting kidney function, are intricately linked with

alterations in the gut microbiota. Recent studies have elucidated

several mechanisms by which gut microbiota dysbiosis influences

renal health. The microbial fermentation of proteins and amino

acids in the gut leads to the generation of excessive toxic

metabolites, such as ammonia, amines, thiols, phenols, and

indoles, while concurrently diminishing the production of short-

chain fatty acids (SCFAs). In the context of chronic kidney disease

(CKD), the heightened levels of uremic toxins promote intestinal

dysbiosis. This dysbiotic condition undermines the integrity of the

intestinal epithelial barrier, thereby aggravating renal damage

(Ramezani et al., 2016). A study on patients with CKD showed an

increased abundance of Lactobacillus, Clostridium IV,

Paraprevotella, Clostridium sensu stricto, Desulfovibrio, and

Alloprevotella in the fecal samples of patients with CKD, with a

decreased presence of Akkermansia and Parasutterella compared

with the corresponding populations in healthy control subjects (Li

et al., 2019b). Low microbial diversity and higher levels of pro-

inflammatory cytokines were observed in deceased patients with

CKD compared with those in survivors. SCFA-producing bacteria

Succinivibrio and Anaerostipes were considerably lower in non-

survivors (Lin et al., 2021b) (Figure 5).

With the deepening insight into the microbiome, contemporary

research endeavors aim to exploit its potential for enhancing health

outcomes in patients with chronic kidney disease (CKD). The most

frequently utilized probiotics are Bifidobacterium and Lactobacillus

species. Bifidobacteria are recognized for their capacity to ameliorate
FIGURE 5

Gut dysbiosis increases pathogens, toxins and inflammatory
cytokines while decreasing the level of SCFA, commensal and
probiotic bacteria leading to the progression of chronic kidney
diseases. (Created with Biorender.com).
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epithelial damage, restore epithelial functionality, and synthesize

short-chain fatty acids. Additionally, they play a pivotal role in the

biosynthesis of vitamins and facilitate the proliferation of

Lactobacillus. Both Lactobacillus and Bifidobacterium have

immune-enhancing and gut mucosal barrier-stabilizing effects

(Sanekommu et al., 2023). Bifobacterium bifidum A218,

Bifidobacterium catenulatum A302, Bifidobacterium longum A101,

and Lactobacillus plantarum combined probiotic administration in

peritoneal dialysis patients; serum TNF-a, IL-5, IL-6, and endotoxins
significantly decreased, while levels of serum IL-10 significantly

increased compared with the corresponding parameters in the

placebo group (Shemin et al., 2001). A probiotic mixture consisting

of L. acidophilus KB27, B. longum KB31, and S. thermophilus KB19,

when administered orally, has been found to effectively reduce blood

urea nitrogen (BUN) levels. This probiotic formulation not only

improves the quality of life but is also well-tolerated. These findings

support the potential of probiotics in extracting uremic toxins from

the intestines (Ranganathan et al., 2010; Vitetta et al., 2019). Elevated

levels of Indoxyl sulfate, a uremic toxin, are often associated with

kidney dysfunction. Furthermore, a study has shown that oral

administration of Bifidobacterium longum in a gastro-resistant

seamless capsule can effectively reduce serum levels of indoxyl

sulfate in hemodialysis patients by rectifying intestinal microflora

(Takayama et al., 2003; Taki et al., 2005). Sporosarcina pasteurii has

emerged as a promising candidate for an “enteric dialysis”

application. It has exhibited the capacity to catabolize uremic

solutes within the gastrointestinal tract, withstand gastric

conditions, and efficiently remove urea in vitro. Furthermore, it has

been shown to positively influence fermentation processes within the

intestinal microbiota. Preliminary findings in nephrectomized rodent

models suggest its potential efficacy in alleviating uremic toxicity

associated with chronic kidney disease (Ranganathan et al., 2006).

Plasma p-cresol, a compound detectable in the bloodstream, is

implicated in renal dysfunction and classified as a uremic toxin

when present at elevated concentrations. This association poses

significant health risks for individuals with chronic kidney disease.

A potential therapeutic approach involves synbiotic treatment, which

combines probiotics such as Lactobacillus casei strain Shirota and

Bifidobacterium breve strain Yakult with prebiotics like galacto-

oligosaccharides. This intervention has demonstrated efficacy in

reducing serum p-cresol levels and may mitigate the adverse effects

of p-cresol, including its role as a protein-bound uremic toxin

contributing to constipation (Nakabayashi et al., 2011).

Furthermore, the use of prebiotic gum acacia has shown promising

results in altering microbial composition, replenishing depleted

butyrate levels, and displaying anti-inflammatory and antioxidant

properties. These findings suggest that it could play a beneficial role in

the treatment of CKD (Lakshmanan et al., 2021). Additionally,

prebiotic D-serine has shown potential as both a therapeutic target

and a biomarker for acute kidney injury (AKI), highlighting the

complex relationship between gut microbiota and kidney health

(Nakade et al., 2018). In essence, probiotics, prebiotics, and

synbiotics offer substantial therapeutic benefits for kidney diseases

by ameliorating disruptions in gut microbiota and rectifying

associated metabolic disorders.
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3.6 Influence of COVID-19 on gut
microbiota composition

Dysbiosis of the gut microbiome can precipitate alterations in

immune responses and elevated concentrations of pro-

inflammatory cytokines, potentially culminating in a cytokine

storm during severe acute respiratory viral infections (Figure 6).

Emerging studies have revealed disruptions in the gut microbiome

among COVID-19 patients, both during and after the disease

course. Notable findings include diminished bacterial diversity in

older individuals, a decrease in beneficial microbes, an increase in

facultative anaerobic bacteria, and a decrease in the production of

key metabolites (Bosco and Noti, 2021). This phenomenon may be

associated with the higher mortality rate observed in older

individuals compared to younger populations in the context of

COVID-19 (Casas-Deza et al., 2021). Immunomodulatory bacteria,

such as Faecalibacterium prausnitzii, Eubacterium rectale, and

bifidobacterial species, are reduced in patients with COVID-19

(Yeoh et al., 2021). Elevated populations of Burkholderia

contaminans, Bacteroides nordii, Bifidobacterium longum, and

Blautia spp. were observed; CAG 257 causes severity in patients

with COVID-19 (Sun et al., 2022b). Another study revealed that the

Burkholderia cepacia complex, Staphylococcus epidermidis, or

Mycoplasma sp. were the most abundant in severely ill patients

(Zhong et al., 2021b). Zuo et al. (Zuo et al., 2020) reported that the

abundance of Coprobacillus, Clostridium ramosum, and Clostridium

hathewayi was positively correlated with COVID-19 severity. In

contrast, there was an inverse correlation between Faecalibacterium

prausnitzii and disease severity in 15 hospitalized patients.

International efforts have implemented comprehensive

COVID-19 vaccination campaigns. However, the emergence of

variant strains poses a potential risk to the effectiveness of these

vaccines. Additionally, emerging evidence suggests that the gut

microbiome may play a critical role in naturally enhancing

vaccine responses and modulating immune functions within the

intestinal environment (Zimmermann, 2023). A balanced gut

microbiota is crucial for combating COVID-19, as it contributes

to maintaining a stable immune system that can effectively

counteract viral infection. An optimal gut microbiota facilitates

the regulation of pro-inflammatory and anti-inflammatory

metabolites, thereby preventing excessive inflammation and

attenuating the severity of COVID-19 (Chen et al., 2021).
4 Concluding observations

The involvement of gut bacteria as significant etiological agents

in several human pathological conditions is paramount. As research

continues to uncover the intricate relationships between gut

microbiota and human health, it becomes increasingly evident

that addressing microbial imbalances could offer novel avenues

for disease prevention and treatment. Future research endeavors

should concentrate on overcoming prevailing methodological

constraints and expanding our comprehension of gut microbiome

dynamics to optimally utilize its potential for enhancing human
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health. Despite its importance, progress in elucidating the

microbiome’s etiological mechanisms and in creating therapeutic

interventions derived from it has been impeded by the limitations

inherent in current analytical approaches. Contemporary research

on the gut microbiome predominantly employs culture-

independent metagenomic next-generation sequencing (mNGS)

techniques (Chung et al., 2018). Although mNGS offers valuable

insights into the etiological role of the gut microbiome in disease, it

is not without constraints (Liu et al., 2022b). This necessitated

supplementary culture-dependent experiments (Malla et al., 2018).

The essence of such culture-based studies traces back to Koch’s

postulates, which necessitate culturing potential etiological agents

to establish disease causality (Walker et al., 2006). To fully

comprehend the etiological significance of the gut microbiome,

pure cultures of the implicated species are indispensable. Such

cultures facilitate whole-genome sequencing and enrich

metagenome sequencing data resolution (Liu et al., 2022a).

Nevertheless, many gut microbes classified as “unculturable”

remain inaccessible to current cultivation techniques, primarily due

to the lack of appropriate culture media. Concurrently, the scientific

community faces a major challenge in creating a comprehensive gut

microbe repository, which is intrinsically linked to the unavailability

of a universally applicable culture medium suitable for the diverse

microbial entities within the human gut microbiome. Advancing our

understanding necessitates prioritizing the development of a

complete gut microbe library and the formulation of universal

culture media. These limitations are the principal barriers to fully

comprehending the etiological roles of the gut microbiome in human

diseases. Addressing these challenges is essential for unlocking the full
Frontiers in Cellular and Infection Microbiology 14
potential of microbiome research and developing effective

therapeutic interventions.
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Schematic representation of the role of the gut-lung axis and its potential implications in SARS-CoV-2 infection management with the gut
microbiota dysbiosis. (Created with Biorender.com).
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