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Background: Apoptosis is associated with the pathogenesis of Mycobacterium

tuberculosis infection. This study aims to identify apoptosis-related genes as

biomarkers for differentiating active tuberculosis (ATB) from latent tuberculosis

infection (LTBI).

Methods: The tuberculosis (TB) datasets (GSE19491, GSE62525, and GSE28623)

were downloaded from the Gene Expression Omnibus (GEO) database. The

diagnostic biomarkers differentiating ATB from LTBI were identified by

combining the data of protein-protein interaction network, differentially

expressed gene, Weighted Gene Co-Expression Network Analysis (WGCNA),

and receiver operating characteristic (ROC) analyses. Machine learning

algorithms were employed to validate the diagnostic ability of the biomarkers.

Enrichment analysis for biomarkers was established, and potential drugs were

predicted. The association between biomarkers and N6-methyladenosine (m6A)

or 5-methylated cytosine (m5C) regulators was evaluated.

Results: Six biomarkers including CASP1, TNFSF10, CASP4, CASP5, IFI16, and

ATF3 were obtained for differentiating ATB from LTBI. They showed strong

diagnostic performances, with area under ROC (AUC) values > 0.7. Enrichment

analysis demonstrated that the biomarkers were involved in immune and

inflammation responses. Furthermore, 24 drugs, including progesterone and

emricasan, were predicted. The correlation analysis revealed that biomarkers

were positively correlated with most m6A or m5C regulators.
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Conclusion: The six ARGs can serve as effective biomarkers differentiating ATB

from LTBI and provide insight into the pathogenesis of Mycobacterium

tuberculosis infection.
KEYWORDS

Mycobacterium tuberculosis, active tuberculosis, latent tuberculosis infection,
apoptosis, biomarkers
1 Introduction

Mycobacterium tuberculosis (MTB), the causative agent of

tuberculosis (TB), represents one of the most lethal pathogen-related

infections globally. According to the Global Tuberculosis Report 2022,

about 10.6 million new TB cases have been diagnosed and 1.6 million

deaths have occurred in 2021 (Bagcchi, 2023). Of 2 - 3 billion MTB-

infected individuals, about 5-15% develop TB, with a higher risk among

young children (Carvalho et al., 2018). The mechanisms and factors

associated with transitioning from latent TB (LTBI) to active TB (ATB)

infection remain undetermined, and their clinical differentiation is

challenging despite their importance in prognosis and appropriate

treatments. Interferon (IFN) g release assay (IGRA) and tuberculin

skin test (TST) are commonly employed for TB diagnosis. However,

neither can differentiate between ATB and LTBI, and they might yield

non-reactive results in TB patients with immune suppression or

malnutrition (Pai and Behr, 2016). Furthermore, TST often indicates

false positive results in Bacillus Calmette–Guérin vaccinated individuals

(Pai and Behr, 2016). Atypical manifestations often delay and

complicate TB diagnosis in many cases. Therefore, it is critical to

identify alternative biomarkers to distinguish ATB from LTBI.

The death of host cells significantly influences the transition of

LTBI to ATB (Ni Cheallaigh et al., 2011; Nisa et al., 2022). Some

gene signatures have indicated the potential pathogenesis and can

be novel biomarkers for distinguishing the two TB states (Deretic

et al., 2006; Ni Cheallaigh et al., 2011). Apoptosis is a highly

regulated cellular mechanism that alleviates inflammation and

injury by containing dying cells’ disintegrated cytoplasmic and

nuclear contents in membrane-bound vesicles (apoptotic bodies)

engulfed by other phagocytes in efferocytosis (Nisa et al., 2022). The

apoptotic process includes cell shrinkage, nuclear fragmentation,

chromatin condensation, and outer cell membrane blebbing,

forming an apoptotic body. Internucleosomal boundaries

cleave chromosomal DNA, evidenced by DNA bands on gel

electrophoresis. Phosphatidylserine is a membrane component on

the viable cells’ cytosolic side, and in apoptotic cells, the enzyme

flippase translocates it to the outward-facing surface (Nisa et al.,

2022). Apoptosis cleans the intracellular bacteria and activates the

hosts’ adaptive immune response. As per histopathological analysis,

granulomatous tissue surrounding the centralized caseation areas

has numerous cells, suggesting that apoptosis can protect from

MTB by limiting bacterial dissemination. Interestingly, avirulent
02
MTB strains induce apoptosis, while virulent strains suppress it,

benefiting the pathogens’ dissemination (Lam et al., 2017).

This study aims to identify apoptosis-related gene (ARG)

signatures for differentiating ATB and LTBI, explore their

assoc ia t ion with the immune ce l l popula t ions , N6-

methyladenosine (m6A)- and 5-methylated cytosine (m5C)

regulators, and predict drugs via the bioinformatics approach.
2 Materials and methods

2.1 Data extraction

This study included mRNA expression data obtained from the

NCBI-GEO (http://www.ncbi.nlm.nih.gov/geo); blood samples of

patients who (1) were > 15 years old, (2) gave samples before the

antimycobacterial regimen started, and (3) did not have human

immunodeficiency virus (HIV) infection. ATB patients were

diagnosed based on confirmed isolation and MTB culturing of

respiratory samples, negative MTB cultures, TB-related clinical

symptoms, and radiological and clinical data. LTBII was

diagnosed based on confirmed contact with individuals with

positive TB smear results and TST or IGRA data without any

clinical or radiological signs of ATB on follow-up.

Three microarray databases (GSE19491, GSE62525, and

GSE2623) were extracted as per the above criteria. The training

set GSE19491 (Platform-GPL6947) comprised 54 ATB and 69 LTBI

blood samples, and the validation sets included GSE62525

(Platform-GPL16951; 14 ATB and 14 LTBI peripheral blood

mononuclear cell (PBMC) samples) and GSE28623 (Platform-

GPL4133; 46 ATB and 25 LTBI whole blood samples).

Furthermore, 680 ARGs were acquired from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) datasets in Gene Set Enrichment Analysis (GSEA)

(https://www.gsea-msigdb.org/gsea/index.jsp).
2.2 Immune cell infiltration assessment

In GSE19491 of both groups, the abundance of 28 infiltrating

immune cells was assessed via single sample GSEA (ssGSEA) using

the “GSVA” R package (v 1.42.0). Moreover, the differences
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between LTBI and ATB groupd were compared using the Wilcoxon

test. The infiltrating immune cells with considerable differences

were utilized for further study (p < 0.05).
2.3 Weighted gene co-expression
network generation

Since several studies have shown that apoptosis is inextricably

linked to immune cell infiltration ((Liu et al., 2023). Therefore, immune

cell-related genes (ICRGs) were used for screening apoptosis-related

biomarkers for ATB. The ICRGs in this study were obtained by

WGCNA analysis. Each infiltrating immune cell that significantly

differed in abundance between ATB and LTBI was considered a trait.

The “WGCNA” R package (v 1.70-3) was employed for WGCNA. The

samples were clustered to remove outliers. A soft threshold (b)
determination was performed to ensure that gene interactions

conform to the maximum extent of scale-free distribution. The

similarity among genes was calculated according to the adjacency.

The gene dendrogram, including different modules, was developed

based on dissimilarities. The relevance between modules and traits was

assessed using the Pearson correlation analysis, and those with relatively

high correlations were selected. Furthermore, modules’ genes were

combined and labeled immune cell-related genes (ICRGs).
2.4 Differentially expressed ARGs and
biomarkers Screening

The differentially expressed genes (DEGs) between ATB and LTBI

groups were identified in GSE19491 via the “limma” R package (v

3.48.3) (adjusted P < 0.05). ARGs, ICRGs, and DEGs were intersected

to acquire DE-ARGs via the “Veen Diagram” R package (v 1.6.20).

Furthermore, a chromosomal localization analysis was performed for

DE-ARGs by the “OmicCricos” R package (v 1.32.0). The GO and

KEGG-based DE-ARGs enrichment analysis was performed via the

“clusterProfiler” R package (v 4.0.2) (adjusted P < 0.05).

The protein-protein interaction (PPI) (medium confidence > 0.4)

network for DE-ARGs was generated while employing the STRING

database (http://string.embl.de/). Four algorithms (Degree, MNC,

MCC, and EPC) in cytohubba identified the top 10 hub genes in the

PPI network and were intersected to acquire common hub genes

(CHG). Subsequently, in GSE19491, the CHGs expression in the

ATB and LTBI groups was analyzed via the Wilcoxon test. Their

diagnostic value for ATB was evaluated by Receiver Operating

Characteristic (ROC) curves via the “pROC” R package (v 1.17.0.1).

CHGs with an area under the curve (AUC) > 0.7 were considered

biomarkers. The Spearman algorithm was employed to evaluate the

correlation between biomarkers using the “corrplot” R package (v 0.90).
2.5 Assessment of the diagnostic value of
biomarkers for ATB and qRT-PCR

According to the biomarkers’ expression, separate diagnostic

models were developed via Random Forest (RF) (“randomforest” R
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package, v 4.7-1), Least Absolute Shrinkage and Selection Operator

(LASSO) (“glmnet” R package, v 4.1-3), and logistic regression

(“stat” R package). The diagnostic ability of the biomarkers was

assessed via the ROC, and validation sets were validated.

Total RNA content was extracted from 20 paired ATB (female/

male 10:10, age: 36.8 ± 10.3 yrs) and LTBI samples (female/male

10:10, age: 35.7 ± 7.4 yrs) using TRIzol kit (Life Technologies,

Carlsbad, CA, USA) following the given instructions. All patients

were HIV(-) and were not on any antimycobacterial treatment. For

reverse transcription, PrimeScript RT Master Mix (Takara in Tokyo,

Japan) was utilized, and the acquired cDNA was amplified using the

ABI 7700 system (Applied Biosystems in CA, USA). b-lactin was

employed as housekeeping control to normalize relative expression

levels, assessed by the 2-DDCt method. Supplementary File 1 depicts

the primer sequences employed for qRT-PCR.
2.6 Functional enrichment analysis

The biomarkers’ gene function similarity was measured by the

“GOSemSim” R package. To explore biomarker-related functions

and signaling pathways, GSE19491 samples were divided into high

and low-expression groups based on biomarker expression’s

median, followed by differential analysis. All genes were ranked

according to logFC, and the ‘C2: KEGG gene sets’ were used

as reference.
2.7 Drug prediction

The Drug-Gene Interaction Database (DGIdb, https://

dgidb.org/) is a database of drug-gene interactions that provides

information on the association of genes with their known or

potential drugs. In this study, the drugs targeting biomarkers

were predicted using the DGIdb database, and the network was

visualized by the Cytoscape software (v 3.8.2).
2.8 Correlation analysis

The correlation between biomarkers and immune cells that

significantly differed in infiltration abundance between ATB and

LTBI was evaluated via the Spearman algorithm. The m6A and

m5C are strongly associated with various diseases; therefore, the

association between them and the biomarkers was analyzed. In

GSE19491, the expression of 17 m6A regulators and 20 m5C

regulators was identified, and the differences between the two

groups were compared. The relevance between biomarkers and

m6A or m5C regulators was then computed via the Spearman

algorithm in the “psych” R package.
2.9 Statistical analysis

For statistical measurements, the R software (v4.1.0, https://

www.r-project.org/) was utilized, and the inter-group differences
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were analyzed via the Wilcox test. P <0.05 was considered

statistically significant.
3 Results

3.1 A total of 289 ICRGs were obtained

A heatmap was used to display the abundance of 28 infiltrating

immune cells in both the ATB and LTBI groups (Figure 1A). Of

these, 20 immune cells indicated a significant difference. The

lymphocyte-related adaptive immune responses (activated B cells

and CD 8+ and CD4+ T cells, etc.) were suppressed, whereas that of

myeloid and inflammatory cells (macrophages, neutrophils, and

monocytes) were increased (Figure 1B). Therefore, these 20

immune cells were used as traits to perform WGCNA. No outlier

samples were observed in the training set (Figure 1C). At b = 18, the
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mean connectivity converged to 0 (Figure 1D). Altogether, seven

modules were characterized, each with a unique color (Figure 1E,

F). The MEyellow and MEred modules were highly correlated with

most traits, such as monocytes, neutrophils, and activated CD8 T, B,

and dendritic cells (DCs), etc. (Figure 1F), and were selected for

further studies. There were 289 ICRGs for subsequent analysis.
3.2 There were 20 DE-ARGs between the
ATB and LTBI groups

A total of 4,156 DEGs (964 upregulated and 3,192 down-

regulated) were identified in the ATB and LTBI groups

(Figure 2A, B). After intersection, 20 DE-ARGs were acquired

(Figure 2C, D). The chromosome localization showed that in

ATB and LTBI samples, six DE-ARGs (IFI6, SORT1, MUC1,

IFI16, G0S2, and ATF3) were located on chromosome 1, five
A B

D

E

FC

FIGURE 1

Identification of 289 immune cell-related genes. (A) Heatmap and (B) Boxplots indicating immune cell infiltration in LTBI and ATB samples. (C)
Clustering of module eigengenes. (D) The selection of soft threshold power. (E) Gene dendrograms. (F) Correlation analysis of immune cells and
module eigengenes. Row = module, and column = immune cell. *p < 0.05, **p < 0.01, ***p < 0.001; ****p < 0.0001; ns: not significant.
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(SHISA5, PARP9, DTX3L, PIK3CB, and TNFSF10) on chromosome

3, three (CASP1, CASP5, and CSAP4) on chromosome 11

(Figure 2E), and six (CD38, POLB, TLR4, NFKBIA, PML,

and PLAUR) on chromosomes 4, 8, 9, 14, 15, and 19,

respectively (Figure 2E).

GO analysis revealed significant enrichment of 186 GO items

including 163 biological processes, 2 cellular components, and 21

molecular functions (Supplementary File 2). These enrichments

included ‘intrinsic apoptotic signaling pathway in response to DNA

damage,’ ‘apoptotic signaling pathway modulation,’ and ‘intrinsic

apoptotic signaling pathway,’ (Figure 2F). KEGG analysis revealed

29 enriched pathways (Supplementary File 3), including the DE-

ARGs involved in ‘Salmonella infection,’ ‘Influenza A,’ and ‘NOD-

like receptor signaling pathway.’ (Figure 2G).
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3.3 There were six biomarkers with high
ATB diagnostic values

The PPI network for DE-ARGs indicated that TLR4 intersected

with 9 proteins, including PIK3CB, CASP1, and NFKBIA

(Figure 3A). Through four algorithms, 10 CHG, including TLR4,

CASP1, TNFSF10, CASP4, NFKBIA, CASP5, IFI16, IFI6, PIK3CB,

and ATF3 were acquired (Supplementary File 4 and Figure 3B). In

the training set, these genes were all highly expressed in the ATB

groups (Figure 3C). Moreover, CASP1, TNFSF10, CASP4, CASP5,

IFI16, and ATF3 demonstrated AUC values more 0.7, (Figure 3D),

qualifying them as selected biomarkers. The correlation analysis

suggested a positive association among these biomarkers, where

IFI16 was most positively linked with CASP1 (r = 0.90) (Figure 3E).
A B

D

E

F G

C

FIGURE 2

Identification of 20 DE-ARGs between LTBI and ATB groups. (A) A volcanic plot of DEGs between ATB and LTBI groups. (B) A heatmap of the top 20
DEGs between ATB and LTBI groups. Red = upregulated genes, and blue = downregulated genes. (C) Venn diagram indicating where the DEGs and
ICRGs overlap and (D) where the key DEGs and ARGs overlap. (E) Chromosome localization of the 20 DE-ARGs. (F). GO and (G) KEGG enrichment
of the 20 DE-ARGs.
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To investigate the biomarkers’ ATB diagnostic ability, the RF,

logistic regression, and LASSO models were established (Figure 4A-

E). In the training set, the three models indicated > 0.8 AUC values

(Figure 4F), whereas in GSE62525, the AUC values were >0.98,

>0.934, and > 0.923, respectively (Figure 4G). In GSE28623, the

three models indicated > 0.7 AUC values (Figure 4H), indicating

higher ATB diagnostic values of biomarkers.
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3.4 qRT-PCR

The mRNA levels of CASP1, TNFSF10, CASP4, CASP5, IFI16,

and ATF3 in blood samples of ATB and LTBI patients were

confirmed using qRT-PCR. The results revealed significantly

higher expression of these six genes in ATB patients compared to

LTBI patients (Figure 4I).
A B

D E

C

FIGURE 3

Identification of biomarker genes distinguishing ATB from LTBI. (A) Construction of the PPI network for DE-ARGs. (B) Screening of 10 CHG through
four algorithms. (C) The expression levels of 10 CHG in ATB and LTBI samples. (D) The 10 CHG diagnostic values were acquired using the ROC
analysis in the test set. (E) The correlation analysis of six biomarker genes. *p < 0.05, **p < 0.01, ****p < 0.0001.
A B

D E

F

G
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C

FIGURE 4

Construction of diagnostic models by machine learning algorithms. (A) The best decision tree in the random forest (RF) model was identified as 39.
(B) The probability of correct prediction. (C) Confusion matrix of the RF model. (D) The coefficient of hub genes in Least Absolute Shrinkage and
Selection Operator (LASSO) analysis. (E) Identification of the optimal penalization coefficient (l) in the LASSO model by 10-fold cross-validation and
the minimum criterion. ROC analysis of GSE19491 (F), GSE62525 (G), and GSE28623 (H). The six biomarker genes mRNA levels in blood samples
from 10 pairs of ATB and LTBI patients (I). ***p < 0.001.
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3.5 Enrichment analysis and drug rediction

The functional similarity analysis revealed a higher score of

CASP1 and CASP4, demonstrating similarities between their

functions (Figure 5A). The top 5 KEGG pathways were acquired

from the GSEA, and all biomarkers were involved in the ‘chemokine

signaling pathway’ (Figure 5B-G). IFI16, TNFSF10, CASP1, CASP4,

and CASP5 were enriched in ‘leishmania infection’ (Figure 5C-G).

Furthermore, ATF3, TNFSF10, CASP1, CASP4, and CASP5 were

enriched in a ‘TOLL-like receptor signaling pathway’ (Figure 5B, D-

G), and ATF3 and CASP5 in ‘complement and coagulation

cascades’ (Figure 5B, G).

The biomarker-drug network included 4 biomarkers (CASP1,

CASP5, CASP4, and ATF3) and 24 drugs (Figure 5H). For ATF3,

only progesterone was predicted, whereas CASP1, CASP5, and

CASP4 interacted with emricasan.
3.6 Association between biomarkers
and immune cells or m6A or m5C-
related genes

The correlation between biomarkers and immune cells revealed

a positive association of all biomarkers with myeloid and

inflammatory cells (neutrophils, activated DCs, macrophages,

myeloid-derived suppressor cells, monocytes, etc.) and a markedly

negative association with activated CD 8+ T and B cells (Figure 6).

The expression of 17 m6A and 20 m5C-related genes in the two

groups was depicted via heatmaps (Figure 7A, B). There were 10

m6A (YTHDC1, YTHDF1, CBLL1, ELAVL1, FTO, RBM15, RBMX,

TRA2A, YTHDC2, and METTL3) (Figure 7C) and 9 m5C (MBD3,

UHRF2, ZBTB33, MBD1, NTHL1, DNMT1, MECP2, UNG, and

ZBTB4) related DEGs in ATB and LTBI groups, (Figure 7D). The

correlation analysis indicated that WTAP had a significant positive
Frontiers in Cellular and Infection Microbiology 07
association with IFI16 (r = 0.650, P = 4.62E-16), whereas FMR1 had

a significant negative association with IFI16 (r = -0.180, P = 0.046)

(Figure 7E). TNFSF10 was positively relevant to SMUG1 (r = 0.621,

P = 1.83E-14) while negatively associated with ZBTB38 (r = -0.184,

P = 0.041) (Figure 7F).
4 Discussion

Despite recent advances in treatment and diagnosis, TB remains

a leading infectious disease causing significant comorbidities and

mortality globally (Carvalho et al., 2018; Bagcchi, 2023).

Transcriptome investigations have identified the association of

several genes and their expression patterns with TB pathogenesis.

Host cell death manipulates MTB infection by controlling and

restricting its dissemination. Increased necrotic death allows MTB

to disseminate to proximal cells upon lytic death. Apoptosis, a

regulated cell death process, is regarded as a defensive cellular

mechanism against intracellular MTB during infection (Deretic

et al., 2006; Ni Cheallaigh et al., 2011; Nisa et al., 2022).

Host immune response is the major mechanism against MTB

infection (Mayer-Barber and Barber, 2015; Lu et al., 2021; Rijnink

et al., 2021). Immune cell infiltration assessment revealed enhanced

inflammatory and myeloid cell levels (DCs, monocytes, and

neutrophils) in ATB patients than in LTBI patients, whereas

adaptive immunity cells (active CD8 T and B cells) indicated

reduced expression. The primary mechanism against chronic

MTB infection is adaptive immunity, contributing to persistent

LTBI. LTBI-diagnosed individuals have indicated MHC-I-restricted

CD8+T cells in the blood and bronchoalveolar lavage fluid, which

respond to MTB (Rijnink et al., 2021). B cells also contribute to the

anti-TB immune processes, acting in germinal centers to generate

innate and adaptive immunity-regulated antibodies, increasing the

antigen presentation to T cells, and secreting cytokines to support
A B D

E F GH

C

FIGURE 5

Enrichment Analysis and Drug Prediction of six biomarker genes. Functional similarity analysis of six biomarker genes (A). Single-gene GSEA-KEGG
pathway analysis of ATF3 (B), IFI16 (C), TNFSF10 (D), CASP1 (E), CASP4 (F) and CASP5 (G). Construction of biomarker genes-drug network (H).
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Tcell responses (Lu et al., 2021). These T cells and antibodies

influence granuloma formation, thereby affecting the progression

of MTB infection. In ATB patients, host responses against bacteria

and related tissue injury further enhance inflammatory responses,

inducing inflammatory cell (macrophages, DCs, neutrophils, and

monocytes) proliferation (Mayer-Barber and Barber, 2015).

This study identified six gene signatures (CASP1, CASP4,

CASP5, TNFSF10, IFI16, and ATF3) associated with suppressive

adaptive immune and increased inflammation responses as

biomarkers for differentiating ATB from LTBI. The caspase-

cascade system is essentially associated with intracellular

apoptotic signals’ induction, transduction, and amplification (Fan

et al., 2005). The caspase family is categorized into two subgroups:
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those closely linked with ICE/caspase-1 (caspase-1, -4, -5), activated

during inflammatory responses, and those stimulated during

apoptosis (caspase-2, -3, -6, -10) (Fan et al., 2005). Caspase-1

processes the proinflammatory cytokine IL-1b and IL-18 in

human monocytes and macrophages (Fan et al., 2005). In

humans, caspase-4 and -5 activate caspase-1 and produce IL-1b
(Fan et al., 2005). CASP-1-knockdown mice had reduced IL-1 and

IL-18 levels; however, they did not indicate any overt defects in

apoptosis regulation, strongly suggesting that this caspase is

predominantly associated with cytokine maturation rather than

cell death control (Van Opdenbosch and Lamkanfi, 2019).

Increased active IL-1b generation and release can extensively and

irreparably damage tissues. Further, caspase-1, 4, and 5 can mediate
A B

D

E F

C

FIGURE 6

Correlation analysis between biomarker genes and immune cells. The association of immune cells with CASP1 (A), TNFSF10 (B), CASP4 (C), CASP5
(D), IFI16 (E), and ATF3 (F).
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inflammasome (Vigano et al., 2015). Aberrant NLRP3 activation

causes several types of cell death such as pyroptosis, necroptosis,

and ferroptosis. This leads to compromised outer cell membrane

integrity and the release of cytoplasmic and nuclear contents into

the extracellular space. These events increased inflammatory
Frontiers in Cellular and Infection Microbiology 09
responses and facilitate the dissemination of MTB (Vigano

et al., 2015).

Tumor necrosis factor a-associated apoptosis-mediated ligand

(TRAIL/TNFSF10) belongs to the TNF superfamily and induces

apoptosis by interacting with the TRAILR1/death receptor 4 (DR4)
A B

D

E F

C

FIGURE 7

Correlation analysis between biomarker genes and m6A or m5C-related genes. Heatmap of the expression of 17 m6A-related genes (A) and 20
m5C-related genes (B) in ATB and LTBI samples. Boxplot of the expression of 17 m6A-related genes (C) and 20 m5C-related genes (D) in ATB and
LTBI samples. The correlation analysis of 17 m6A-related genes (E) and 20 m5C-related genes (F) with six biomarker ARGs. *p < 0.05, **p < 0.01,
***p < 0.001. ns: not significant.
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and TRAILR2/DR5 (Cardoso Alves et al., 2021). TNFSF10 is

expressed in various tissues and cells, with a primary localization

on the cell surface of immune cells. The fraction of MTB cell wall

can release soluble TNFSF10 from neutrophils (Kuribayashi et al.,

2008). Cytotoxic T and natural killer cells induce target cells’

apoptosis via death receptor ligands (e.g., FasL and TNFSF10),

which is crucial for controlling intracellular pathogenic infections

(Kuribayashi et al., 2008). In-vitro, TB patient’s CD8+ T cells

recognized HLA-E-binding MTB peptides and produced type 2

cytokines, which mediate TNFSF10-dependent cytolytic and

microbicidal activity against MTB-infected cells (Caccamo et al.,

2015). Therefore, the TNFSF10 upregulation is an anti-MTB

mechanism. Furthermore, Manna et al. (La Manna et al., 2018)

found that the serum TNFSF10 was significantly higher in ATB

patients, consistent with this investigation.

The IFN-g–inducible factor 16 (IFI16), a hematopoietic IFN-

inducible nuclear antigen with a 200 amino acid repeat family, is

detected in lymphocytes’ nuclei in the spleen, thymus, lymph nodes,

and epithelial cells of these tissues (Choubey and Panchanathan,

2016). After the hosts’ innate immunity over activation, the IFI16

stimulator of IFN genes (STING) is dependent on IFN-1, which

mediates TB pathogenesis (Choubey and Panchanathan, 2016). In

MTB-infected mice, increased IFN-1 expression was found to be

detrimental to survival and correlated with a reduction in Th1

immunity (Akter et al., 2022). Whole blood RNA signatures with

increased IFN-1 signaling can determine individuals who can

develop active disease (de Sa et al., 2022). IFI16 is in the cytosol

during macrophage MTB infection, and MTB DNA stimulates the

cytosolic surveillance mechanism. Furthermore, in the DNA-

damaged cells, the IFI16 protein expression is induced by p53

activation and IFN-signaling. IFI16 enhances p53-mediated cell

growth and regulates apoptosis, suggesting its involvement in anti-

TB infection via apoptosis (Li et al., 2021b).

Activating transcription factor 3 (ATF3), a member of ATF/

cyclic adenosine monophosphate (AMP) response element-binding

family of TFs, is a pro-apoptotic protein that induces airway

epithelial apoptosis via transcriptional regulation of DR5 and Bcl-

xL (Du et al., 2022). In-vitro, ATF3 can change TNF a-dependent
cell death mode from apoptosis to necroptosis (Du et al., 2022). It

can also inhibit pro-inflammatory cytokine levels and stimulate the

transcription of several inflammatory genes (TNF‐a, IL‐6, IL-12,
etc.) related to increased inflammatory cells (Peace and O’Neill,

2022). Furthermore, ATF3 is crucial for modulating IFN‐b
production downstream of innate immune receptors, suppressing

cellular immunity againstMTB infection (Peace and O’Neill, 2022).

Moreover, 24 potential drugs targeting four biomarker genes

were screened from the DSigDB database. Many conditioned

medium experiments indicated that stimulating progesterone

receptors leads to increased ATF3 expression, which is associated

with upregulated inflammation genes (TNF‐a and IFN-b) and

cellular immunity inhibition (Shah et al., 2019; Motomura et al.,

2023). Elevated progesterone levels are associated with diminished

activities of T cells and natural killer cells during pregnancy.

Similarly, increased a-defensin levels and monocyte and

polymorphonuclear-cell activities suggest that progesterone is

unfavorable for controlling MTB infection (Motomura et al.,
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2023). Emricasan, a pan-caspase inhibitor, suppresses enhanced

apoptosis and inflammation. In non-alcoholic steatohepatitis,

emricasan reduces hepatic inflammation and cirrhosis with good

tolerance (Frenette et al., 2021). In a mouse model, emricasan

and emricasan+doxycycline alleviated the lesion size and

bacterial burden, indicating its potential as a host-directed

immunotherapeutic against MRSA skin infections (Cahill et al.,

2023). Emricasan has protective effects against Zika and SARS-

CoV-2 infections (Alam et al., 2017; Plassmeyer et al., 2022).

Gene methylation regulates mRNA processing, affecting its

stability, translocation, alternative splicing, and translation,

therefore influencing various cellular processes. The m6A and

m5C are two major RNA methylations that contribute to

pulmonary TB progression (Zhao et al., 2017). For example,

METTL3 transcription levels (a methyltransferase as an S-

adenosylmethionine-binding subunit), METTL14 (RNA-binding

scaffold for substrate recognition), and WTAP (interacts and

localize METTL3 and METTL14 in nuclear speckles) have been

found to substantially decreased in ATB patients (Zhang et al.,

2022). Additionally, METTL3 and WTAP genetic variations were

linked with TB susceptibility, suggesting their probable involvement

in TB pathogenesis (Zhang et al., 2022). In the rat-injured kidney

model, the ATF3 gene is regulated by METTL3 and WTAP

meditated m6A methylation, promoting cell apoptosis (Li et al.,

2021a). Li et al. (Li et al., 2022) found markedly decreased mRNA

levels of YTHDF1, YTHDC1, and YTHDC2 in ATB individuals’

PBMC, consistent with this research. YTHDC2 variants were

related to fever or sputum smear-positive in ATB patients and

can elicit apoptosis by elevating caspase levels (Li et al., 2022). A

previous study revealed that in HIV-1 co-infected MTB patients,

DNA methyltransferase 1 (DNMT1) was markedly decreased

(Marimani et al., 2020). In-vitro DNMT1 knockdown induces

many genes, including ATF-3, and enhances apoptosis

(Milutinovic et al., 2003). Consistent with this investigation, these

m6A/m5C genes might be involved with TB pathogenesis by

methylation modification of some ARG.

The major strength of this study is the combinational use of

multiple bioinformatic analyses. For example, WGCNA offers

multiple advantages over other bioinformatics methods because

the analysis focuses on the link between clinical features and co-

expression modules. By combining it with the PPI network for key

genes, the results had high reliability and biological significance.

Additionally, unlike previous studies, which screened gene

signatures not limited to particular biological processes, this study

was focused on the apoptosis-related genes as biomarkers to

distinguish between ATB and LTBI, thereby providing evidence

for their potential role in the pathogenesis of Mtb infection.

This study has some limitations. 1) Although all publicly

accessible datasets were assessed, the sample size was relatively

small, which might have interfered with conclusions. 2) The data on

the association between immune cells, ARGs, and m6A/m5C

methylation should be considered statistical, not causative. 3)

Whether these host variables are exclusive to MTB infection is

unclear. 4) Microarrays have multiple disadvantages (Not a whole

genome analysis, higher background signal levels, not quantitative,

unable to detect alternative splicing). To assess the involvement of
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these ARGs’ activity and underlying pathogenesis of pediatric ATB

advanced from LTBI, further in-vitro and in-vivo investigations

are required.
5 Conclusions

This study identified six ARGs (CASP1, TNFSF10, CASP4,

CASP5, IFI16, and ATF3) that could be reliable biomarkers for

differentiating ATB from LTBI. These ARGs may potentially

participate in the immunopathogenesis of MTB infection by

modifying m6A/m5C methylation. Agents targeting these ARGs

that could be used as promising drug candidates for TB treatment

were also screened. These findings highlight evidence for future

research on MTB infection pathogenesis.
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