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Background: Graves’ disease (GD) is the most common cause of hyperthyroidism,

and its pathogenesis remains incompletely elucidated. Numerous studies have

implicated the gut microbiota in the development of thyroid disorders. This study

employs Mendelian randomization analysis to investigate the characteristics of gut

microbiota in GD patients, aiming to offer novel insights into the etiology and

treatment of Graves’ disease.

Methods: Two-sample Mendelian randomization (MR) analysis was employed to

assess the causal relationship between Graves’ disease and the gut microbiota

composition. Gutmicrobiota data were sourced from the international consortium

MiBioGen, while Graves’ disease data were obtained from FINNGEN. Eligible single

nucleotide polymorphisms (SNPs) were selected as instrumental variables. Multiple

analysis methods, including inverse variance-weighted (IVW), MR-Egger

regression, weighted median, weighted mode, and MR-RAPS, were utilized.

Sensitivity analyses were conducted employing MR-Egger intercept test,

Cochran’s Q test, and leave-one-out analysis as quality control measures.

Results: The Mendelian randomization study conducted in a European population

revealed a decreased risk of Graves’ disease associated with Bacteroidaceae (Odds

ratio (OR) [95% confidence interval (CI)]: 0.89 [0.89 ~ 0.90], adjusted P value: <0.001),

Bacteroides (OR: [95% CI]: 0.555 [0.437 ~ 0.706], adjusted P value: <0.001), and

Veillonella (OR [95% CI]: 0.632 [0.492 ~ 0.811], adjusted P value: 0.016). No

significant evidence of heterogeneity, or horizontal pleiotropy was detected.

Furthermore, the preliminary MR analysis identified 13 bacterial species including

Eubacterium brachy group and Family XIII AD3011 group, exhibiting significant

associations with Graves’ disease onset, suggesting potential causal effects.

Conclusion: A causal relationship exists between gut microbiota and Graves’

disease. Bacteroidaceae, Bacteroides, and Veillonella emerge as protective factors

against Graves’ disease development. Prospective probiotic supplementation may

offer a novel avenue for adjunctive treatment in the management of Graves’ disease

in the future.
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1 Introduction

Graves’ disease(GD) is an autoimmune disorder and the most

prevalent cause of hyperthyroidism, with an age peak of onset

between 30 and 50 years (Smith and Hegedus, 2016). The incidence

of GD varies by region and gender (Tellez et al., 1992). Clinical

manifestations of GD encompass symptoms of hyperthyroidism,

such as weight loss, palpitations, fatigue, and tremor, with some

patients displaying thyroid-associated orbitopathy (Smith and

Hegedus, 2016). Skin manifestations and clubbing of fingers are

observed in 1-4% of GD patients, often accompanied by severe

thyroid-associated orbitopathy (Fatourechi, 2012). Graves’ Disease

can affect multiple systems throughout the body, significantly

impacting patients’ quality of life, and in severe cases, may lead to

life-threatening events such as thyrotoxic crisis. The exact etiology

of GD remains elusive, although it is widely accepted that a

combination of genetic, autoimmune, and environmental factors

contributes to its development (Lee et al., 2015; Rayman, 2019).

The adult gut harbors 50 bacterial phyla and about 100–1000

bacterial species, encoding genes that are 150 times the size of the

human genome (Gill et al., 2006; Adak and Khan, 2019). These gut

microbiota play pivotal roles in maintaining host nutrition,

metabolism, and immune equilibrium (Kho and Lal, 2018).

Dysregulation of the gut ecosystem may contribute to autoimmune

and metabolic disorders, including inflammatory bowel disease

(Nishino et al., 2018), irritable bowel syndrome (Cao, 2018), obesity

(Schwiertz et al., 2010), chronic kidney disease (Sircana et al., 2019),

and cardiovascular disease (Jie et al., 2017). In recent years, the thyroid-

gut axis has garnered increasing research attention, although its precise

mechanisms remain to be fully elucidated (Lerner et al., 2017).

Alterations in gut microbiota composition could potentially exert

influences on thyroid function. Gong et al. conducted a meta-analysis

revealing reduced abundance of beneficial bacteria such as

Bifidobacterium and Lactobacillus in autoimmune thyroid diseases

(AITD), accompanied by a significant increase in detrimental

microbial groups like Bacteroides fragilis (Gong et al., 2021). Yang

et al. demonstrated elevated abundance of Firmicutes, Proteobacteria

and Actinobacillus in GD patients compared to controls, with a notably

higher Firmicutes/Bacteroidetes ratio (Yang et al., 2019). Biscarini et al.

identified significant differences in the composition of the gut

microbiota in GD/GO mouse models developed at various centers,

suggesting a potential association with TSHR-induced disease

heterogeneity (Masetti et al., 2018). To further confirm a causal

relationship, Moshkelgosha et al. subsequently modified the gut

microbiota based on this finding to determine its role in thyroid

autoimmunity and ultimately demonstrated the critical role of gut

microbiota in the development of TSHR-induced diseases

(Moshkelgosha et al., 2021). This discovery was validated in a

multicenter study conducted by Biscarini et al. (2023). Moreover, a

prospective study similarly indicated distinctive features in the gut

microbiota of GD patients, which might be linked to imbalances in the

immune system and gut microbiota (Deng et al., 2023). These studies

provide compelling evidence for a causal relationship between gut

microbiota and GD.

Controversies persist regarding the mechanisms by which gut

microbiota influence GD. The impact of gut microbiota on the
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thyroid could potentially occur through several main avenues:

Intestinal dysbiosis leading to impaired gut barrier function and

increased intestinal permeability, facilitating antigen entry into

circulation and immune system activation (Cayres et al., 2021).

Antibodies in circulation may react with bacterial antigens,

enhancing the activation of inflammatory foci within the thyroid

(Tomasello et al., 2015). In addition, Short Chain Fatty Acids

(SCFAs) are the principal products of dietary fiber fermentation

by gut microbiota, including acetate, propionate, and butyrate.

Beyond regulating intestinal functions, SCFAs also exert

regulatory effects on host metabolism and immune responses

(den Besten et al., 2013). After absorption by intestinal epithelial

cells, SCFAs partly regulate intestinal function within the cells,

while the remainder exerts systemic effects through the

bloodstream, modulating glucose and fat metabolism, as well as

immune system regulation (Kim, 2021), including inhibition of

histone deacetylase (HDAC) (Licciardi et al., 2011), G protein-

coupled receptor (GPR) signaling, and acetyl-CoA production and

metabolic integration. Relevant research suggests that SCFAs can

enhance immune responses, and elevated SCFA levels have been

linked to improved colitis (Scheppach et al., 1992; Ananthakrishnan

et al., 2013), autoimmune neuroinflammation (Haghikia et al.,

2016), renal inflammation (Andrade-Oliveira et al., 2015), and

atherosclerosis. For instance, butyrate (a type of SCFA) can

reduce TNF-a and IL-6 levels , and inhibi t NLRP10

inflammasome activation through GPR3A (Pan et al., 2019).

Hence, this study employs Two-sample Mendelian

randomization to investigate the causal relationship between gut

microbiota and GD, aiming to provide evidence for the

pathogenesis of GD and offer insights into its future treatment.

Genetic variants (SNPs) associated with gut microbiota were

selected as instrumental variables (IVs). Gut microbiota data were

sourced from the international consortium MiBioGen, while

Graves’ disease data were obtained from FINNGEN. Multiple

analysis methods, including inverse variance-weighted (IVW),

MR-Egger regression, weighted median, weighted mode, and MR-

RAPS, were utilized. Sensitivity analyses were conducted employing

MR-Egger intercept test, Cochran’s Q test, and leave-one-out

analysis as quality control measures.
2 Methods

2.1 Data source

In this study, the gut microbiota’s genome-wide association

study (GWAS) data were obtained from the international

consortium MiBioGen. This database harmonized 16S rRNA gene

sequencing profiles and genotyping data of 18,340 participants

across 24 cohorts from the United States, Canada, Israel, South

Korea, Germany, Denmark, the Netherlands, Belgium, Sweden,

Finland, and the United Kingdom. It conducted a large-scale,

multi-ethnic, whole-genome meta-analysis of autosomal human

genetic variation and its association with gut microbiota

composition (Kurilshikov et al., 2021). The GWAS dataset for GD

was obtained from FINNGEN, a Finnish database comprising
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samples from 281,683 individuals, with 1,828 individuals having

Graves’ disease and 279,855 individuals in the control group (Kurki

et al., 2023). Given the disparities in racial and population

stratification, populations of both exposure and outcome datasets

were of European ancestry, encompassing both males and females,

thereby mitigating biases due to population and gender

stratification (Emdin et al., 2017). Detailed information on the

dataset is provided in Table 1.
2.2 Study design

Two-sample Mendelian randomization (TSMR) is a genetic-level

causal study that utilizes GWAS summary data from two distinct

datasets. In one-sample Mendelian randomization studies where both

the exposure and outcome datasets originate from the same database,

the likelihood of false positives increases due to the “winner’s curse” and

the increased probability of weak instrumental variables (Jiang et al.,

2023). Conversely, in two-sample Mendelian randomization analyses

where the genetic associations with exposure and outcome are derived

from independent samples, the opportunistic correlations vary between

datasets. This variation independently influences the associations with

exposure and outcome, with the bias due to weaker instruments tending

towards zero. In this study, we employed a two-sample Mendelian

randomization (MR) approach to explore the causal impact of gut

microbiota on GD, as illustrated in Figure 1. Genetic variants (SNPs)

linked to gut microbiota were chosen as instrumental variables (IVs).

Significant instrumental variables will be extracted from the gut

microbiome dataset, and their associations with GD will be identified

in the GD dataset. Subsequently, a range of MR analytical methods will

be applied for causal investigation. Additionally, various sensitivity

analyses will be conducted to assess the robustness of the results.

MR analysis must satisfy the following three assumptions: 1) The

relevance assumption: A strong association between instrumental

variables and the exposure factor (P<5×10-8 or P<1×10-5) is

presumed; 2) The independence assumption: Instrumental variables

must be independent of confounding factors influencing exposure

and outcome; 3) The exclusion restriction assumption: Instrumental

variables must affect the outcome variable solely through the

exposure factor and not directly.
2.3 Selection of instrumental variables

Based on the aforementioned study design and assumptions, we

initially extracted SNPs significantly associated with the exposure at

a genome-wide significance level (alpha=5×10-8). For batches where
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extraction was not feasible, we reduced the threshold to

alpha=1×10-5 to ensure an adequate number of SNPs. We set r2 <

0.01 and kb=10000 as the criteria for removing linkage

disequilibrium (LD), ensuring the independence of SNPs and

mitigating the risk of multicollinearity. The strength indicator F

value (F=b2/se2) was calculated for each SNP, with F<10 considered

weak instrumental variables that fail to satisfy assumption one and

were thus excluded (Burgess et al., 2017). We extracted outcome

data from the outcome dataset based on significant SNP and

performed data matching. Ambiguous and palindromic SNPs

were excluded during the matching process. The PhenoScanner

database (Staley et al., 2016) was employed to search for each SNP,

excluding those associated with confounding factors such as

smoking (Wiersinga, 2013; Antonelli et al., 2020) and excessive

iodine intake (Burgi, 2010). The MR-PRESSO test was utilized to

detect outliers with horizontal pleiotropy, leading to the exclusion

of outlier SNPs. MR-Steiger analysis was applied to assess the causal

direction of all SNPs and SNPs with erroneous directions were

removed (Li et al., 2022). Finally, we employed Bonferroni

correction (P < 0.05/n, n referring to the number of remaining

SNPs) to eliminate SNPs directly associated with the outcome.

Following the rigorous screening outlined above, the remaining

SNPs were deemed qualified instrumental variables.
2.4 MR analysis

We employed a variety of MR methods to calculate the causal

relationship between gut microbiota and Graves’ disease, including

IVW method, MR-Egger regression, weighted median, weighted

mode, and MR-PAPS method.

Firstly, the effect size of each SNP on causal estimation was

assessed using the Wald ratio, which represents the ratio of the

individual SNP’s impact on the outcome to its impact on the risk

factor under the assumption of linearity (Thomas and Conti, 2004).

The IVW method is a weighted linear regression without an

intercept term, where the slope parameter represents the causal

estimate, and the weight is the inverse of the genetic association

variance divided by the squared standard error of the outcome

(Burgess et al., 2013). Following Mendelian randomization

guidelines, we opted for the multiplicative random-effects model

as the primary analysis in the absence of horizontal pleiotropy and

heterogeneity (Burgess et al., 2019). Weighted median and weighted

mode methods are common consensus methods. They compute the

causal effect based on the majority valid assumption and the

plurality valid assumption, respectively (Bowden et al., 2016a;

Burgess et al., 2019). When there is heterogeneity between SNPs,
TABLE 1 Detailed information on the dataset.

Contribution Trait Year Case
Sample
size

SNP Consortium Author Gender Population

Exposures
Abundance of 150
Gut microbiota

2021 14306 14306 5729268 MiBioGen
Kurilshikov

A
Males

and Females
European

Outcome Graves’ disease 2023 1828 281683 20167370 FinnGen FinnGen
Males

and Females
European
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both the weighted median and IVW methods need to support the

significant conclusion. The MR-Egger method is similar to the IVW

method but includes an intercept term in the regression model

(Burgess et al., 2017). The MR-Egger method provides consistent

causal effect estimates under the assumption of internal stability and

unbiasedness. The intercept term in MR-Egger also offers a test for

horizontal pleiotropy among IVs. In case of horizontal pleiotropy

among SNPs, we employed the MR-Egger method as the primary

analysis.MR-RAPS method estimates causal effects using a

probabilistic profile likelihood function assuming that pleiotropy

follows a normal distribution centered at zero with a location

variance, enhancing robustness against outliers (Zhao et al.,

2020). Finally, a False Discovery Rate (FDR) correction was

applied to MR results. Causal relationships were inferred based

on significant P-values < 0.05.
2.5 Sensitivity analysis

Cochran’s Q test was employed to assess heterogeneity among

IVs, considering SNPs with Q test P-value < 0.05 as heterogeneous.

Furthermore, we used the MR-Steiger model to validate the overall

direction of estimates for result robustness (Hemani et al., 2017). To

ascertain the influence of strong effect SNPs, we conducted a leave-

one-out sensitivity test. The Instrument Strength Independent of

Direct Effect (InSIDE) assumption (Burgess and Thompson, 2017)

and the No Measurement Error (NoME) hypothesis (Bowden et al.,
Frontiers in Cellular and Infection Microbiology 04
2016b) must be satisfied for MR-Egger regression. We constructed a

funnel plot and calculated the I2 statistic to validate these

assumptions. A correction for causal estimates is required when

I2 < 90% and the primary analytical method is MR-Egger (Bowden

et al., 2016b). Sample size analysis is particularly crucial for

determining whether negative results truly indicate the absence of

a causal relationship. We calculated the statistical power following

Burgess’s method (Burgess, 2014).
2.6 Visualization

Scatter plots and regression curve plots were generated for each

set of MR analyses in this study, along with forest plots illustrating

SNP effects. These visualizations will be presented in the results.

Additionally, a circular heatmap and forest plot were constructed

for the overall results. A Manhattan plot was created for significant

gut microbiome GWAS data to elucidate relevant SNP information.

Several figures were partly generated using Servier Medical Art

(smart.servier.com), provided by Servier, licensed under a Creative

Commons Attribution 3.0 unported license.
2.7 Statistical analysis software

All statistical analyses and visualizations in this study were

conducted using R software (version 4.1.2) with packages including
FIGURE 1

The design of the two-sample MR study for the association of Gut Microbiota on Graves’ disease. GWAS, Genome-wide association study; LD,
linkage disequi-librium; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum and Outlier, a method test the pleiotropic biases in the
SNPs and correct the pleiotropic effects; MR, Mendelian randomization; SNP, single nucleotide polymorphism, as instrumental variables for the
exposures and outcomes; FDR, false discovery rate.
frontiersin.org

https://doi.org/10.3389/fcimb.2024.1288222
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Liu et al. 10.3389/fcimb.2024.1288222
“TwoSampleMR,” “MR-PRESSO,” “mr.raps,” “forestploter,” and

several foundational R packages.
3 Results

3.1 Selection of instrumental variables

Initially, a total of 1918 SNPs related to gut microbiome were

screened, and no weak instruments with F<10 were identified. 97

SNPs were excluded due to missing data in the outcome dataset, 294

SNPs were removed as ambiguous or palindromic SNPs during

dataset integration, and 6 SNPs were deleted based on

PhenoScanner search indicating associations with confounders

such as smoking and vitamin D deficiency. MR-PRESSO test

identified 11 SNPs with horizontal pleiotropy. After Bonferroni

correction, 2 SNPs directly related to the outcome were removed.

Ultimately, 1508 eligible SNPs were included in the study.
3.2 Altered abundance of gut microbiota
affects GD incidence

Detailed information regarding the MR study is summarized in

the Supplementary Material. In this study, taxonomic families or

genera of 150 gut microbiota were included for analysis. The

number of SNPs per type of gut microbiota ranged from 1 to 40.

Supplementary Information provides detailed IVs information for

the 150 gut microbiota. Manhattan plots (Figure 2) were generated

for significant genera, providing clarity on relevant SNP

information. Through MR analysis, we identified 3 gut microbiota

family/genera with a protective effect on GD incidence, while 13

genera were found to potentially influence GD incidence. Results of

the MR analysis are depicted in the circular heatmap (Figure 3) and

forest plot (Figure 4).
3.3 Positive results

MR analysis revealed a significant causal effect of the family

Bacteroidaceae, genus Bacteroides, and genus Veillonella on GD

incidence. The family Bacteroidaceae (OR (95%CI): 0.89 (0.89 ~

0.90), adjusted P value: <0.001), the genus Bacteroides (OR (95%CI):

0.555 (0.437 ~ 0.706), adjusted P value: <0.001), and the genus

Veillonella (OR (95%CI): 0.632 (0.492 ~ 0.811), adjusted P value:

0.016) were associated with reduced risk of GD incidence (Figure 4).

Cochran’s Q-test and MR-Egger intercept showed no evidence of

potential heterogeneity or pleiotropy bias in our findings (all P

values > 0.05, Table 2).
3.4 Other results

Despite not passing FDR multiple testing correction, 13

bacterial types, including the Eubacterium brachy group, showed

significant results in the initial MR analysis, indicating potential
Frontiers in Cellular and Infection Microbiology 05
causal effects on GD incidence (Figure 4). Among them,

Eubacterium brachy group (OR [95%CI]: 0.379 (0.145 ~ 0.989), P

value: 0.048), Family XIII AD3011 group (OR [95%CI]: 0.638 (0.483

~ 0.842), P value: 0.002), Butyricimonas (OR [95%CI]: 0.736 (0.560

~ 0.966), P value: 0.027), Parasutterella (OR [95%CI]: 0.801 (0.664

~ 0.967), P value: 0.021) and Turicibacter (OR [95%CI]: 0.838

(0.709 ~ 0.991), P value: 0.038) showed a potential reduced risk of

GD incidence. Bilophila (OR [95%CI]: 1.394 (1.068 ~ 1.820), P

value: 0.015), Catenibacterium (OR [95%CI]: 1.396 (1.081 ~ 1.803),

P value: 0.011), Ruminococcaceae NK4A214 group (OR [95%CI]:

1.440 (1.011 ~ 2.051), P value: 0.043), Sutterella (OR [95%CI]: 1.482

(1.017 ~ 2.161), P value: 0.041), Blautia (OR [95%CI]: 1.491 (1.080

~ 2.059), P value: 0.015), Collinsella (OR [95%CI]: 1.743 (1.209 ~

2.514), P value: 0.003), Rhodospirillaceae (OR [95%CI]: 3.525 (1.205

~ 10.310), P value: 0.025) and Streptococcaceae (OR [95%CI]:

11.238 (1.545 ~ 81.739), P value: 0.024) showed a potential

increased risk of GD incidence. According to Cochran’s Q test,

there is no evidence of heterogeneity (All P values > 0.05, Table 2).

However, based on the MR-Egger intercept, Eubacterium

brachy group (MR-Egger intercept P va lue : 0 .040) ,

Rhodospirillaceae (MR-Egger intercept P value: 0.036) and

Streptococcaceae (MR-Egger intercept P value: 0.024) exhibit

pleiotropy, and MR-Egger will be used as the primary

analytical method.
4 Discussion

Although previous studies have consistently demonstrated the

impact of gut microbiota on Graves’ disease, there is still

controversy regarding changes in gut microbiota abundance in

GD patients. Most studies indicate a significant decrease in gut

microbiota abundance in GD patients compared to healthy

individuals, this aligns with our findings. For instance, Deng et al.

analyzed the gut microbiota of Graves’ disease patients and controls

and found that GD patients exhibited lower gut bacterial diversity

(Deng et al., 2023). However, some studies have reported no

significant changes in gut microbiota abundance and diversity in

GD patients (Yang et al., 2019; Chang et al., 2021), which requires

further investigation for confirmation. The Firmicutes and

Bacteroidetes ratio (F/B) is believed to play a significant role in

maintaining normal gut homeostasis. Variations in the F/B ratio are

indicative of gut ecological imbalance and, to some extent, reflect

human health status. An increased F/B ratio may suggest dysbiosis

in obese patients (Magne et al., 2020), while a decreased F/B ratio is

observed in certain autoimmune diseases such as systemic lupus

erythematosus and inflammatory bowel disease (De Luca and

Shoenfeld, 2019; Stojanov et al., 2020). A meta-analysis indicated

alterations in the diversity and abundance of certain gut microbiota

in patients with autoimmune thyroid disease (AITD) compared to

control groups, including a decrease in Firmicutes abundance and

an increase in Bacteroidetes abundance (i.e., decreased F/B ratio)

(Gong et al., 2021); Studies by El-Zawawy et al. (2021), and Su et al.

(2020) also suggest a decreased abundance of Firmicutes and an

increased abundance of Bacteroidetes in GD patients, associated

with a lower F/B ratio. However, Yang et al. (2019) found no
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significant differences in gut microbiota abundance between GD

patients and controls.

Mendelian randomization studies can establish definite causal

relationships in the absence of confounding factors. In our study, we

identified a decreased risk of GD with the increased abundance of

Bacteroides in Bacteroidetes and Veillonella in Firmicutes.

Previous research has yielded varying results regarding specific

changes in gut microbiota among GD patients. Hafiz et al (Ishaq

et al., 2018). recruited 27 GD patients and 11 healthy controls,
Frontiers in Cellular and Infection Microbiology 06
collected and analyzed fecal samples, and found significantly

increased re lat ive abundances of Prevote l laceae and

Pasteurellaceae in GD patients compared to controls, while

Enterobacteriaceae, Veillonellaceae, and Rikenellaceae were

significantly decreased in GD patients. At the genus level, GD

patients exhibited significant increases in Prevotella 9 and

Haemophilus, while Alistipes and Faecalibacterium were

significantly decreased. Yang et al. (2019) found higher

abundances of Oribacterium, Lactobacillus, Aggregatibacter, and
FIGURE 2

Manhattan plots of GWAS datasets of Veillonella and Bacteroides.
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Mogibacterium genera in GD patients compared to healthy

controls. Additionally, GD patients exhibited higher counts of

Bacteroides and Lactobacillus. Chen et al. found significantly

higher relative abundances of Lactobacillus, Veillonella, and
Frontiers in Cellular and Infection Microbiology 07
Streptococcus in GD patients (Jiang et al., 2021). Due to limited

sample sizes in the aforementioned studies, related MR research is

gradually emerging. A two-sample MR analysis investigating the

causal relationship between gut microbiota and GD identified
FIGURE 3

Significance Heatmap of MR Analysis. IVW, inverse variance weighted; MR, Mendelian randomization; RAPS, Robust Adjusted Profile Score.
FIGURE 4

Results and forest plot of the significant MR analysis. IVW(MRE), inverse variance weighted (multiplicative random effects model); CI, confidence
interval; NExp, sample size of exposure dataset; NOut, sample size of outcome dataset; NSNP, number of SNP included in MR analysis; * refer to
existence of heterogeneity of SNPs, # refer to existence of pleiotropy between SNPs.
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Deltaproteobacteria and Mollicutes classes, as well as Ruminococcus

torques group, Oxalobacter, and Ruminococcaceae ucg011 as risk

factors for GD (Cao et al., 2023). Streptococcaceae and

Lachnospiraceae were protective factors (Cao et al., 2023). It is

worth noting that the gut microbiota GWAS dataset used in this

study was based on European populations, while the GD GWAS

database was based on Asian populations. In contrast to the above

findings, our study conducted a two-sample MR analysis using

GWAS data from European populations for both exposure and

outcome, effectively mitigating the impact of population

stratification on conclusions, and confirming that Bacteroidaceae,

Bacteroides, and Veillonella were protective factors against

GD development.

In current research on factors influencing Graves’ disease

through the gut microbiota, increasing attention is being paid to

the immunomodulatory effects of short-chain fatty acids (SCFAs).

SCFAs can serve as an energy source for epithelial cells, maintain

intestinal barrier integrity, and reduce gut permeability and

circulating lipopolysaccharide levels (Koh et al., 2016). Su et al.

(2020) and a prospective study (Deng et al., 2023) both found

reduced levels of propionate and butyrate in GD patients, thereby

corroborating the notion that decreased SCFAs production in GD

patients promotes disease occurrence and progression.
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SCFAs are typically produced by certain subtypes of Firmicutes

and Bacteroidetes phyla (Kim, 2021). Members of the Bacteroidetes

(Gram-negative), Firmicutes (Gram-positive), and Actinobacteria

(Gram-positive) phyla have the highest abundance in the gut.

Bacteroidetes primarily produce acetate and propionate, while

Firmicutes generate butyrate as a major end-product of

metabolism (Fenneman et al., 2020). The genera mentioned in

this study, Bacteroides and Veillonella, belong to the Bacteroidetes

and Firmicutes phyla, respectively, and both are capable of

producing SCFAs. Therefore, the significant decline in the

abundance of these three bacteria may lead to reduced SCFAs

production, subsequently resulting in impaired intestinal barrier

function and dysbiosis (Lapidot et al., 2021).

The mechanism by which SCFAs impact the immune system

primarily involves the modulation of innate and adaptive lymphocytes

(Kim, 2021). On one hand, SCFAs increase the activity of type 3 innate

lymphoid cells (ILC3s) while suppressing the activity of type 2 innate

lymphoid cells (ILC2s). Ffar3 signaling in ILC2s and ILC3s triggers

PI3K, AKT, and mTOR activity, promoting cell proliferation and

activation. On the other hand, under normal conditions, there’s a

balance between Th17 and T regulatory cells (Tregs). Excessive Th17

increase and reduced Tregs disrupt the Th17/Tregs balance, leading to

GD development. SCFAs are involved in the pathogenesis and
TABLE 2 Sensitivity Analysis of the significant MR analysis.

Batch Exposures Outcomes
Q
from
IVW

Pval_Q
from
IVW

Q
from
MR-
Egger

Pval_Q from
MR-Egger

I2 for
MR-
Egger

Pval of
Pleotropy

Dirction from
MR-Steiger

4 family Bacteroidaceae Graves’ disease 2.071 0.956 1.596 0.953 0.963 0.516 TRUE

42 genus Bacteroides Graves’ disease 2.071 0.956 1.596 0.953 0.963 0.516 TRUE

150 genus Veillonella Graves’ disease 1.374 0.849 0.826 0.843 0.760 0.513 TRUE

70
genus Eubacterium
brachy group

Graves’ disease 13.732 0.132 7.714 0.462 0.962 0.040 TRUE

82
genus Family XIII
AD3011 group

Graves’ disease 7.240 0.779 6.417 0.779 0.936 0.385 TRUE

48 genus Butyricimonas Graves’ disease 9.905 0.624 7.575 0.751 0.958 0.155 TRUE

115 genus Parasutterella Graves’ disease 7.010 0.902 6.940 0.862 0.842 0.796 TRUE

148 genus Turicibacter Graves’ disease 2.401 0.966 0.837 0.997 0.905 0.251 TRUE

46 genus Blautia Graves’ disease – – – – 0.869 – TRUE

51 genus Catenibacterium Graves’ disease 2.351 0.503 0.686 0.710 0.000 0.326 TRUE

126
genus
Ruminococcaceae
NK4A214 group

Graves’ disease 13.807 0.313 10.980 0.445 0.942 0.121 TRUE

146 genus Sutterella Graves’ disease 14.648 0.199 11.134 0.347 0.958 0.106 TRUE

45 genus Bilophila Graves’ disease 11.778 0.464 11.035 0.440 0.964 0.408 TRUE

55 genus Collinsella Graves’ disease 5.961 0.652 5.904 0.551 0.969 0.819 TRUE

26
family
Rhodospirillaceae

Graves’ disease 10.540 0.649 4.934 0.960 0.904 0.036 TRUE

29
family
Streptococcaceae

Graves’ disease 14.633 0.067 6.333 0.501 0.974 0.024 TRUE
MR analysis with less than 3 SNPs are not available for Cochran’s Q test (marked “-”). IVW refer to inverse variance weighted method.
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progression of GD through the immunomodulation of Th17/Tregs and

cytokines (Kohling et al., 2017). Dietary fiber metabolite SCFAs, such as

butyrate can directly promote the proliferation of CD4 regulatory T cells

(Tregs) under normal circumstances (Arpaia et al., 2013). Tregs regulate

intestinal homeostasis and control inflammation by expressing the

transcription factor Foxp3 (Smith et al., 2013). For instance, SCFAs

from fecal bacteria with chloroform-resistant phenotypes were identified

as major bacterial metabolites responsible for inducing Tregs and

suppressing inflammation in a colitis mouse model (Atarashi et al.,

2013). Furthermore, SCFAs can indirectly regulate Treg proliferation

and function through the modulation of antigen-presenting cells

(APCs), such as dendritic cells (DCs) and macrophages (Mendoza-

Leon et al., 2023). Butyrate can signal through the SCFA receptor

GPR109a in macrophages, promoting the expansion of Tregs by DCs

(Singh et al., 2014). In addition, SCFAs, especially butyrate, can have a

significant effect on B cell function. For instance, intestinal macrophages

treated with butyrate can induce the generation of regulatory B cells

producing IL-10 (Foh et al., 2022). Overall, SCFAs support the effector

functions of lymphocytes to defend against microbial pathogens and

cancer, playing a significant role in GD development.

This study indicates that Bacteroidaceae, Bacteroides, and

Veillonella are associated with a reduced risk of GD development,

serving as protective factors against GD. The genus Bacteroides

consists of more than 20 anaerobic, non-spore-forming, Gram-

negative rods, and belongs to the Bacteroideaceae family. The

impact of Bacteroides on autoimmune diseases is gradually being

investigated. Mazmanian et al. (2005) demonstrated that Bacteroides

fragilis-derived polysaccharides (PSA) can activate CD4+ T cells, with

PSA-stimulated CD4+ T cells producing interleukin-10 (IL-10),

which acts to prevent abscess formation and other inflammatory

responses. Furthermore, PSA Production by B. fragilis corrects TH1/

TH2 imbalance, directs Lymphoid Organogenesis, and promotes

development and maturation of the immune system. In previous

studies, an increase in the abundance of Bacteroides in GD patients

was reported, whereas this study indicates the opposite trend. This

discrepancy could be attributed to regional or population differences,

an inverse causal relationship and insufficient sample size, warranting

further research for validation. The family Bacteroidaceae comprises

Acetofilamentum, Acetothermus, Bacteroides, Capsularis, and

Phocaeicola. In this study, within the family Bacteroidaceae,

significant findings were observed exclusively within the genus

Bacteroides, leading us to posit that the impact of Bacteroidaceae

on GD appears to be attributed to the genus Bacteroides.

Nevertheless, given the limited existing literature on the

relationship between Bacteroidaceae and GD, further in-depth

research is warranted. Veillonella, belonging to the phylum

Firmicutes, are anaerobic Gram-negative cocci that typically occur

in pairs or short chains. They lack flagella, spores, or capsules

(Delwiche et al., 1985) and are commonly associated with

inflammatory conditions such as periodontitis, bacteremia, and

pneumonia (Marriott et al., 2007; Shah et al., 2008). Members of

the genus Veillonella utilize short-chain organic acids, particularly

lactate, as an energy source rather than carbohydrates or amino acids,

subsequently producing acetate and propionate (Mashima et al.,

2021). It is commonly found in the oral cavity, gastrointestinal

tract, and vagina. There is still debate regarding this bacterium.
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Deng et al. suggested an increased abundance of Veillonella in GD

patients (Deng et al., 2023), while this study aligns with previous

reports indicating lower levels of Veillonella in GD patients(Table 3).

Furthermore, it is noteworthy that despite not maintaining

statistical significance after adjusting P-values, there exists a

protective trend towards decreased GD occurrence for

Eubacterium brachy group, Family XIII AD3011 group,

Butyricimonas, Parasutterella, and Turicibacter. Conversely, a

hazardous trend towards increased GD occurrence is observed for

Blautia, Catenibacterium, Ruminococcaceae NK4A214 group,

Sutterella , Bilophila , Collinsella , Rhodospirillaceae , and

Streptococcaceae. However, further validation is warranted.

Presently, there are three main approaches for GD treatment:

radioactive iodine (RAI) therapy, anti-thyroid drugs (ATDs), and

surgical intervention. However, each method is accompanied by its

respective adverse effects (Smith and Hegedus, 2016). Therefore,

elucidating the pathogenesis of GD may facilitate the identification

of novel therapeutic targets. Probiotics, as living organisms,

modulate the gut microbiome in various ways to enhance gut

health (Guo et al., 2021). Ingesting probiotics alters the

composition of the gut microbiome, aiding in the prevention of

the progression of autoimmune diseases.

Zhang et al. found that Lactobacillus alleviates inflammatory

episodes in lupus-prone female mice (Zhang et al., 2014). Clusters IV

and XIVa of the genus Clostridium improve IBD in a colitis model

through inducing Treg cells and increasing Foxp3 transcription factor

expression (Atarashi et al., 2011). In animal models, adjusting the gut

microbiome through probiotic supplementation appears to ameliorate

SLE symptoms and associated cardiovascular and renal complications

(Guo et al., 2021). Despite the numerous favorable outcomes seen

when various probiotic strains were used to counteract various

autoimmune diseases in animal models, human clinical data remain

limited. This limitation might, at least in part, result from poorly

designed study protocols that fail to account for the interplay between

diseases and dysbiosis (Kim et al., 2016). Therefore, clinical trials

employing probiotics should meticulously consider alterations in

microbial composition and their impacts on autoimmune diseases.

This study aims to offer novel insights into future GD treatment.

Our study possesses several strengths. Firstly, we utilized the

MR analysis method to assess the associations between various gut
TABLE 3 Summary of the Mechanisms of Action of Gut Microbiota on
Graves’ Disease.

Gut
Microbiota

Mechanism PMID
of
Reference

Bacteroidaceae
and
Bacteroides

Bacteroidaceae/Bacteroides, by producing
SCFAs (acetate and propionate), modulate
innate and adaptive lymphocytes, thereby
contributing to the pathogenesis of GD.

32412045,
33850311

Veillonella Veillonella is reported to be an
opportunistic pathogen in various
inflammatory diseases. Although similar
evidence of GD has been found in
observational studies, its mechanism of
action remains unclear.

27326455,
18547858,
17108070,
37485373
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microbiota abundances and GD risk, mitigating potential

confounding factors. The ample sample size affords us sufficient

power to estimate the causal effect of gut microbiota on GD.

Secondly, we conducted an investigation into 150 distinct families

and genera of gut microbiota. Given the substantial variations

among different phyla, classes, and orders of microbiota, we

exclusively utilized data pertaining to families and genera for

more precise conclusions.

However, this study is not without limitations. Firstly, some

batches of SNP data still exhibited pleiotropy after MR-PRESSO

correction, potentially undermining the robustness of MR

conclusions. Moreover, our study population was predominantly of

European descent, thereby limiting the generalizability of findings to

broader populations. Further research is warranted to explore the

impact of gut microbiota abundance on GD occurrence across different

ethnic groups. As we employed summary data rather than individual-

level data, stratified analysis by variables such as gender was

unattainable. The statistical power of correlation-based conclusions

for some batches in this study was relatively low, potentially elevating

the likelihood of type II errors. The assumption of linearity in the causal

relationship, inherent in the method of ratio estimation, prevents this

study from excluding potential non-linear associations between gut

microbiota and GD susceptibility. Lastly, although bacteria are the

primary constituents of the intestinal microbiome, viruses, fungi, and

archaea also inhabit the gut. Their interactions with the gut microbiota

and GD remain largely unknown, necessitating further research.

Nevertheless, it is crucial to note that as long as the SNPs utilized in

this study satisfy the three assumptions of instrumental variables, the

resultant MR conclusions remain valid.
5 Conclusion

There is a causal relationship between gut microbiota

abundance and GD. Bacteroidaceae, Bacteroides, and Veillonella

serve as protective factors against GD occurrence. Thirteen bacterial

strains, including Eubacterium brachy group, potentially exert

causal influences on GD occurrence. Probiotics may offer a novel

avenue for adjunctive therapy in future GD treatment.
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