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Infectious Disease, Jurong Hospital Affiliated to Jiangsu University, Jurong, China, 4Department of
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Introduction: Vaccination is still the primary means for preventing influenza virus

infection, but the protective effects vary greatly among individuals. Identifying

individuals at risk of low response to influenza vaccination is important. This study

aimed to explore improved strategies for constructing predictive models of

influenza vaccine response using gene expression data.

Methods: We first used gene expression and immune response data from the

Immune Signatures Data Resource (IS2) to define influenza vaccine response-

related transcriptional expression and alteration features at different time

points across vaccination via differential expression analysis. Then, we

mapped these features to single-cell resolution using additional published

single-cell data to investigate the possible mechanism. Finally, we explored

the potential of these identified transcriptional features in predicting influenza

vaccine response. We used several modeling strategies and also attempted to

leverage the information from single-cell RNA sequencing (scRNA-seq) data

to optimize the predictive models.

Results: The results showed that models based on genes showing differential

expression (DEGs) or fold change (DFGs) at day 7 post-vaccination performed the

best in internal validation, while models based on DFGs had a better performance

in external validation than those based on DEGs. In addition, incorporating

baseline predictors could improve the performance of models based on days

1–3, while the model based on the expression profile of plasma cells

deconvoluted from the model that used DEGs at day 7 as predictors showed

an improved performance in external validation.
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Conclusion: Our study emphasizes the value of using combination modeling

strategy and leveraging information from single-cell levels in constructing

influenza vaccine response predictive models.
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1 Introduction

Influenza infection is a major global public health concern,

which causes approximately 3–5 million severe influenza cases

worldwide each year and 250,000 to 600,000 deaths (Iuliano et al.,

2018). Vaccination is still the most widely used means of preventing

and controlling influenza virus infection, but the effectiveness is far

from expected (Uyeki et al., 2022). Rapid antigenic evolution of the

virus hemagglutinin (HA) and neuraminidase may partly account

for the low effectiveness (Uyeki et al., 2022). However, even in

seasons with antigenic match between vaccine strains and

circulating influenza viruses, vaccine effectiveness reported in

outpatients was only 33% to 61% for different circulating strains

(Uyeki, 2017). Although various types of influenza vaccines with

different dosages, production methods, and inoculation methods

have been developed or are currently under development, they are

usually applied in special populations and the protective effects still

vary widely across individuals (Yamayoshi and Kawaoka, 2019;

Teljeur et al., 2022; Uyeki et al., 2022). Therefore, exploring factors

that drive differential vaccination responses and identifying

individuals at risk of vaccination low response may help improve

the protective effects and reduce influenza infection burden from

the perspective of precision medicine.

Utilizing systems vaccinology approaches, previous studies have

demonstrated the central role of an individual’s immune status in

influenza vaccine response, and a number of associations have been

identified, especially between gene expression signatures of

peripheral immune cells and vaccine response (Tsang et al., 2014;

Nakaya et al., 2015; Ovsyannikova et al., 2016; Team et al., 2017).

However, most of these studies focused on either expression

signatures measured at baseline or early post-vaccination, which

represent the pre-existing immune status and that have undergone

vaccine stimulation, respectively (Tsang et al., 2014; Nakaya et al.,

2015; Ovsyannikova et al., 2016; Team et al., 2017). Although some

studies have achieved fairly decent predictive performance using

these identified expression predictors, they did not combine the

information from baseline and post-vaccination together (Tsang

et al., 2014; Team et al., 2017; Avey et al., 2020; Hagan et al., 2022).

Recently, several studies also further linked early influenza

vaccination-driven transcriptional fold changes (FCs) compared
02
to baseline with later vaccine response, but they instead ignored the

influence of pre-existing immunity unexpectedly, which has been

proved to have a determinant impact on individuals’ response to

influenza vaccination (Avey et al., 2020; Chou et al., 2022; Hagan

et al., 2022). In addition, the role of heterogeneity in immune cell

composition and function in vaccine responses has been receiving

increasing attention (Sparks et al., 2023; Wang et al., 2023), which

further offers better opportunities to resolve the immune response

to influenza vaccine at single-cell resolution. However, limited

attempts have been made to explore its potential in predicting

influenza vaccination response.

Here, we first integrated gene expression and corresponding

immune response data to define influenza vaccine response-related

transcriptional features at different time points across vaccination.

Then, we mapped these features to single-cell resolution using

additional published single-cell data to investigate the possible

mechanism. Finally, we treated these identified transcriptional

features as predictors and used several modeling strategies to

explore their potential in predicting influenza vaccination

response. We also attempted to leverage the information from

single-cell RNA sequencing (scRNA-seq) data to optimize the

predictive models (Figure 1).
2 Methods

2.1 Vaccine immune response data source
and preprocessing

Processed microarray or RNA-sequencing (RNA-seq) data and

corresponding vaccine immune response data were obtained from

the Immune Signatures Data Resource (IS2, ht tps : / /

datatools.immunespace.org/project/HIPC/IS2/begin.view) (Diray-

Arce et al., 2022). This dataset includes 1,721 participants from

30 studies, and a detailed description of this dataset and the

preprocessing procedure is found in Diray-Arce et al. (2022). In

brief, FC of antibody response to vaccine antigen at around 28 days

post-vaccination compared to baseline (i.e., day 0 pre-vaccination)

was calculated for each participant to evaluate the vaccine

immunogenicity (Tsang et al., 2014; Team et al., 2017). Antibody
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response was evaluated based on neutralizing antibody titers (Nab),

hemagglutination inhibition assay (HAI) results, or IgG ELISA

assay results (Diray-Arce et al., 2022; Fourati et al., 2022).

Following Team et al. (2017), because of multiple strains of viral

antigens for the influenza vaccine, we also estimated the maximum

FC (MFC) and adjusted MFC (adjMFC) for each participant.

Participants were further grouped into three groups: (i) high

responders whose MFC value is equal to or above the 60th

percentile; (ii) moderate responders whose MFC is below the 60th

percentile but above the 40th percentile; and (iii) low responders

whose MFC is equal to or below the 40th percentile (Team et al.,

2017; Fourati et al., 2022).
Frontiers in Cellular and Infection Microbiology 03
2.2 Gene expression profile data source
and processing

Gene expression data are available on a total of 4,104 samples

collected from 1,221 participants, whose immune response data are

also documented (Diray-Arce et al., 2022). We downloaded gene

expression data containing 10,086 genes that have been cross-study

normalized and batch corrected and included samples (i) collected

from participants receiving inactivated influenza vaccination; and

(ii) collected at baseline, 1–3 days post-vaccination, or 7 days post-

vaccination. We also followed Fourati et al. (2022) to exclude

samples from moderate responders to minimize the difference in
FIGURE 1

Flowchart for data analysis.
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antibody response between studies. Finally, a total of 1,701 samples

from 763 participants, namely, 761 samples collected at baseline,

625 samples at 1–3 days post-vaccination, and 315 samples at 7 days

post-vaccination, were retained for subsequent analysis

(Supplementary Tables S1, S2).

Next, we used three procedures to perform RNA-seq data

analysis. First, we obtained the expression level for three different

time points by making an exponential transformation 2x on the

expression matrices. Second, we divided the expression matrices for

1–3 days post-inoculation (FCM1-3) and 7 days post-inoculation

(FCM7) with those of baseline to create FC matrices. We used the

limma (v 3.50.3) package to identify genes showing differential

expression (DEGs) or FC (DFGs) between high and low influenza

vaccine responders. DEGs or DFGs were defined as those with

Benjamini and Hochberg (BH) adjusted p-values< 0.05 (Table 1). In

particular, we defined influenza vaccine response-related DEGs as

genes who have differential expression between high and low

responders, which is calculated on a gene expression matrix,

while defined response-related DFGs as genes whose fold change

in response to vaccination (i.e., fold change from baseline after

vaccination) is different between high and low responders, which is

calculated on a gene FC matrix. ReactomePA (v.1.38.0) and

clusterProfiler (v.4.2.2) packages were used for enrichment

analysis based on Gene Ontology (GO), Kyoto Encyclopedia of

Genes and Genomes (KEGG), and Reactome pathway databases

(Yu and He, 2016; Wu et al., 2021). Functional items with BH

adjusted p-value< 0.05 were defined as significant.
2.3 Single-cell RNA-sequencing data
source and processing

To account for the transcriptome profile at different time points

along with influenza vaccination, two published single-cell RNA-
Frontiers in Cellular and Infection Microbiology 04
sequencing (scRNA-seq) data were downloaded. The first data

contained 18 PBMC samples collected from six individuals

immunized with influenza vaccine at three time points, including

baseline, day 7 post-vaccination, and day 28 post-vaccination

(Wang et al., 2023). We chose 12 samples collected at baseline

and day 7 post-vaccination, and a total of 86,962 cells were included

for subsequent analysis. The second data included six samples from

healthy controls collected at day 1 post-vaccination for subsequent

analysis, which contained a total of 30,135 cells (Sparks et al., 2023).

In quality control, we first used the scDblFinder (v 1.9.4)

package on each sample to remove potential doublets, and then

we followed the original study to fi lter out cells : (1)

expressing<1,000 or >25,000 unique molecular identifiers (UMIs);

(2) expressing<500 or >5,000 genes; or (3) with mitochondrial gene

content > 10% of the total UMI count (Germain et al., 2021; Wang

et al., 2023). After filtration, a total of 86,874 cells from 18 samples

were merged for downstream dimension reduction and clustering

analysis using the Seurat (v 4.3.0) package (Hao et al., 2021). In

brief, the merged data were first normalized and scaled to make it

comparable across cells and genes. The top 2,000 high variable

genes were also identified. Then, principal component analysis

(PCA) was performed based on the variable genes selected for

linear dimension reduction, and the harmony (v 0.1.1) package was

applied to all 50 PCs identified to remove potential batch effects

(Korsunsky et al., 2019). We chose the top 29 adjusted PCs, which

could cumulatively explain 90.41% variance across cells, for shared

nearest neighbor (SNN) graph-based clustering. The dimension

reduction and clustering result was finally visualized by the uniform

manifold approximation and projection (UMAP). Subsequently, we

followed the original study and used canonical markers to annotate

the unsupervised clusters identified (Supplementary Table S3) (Hu

et al., 2022; Wang et al., 2023). In addition, the AddModuleScore

function in Seurat was used to define the score of a pre-defined gene
TABLE 1 Definitions of DEGs and DFGs.

Name Definition

Number of
case samples

(high
responders)

Number of
control
samples
(low

responders)

Total
number

of
DEGs/
DFGs

detected

mDEGsbaseline
Genes that showed marginally significantly differential expression at baseline (unadjusted
p-value< 0.01) between high and low responders to influenza vaccination

382 379 63

DEGsday1–3
Genes that showed significantly differential expression at days 1–3 post-vaccination (BH
adjusted p-value< 0.05) between high and low responders to influenza vaccination

313 312 0

DEGsday7
Genes that showed significantly differential expression at day 7 post-vaccination (BH
adjusted p-value< 0.05) between high and low responders to influenza vaccination

164 148 191

DFGsday 1–3

Genes that showed significantly differential expression between days 1–3 post-vaccination
and baseline (BH adjusted p-value< 0.05), and whose fold change from baseline to days 1–
3 post-vaccination also significantly differed (BH adjusted p-value< 0.05) between high and
low responders to influenza vaccination

313 311 208

DFGsday 7

Genes that showed significantly differential expression between day 7 post-vaccination and
baseline (BH adjusted p-value< 0.05), and whose fold change from baseline to day 7 post-
vaccination also significantly differed (BH adjusted p-value< 0.05) between high and low
responders to influenza vaccination

167 146 79
f
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set on the single-cell level by calculating the average expression

levels of genes in this set.
2.4 Proportion and gene expression
deconvolution on bulk expression data

The CIBERSORTx online platform (https://cibersortx.

stanford.edu/) was employed to infer the cellular composition and

target genes expression from the bulk expression data (Newman

et al., 2019; Steen et al., 2020). In brief, we first followed the

CIBERSORTx tutorials to build a signature matrix reference file

from the processed scRNA-seq count data above (Steen et al., 2020).

Note that we disabled the default gene expression-based filtering

function as the scRNA-seq count data. We also formatted the bulk

expression data that awaited deconvolution into mixture file

according to the requirements. Then, we employed the Cell

Fraction analysis module to deconvolve the proportions of

different cell population in the prepared mixture file with the

scRNA-seq signature matrix file as reference (Steen et al., 2020).

Finally, we run the High-Resolution analysis module to recover the

sample-level expression profiles of target genes in different cell types

from the mixture file (Steen et al., 2020).
2.5 Cell-type-associated DEG detection

To determine the impact of cell-type composition on the

association between gene expression and influenza vaccine

response, we examined the interaction between the proportions of

deconvoluted cell populations and expression of DEGs at different

time points. Specifically, for each cell-type proportion and the

expression of each DEG detected above, we constructed a

generalized linear mixed-effects model (GLMM) as follows:
Frontiers in Cellular and Infection Microbiology 05
Response∼Covariates + Genei + Proportionj

+ Genei :Proportionj + (1jstudy)

where Genei :   Proportionj denotes the multiplicative interaction

term of expression of gene i and proportion of cell type j, and (1|

study) denotes the study-specific random effects. Sex, age, and

ethnicity were also included as covariates. For each time point

and each cell type, we defined cell-type-associated DEGs as those

with a BH adjusted p-value< 0.05 for the interaction term (Donovan

et al., 2020).
2.6 Predictive model construction
and validation

To explore the predictive potential of identified DEGs and

DFGs on influenza vaccine response, we constructed predictive

models with DEGs and/or DFGs at baseline, days 1–3 post-

vaccination, and/or day 7 post-vaccination as predictors and

influenza vaccination response (adjMFC group) at day 28 post-

vaccination as response variable. As no significant gene was defined

between high and low responders at baseline, we further defined

marginally DEGs as those with p-values< 0.01 (mDEGsbaseline), and

included them into predictive model construction.

We mainly proposed three modeling strategies (Table 2). In the

first assumption, we referred to previous studies to take influenza

vaccination response-associated DEGs at different time points as

predictors, and built three models (models with DEGsbaseline,

DEGsday1–3, and DEGsday7 as predictors, respectively). In the

second assumption, we introduced early transcriptional

alterations driven by influenza vaccination (i.e., DFGs), and built

another two models (models with DFGsday1–3 vs baseline and

DFGsday7 vs baseline as predictors, respectively). Finally, we

integrated two kinds of predictors: (i) DEGs or DFGs in response
TABLE 2 Detailed structure of models constructed.

Models Predictors a Number
of predictors

Number of train-
ing samples

Number of external
validation samples

Model 1 Covariates + DEGsbaseline 66 761 57

Model 2 Covariates + DEGsday 1–3 3 625 57

Model 3 Covariates + DEGsday 7 191 315 57

Model 4 Covariates + DFCsday 1–3 167 624 57

Model 5 Covariates + DFCsday 7 47 313 57

Model 6 Covariates + DEGsbaseline + DEGsday 1–3 66 624 57

Model 7 Covariates + DEGsbaseline + DEGsday 7 250 313 57

Model 8 Covariates + DEGsbaseline + DFCsday 1–3 204 624 57

Model 9 Covariates + DEGsbaseline + DFCsday 7 84 313 57

Model 10 Covariates + DEGsday 7 in recovered plasma cells 71 313 57

Model 11
Covariates + DEGsbaseline + DFGsday 1–3 + recovered cellular
composition changes at days 1–3 post-vaccination

246 624 57
aSex, age, and ethnicity were treated as covariates in all modeling strategies.
DEGs, differentially expressed genes; DFCs, differentially expressed fold changes.
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to vaccination, and (ii) DEGsbaseline. Four models were built on the

combination modeling strategy (Table 2). Note that in all modeling

strategies, sex, age, and ethnicity were treated as covariates.

For the model fitting, we employed the regularization elastic net

regression to estimate parameters and select features (Zou and

Hastie, 2005; Kooperberg et al., 2010; Manor and Segal, 2013;

Gamazon et al., 2015). We used the glmnet package (v 4.1.6) to fit

it (Friedman et al., 2010). Based on internal 10-fold cross-

validations, we selected the optimal mixing parameter ranging

from 0 to 1 with the minimum squared error (Hastie et al., 2009).

For performance evaluation, we considered internal fivefold cross-

validation and external validation and used the area under the curve

(AUC) to evaluate the prediction performance. pROC (v.1.18.0) was

used to evaluate the performance of the fitted models by calculating

the area under the curve (AUC) (Robin et al., 2011). To make a

more comprehensive measurement on the performance and the

model predictions, we also reported several metrics, including the

area under the precision-recall curve (AUPRC), balanced accuracy,

F1 score, Matthews correlation coefficient (MCC), specificity, and

sensitivity (Vickery, 1970; Matthews, 1975; Kuhn, 2015; Saito and

Rehmsmeier, 2015; Saito and Rehmsmeier, 2016).

In external validation, we downloaded another bulk expression

data from GEO with accession number GSE194378 and related

immune information from Zenodo with Concept RECID 5935844

(https://doi.org/10.5281/zenodo.7566484), which contained 412

samples from 75 participants collected from day 7 pre-

vaccination to day 28 post-vaccination (Sparks et al., 2023). We

followed the same procedure as above to process the data and

applied cutoffs from the training cohorts to the test cohort for

grouping. Finally, a total of 171 samples collected at baseline, day 1

post-vaccination, and day 7 post-vaccination from 57 participants,

including 30 low responders and 27 high responders, were included

for validation, and AUC was used to evaluate the performance of

the fitted models on the external data. All analyses were performed

in R (v.4.2.0) (Ihaka and Gentleman, 1996).
2.7 Statistical analysis

Continuous variables are presented as median (quartile) and

compared using unpaired Wilcoxon test. Categorical variables are

presented as count (percentage) and compared using c2 test.
2.8 Sensitivity analysis

We also conducted a series of sensitivity analyses to

demonstrate the robustness of our results. First, in terms of

vaccine response definition, considering the wide application of

the concept of seroconversion, which is usually defined as an acute-

phase serum titer of<10 with a convalescent-phase titer of >40 or a

significant increase (>4-fold) in antibody titers between acute- and

convalescent-phase serum samples (Greenberg et al., 2009), we re-

define participants with seroconversion as high responders and

those without seroconversion as low responders and repeated our

main analysis. In brief, for the training cohort, a total of 1,813
Frontiers in Cellular and Infection Microbiology 06
samples, including 815 samples collected at baseline, 664 samples at

1–3 days post-vaccination, and 334 samples at 7 days post-

vaccination, from 817 participants were included for analysis,

among which 352 (43.08%) were high responders (Supplementary

Table S2). For the external validation cohort, a total of 213 samples

collected at baseline, day 1 post-vaccination, and day 7 post-

vaccination from 71 participants, namely, 30 low responders and

41 high responders, were included for validation (Supplementary

Table S2). Second, in terms of DEGs/DFGs definition, we took both

p-values and abs(log2(FC)) into consideration, re-defined DEGs/

DFGs as those with unadjusted p-values< 0.01 and abs(log2(FC)) >

0.1, and repeated our main analysis. Third, in terms of predictors

selection, we tried to take known gene modules as predictors and

constructed a series of interpretable models. In brief, we

downloaded two sets of known gene modules: the human

hallmark gene sets from MSigDB (v.7.4) and the blood

transcriptomic modules (BTMs) from Li et al. (Li et al., 2014;

Liberzon et al., 2015). We used AddModuleScore to calculate gene

module scores for each sample, and used Wilcoxon test to identify

modules whose scores showed statistical differences between high

and low responders. We then took module scores with marginal

significance (i.e., with unadjusted p-values< 0.01) as predictors to

construct models, and repeated our main analysis. Finally, in terms

of model fitting, we also employed stepwise regression, random

forest, and Support Vector Machines (SVM), and repeated our

main analysis (Breiman, 2001; Geurts et al., 2006; Steinwart and

Christmann, 2008). In brief, for stepwise regression, we performed

variance inflation factor (VIF)-based variable filtering from the full

model prior to stepwise regression. We set 10 as the cutoff of VIF.

When all VIFs are less than 10, we then applied the stepwise

regression for Akaike information criterion (AIC)-based model

selection. We used randomForest to fit random forest (Breiman,

2001). We set the number of trees to 1,000 for each model and at

each fold, and the class with at least 50% of votes was defined as

predicted response for each sample. We used e1071 to fit SVM

(Dimitriadou et al., 2009). Models were trained using sigmoid

kernel function as we found that it had a better performance in

our internal cross-validations.
3 Results

3.1 The identification of DEG and DFG and
their functional enrichment in the bulk
RNA-seq data

We first used the gene expression data and corresponding

vaccine immune response data from IS2 to evaluate early

transcriptional alterations associated with influenza vaccination. A

total of 2,617 DEGs were identified at days 1–3 post-influenza

vaccination compared with baseline, among which 1,060 and 1,557

were upregulated and downregulated at days 1–3 post-vaccination,

respectively (Figure 2A; Supplementary Table S4). Gene enrichment

analysis based on GO, KEGG, and Reactome pathway databases

showed that upregulated genes were mainly enriched in processes,

including response to virus (P = 5.891 × 10-30), defense response to
frontiersin.org
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symbiont (P = 3.330 × 10-28), and regulation of response to biotic

stimulus (P = 3.857 × 10-20), and pathways related to influenza A

infection (P = 5.084 × 10-11), NOD-like receptor signaling pathway

(P = 9.622 × 10-8), and interferon signaling (P = 1.922 × 10-22),

while those downregulated were mainly enriched in immune cell

activation and differentiation-related processes and pathways, such

as lymphocyte differentiation (P = 2.587 × 10-9), mononuclear cell

differentiation (P = 1.232 × 10-8), and T-cell receptor signaling

pathway (P = 5.836 × 10-6) (Figures 2C, D; Supplementary Tables

S5, S6). DE analysis between samples from day 7 post-vaccination

and baseline defined 720 upregulated and 41 downregulated genes,

which were mainly enriched in proteins and nucleic acid

processing-related pathways, such as endoplasmic reticulum to

Golgi vesicle-mediated transport (P = 2.784 × 10-14), protein

processing in endoplasmic reticulum (P = 7.023 × 10-16), and

asparagine N-linked glycosylation (P = 4.745 × 10-17), and

interleukin signaling and cellular response to molecule-

related pathways, such as cellular response to biotic stimulus

(P = 1.906 × 10-3), IL-17 signaling pathway (P = 1.665 × 10-2),

and interleukin-10 signaling (P = 1.195 × 10-3), respectively

(Figures 2B, E, F; Supplementary Tables S7–S9).

We then explored transcriptional differences between high and

low responders to influenza vaccine at each time point. The results

showed that 191 influenza vaccine response-related DEGs were

defined at day 7 post-vaccination, while no response-related DEGs

was defined at baseline or days 1–3 post-vaccination (Figures 3A–C;

Supplementary Table S10). Upregulated genes at day 7 post-
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vaccination were enriched in processes and pathways such as

protein targeting to ER (P = 7.571 × 10-10), protein processing in

endoplasmic reticulum (P = 1.342 × 10-13), and Unfolded Protein

Response (UPR, P = 3.721 × 10-5) (Figure 3D; Supplementary

Table S11).

Differential expression analysis identified 208 DFGs at days 1–3

post-vaccination compared with baseline (DFGday1–3) (Figure 4A;

Supplementary Table S12). Genes showing relative higher FC in

high responders were significantly enriched in processes related to

ribosome and pathways related to translation, including ribosome

biogenesis (P = 2.479 × 10-7), rRNA processing (P = 1.131 × 10-6),

and viral mRNA translation (P = 1.231 × 10-21) (Figure 4C;

Supplementary Table S13), while genes showing relative lower FC

in high responders were significantly enriched in processes and

pathways related to mRNA splicing, such as catalytic step 2

spliceosome (P = 2.351 × 10-2) (Figure 4D; Supplementary Table

S14). In addition, 79 DFGs were identified at day 7 post-vaccination

compared with baseline (DFGday7) (Figure 4B; Supplementary

Table S15), among which those showing higher FC in high

responders were mainly enriched in processes and pathways

related to endoplasmic reticulum and protein processing, such as

response to endoplasmic reticulum stress (P = 7.216 × 10-11) and

protein processing in endoplasmic reticulum (P = 2.406 × 10-13)

(Figure 4E; Supplementary Table S16).

As we used seroconversion to define vaccine response, we

identified much more DEGs and DFGs than those identified

based on adjMFC. In particular, we identified a total of 2, 1,966,
A

B

D

E F

C

FIGURE 2

Volcano plots indicating differential expression analysis between samples collected at days 1–3 post-influenza vaccination (A) or day 7 post-
vaccination (B) and those collected at baseline. Bar plots indicating enrichment analysis based on upregulated (C, E) or downregulated genes
(D, F) at days 1–3 post-vaccination (C, D) or day 7 post-vaccination (E, F) compared with baseline.
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A

B

D

E

C

FIGURE 4

Volcano plots indicating differential expression analysis of FCMs between high and low responders at days 1–3 post-influenza vaccination (A) or day
7 post-vaccination (B). Bar plots indicating enrichment analysis based on genes showing relative higher (C, E) or lower FCs (D) in high responders at
days 1–3 post-influenza vaccination (C, D) or day 7 post-influenza vaccination (E) compared with baseline.
A B

DC

FIGURE 3

Volcano plots indicating differential expression analysis between high and low responders at baseline (A), days 1–3 post-influenza vaccination (B) or day 7
post-vaccination (C). Bar plots indicating enrichment analysis based on upregulated (D) genes between high and low responders at day 7 post-vaccination.
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and 53 influenza vaccine response-related DEGs at baseline

(DEGsbaseline), days 1–3 post-vaccination (DEGsday1–3), and day 7

post-vaccination (DEGsday7), among which 0, 0, and 43 (81.13%)

overlapped with those identified with participants grouped based on

adjMFC (Supplementary Figure S1; Supplementary Tables S17,

S18). We also identified 5,419 and 68 DFGs at days 1–3

(DFGsday1–3) and day 7 post-vaccination (DFGsday7) compared

with baseline, among which 201 (3.71%) and 9 (13.24%)

overlapped with those on adjMFC (Supplementary Figure S1;

Supplementary Tables S19, S20).
3.2 Integration with scRNA-seq data

We mapped our findings to single-cell resolution. A total of

86,874 cells from 18 samples were included for analysis. A total of

21 cell types were defined using cannon marker genes

(Supplementary Figure S2A; Supplementary Table S3). All cell

types had a distribution in each sample, which may exclude the

presence of an obvious batch effect (Supplementary Figure S2B).

The results showed that myeloid cells, including CD14+ monocytes,

CD16+ monocytes, cDCs, and pDCs, relatively expanded at 1–3

days post-vaccination, while B cells and plasma expanded at 7 days

post-vaccination (Supplementary Figures S2C, D), which is

consistent with sequential activation of innate and adaptive

immune responses along with vaccination demonstrated by

previous studies (Tsang et al., 2014; Nakaya et al., 2015). In terms

of transcriptional alterations, the most shared DEGs were observed

in CD14+ monocytes (4,475) and CD16+ monocytes (2,642) at days

1–3 post-vaccination compared to baseline and day 7 post-

vaccination (Supplementary Figures S3, S4). Of note, 99.70%

(35428/35535) of the shared DEGs identified across all cell types

at day 7 post-vaccination were downregulated compared to baseline

and days 1–3 post-vaccination, with the greatest number identified

in CD4+T memory cells (3808) and CD16+ monocyte (3774), while

most of the shared upregulated genes were from proliferative T cells

(91.59%, 98/107) (Supplementary Figures S3, S4).

When we mapped influenza vaccine response-associated

transcriptional patterns defined above to the single-cell data, we

found that genes more highly expressed in high responders at day 7

post-vaccination and those showing higher FC in high responders

at day 7 post-vaccination compared with baseline primarily

expressed in plasma cells, proliferative T cells, and pDCs

(Figure 5). However, no cell-type preference was observed for

genes showing higher FC in high responders at day 3 post-

vaccination compared with baseline (Figure 5). A total of 28 cell-

type-specific DEGs and 3 cell-type-specific DFGs were identified,

among which 27 DEGs and 2 DFGs were defined as plasma cell-

specific at day 7 post-vaccination, indicating the great impacts of

plasma cell fraction on the gene expression–influenza vaccine

response association (Supplementary Table S21).
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3.3 Performance for the prediction models

After defined transcriptional patterns at baseline or early post-

vaccination associated with vaccine response, we next explored their

potential in predicting later vaccine response. Taking three main

modeling strategies, nine prediction models were constructed (see

Methods). In internal fivefold validation, model 3 that used DEGs at

day 7 as predictors performed the best with a mean AUC of 0.762,

followed by model 7 (mean AUC = 0.751) that used a combination

of DEGs at baseline and day 7 as predictors (Figure 6). However, in

the external validation model, almost all models showed a

diminished performance (P = 8.379 × 10-8, Supplementary Figure

S5), among which model 7 and model 3 performed the worst, while

model 8 that used a combination of DFGday1–3 and DEGs at

baseline (mean AUC = 0.680), and model 3 that used DFGday1–3

only as predictors (mean AUC = 0.620) performed the best

(Figure 6). Of note, combination strategy could improve the

performance of models based on days 1–3 (P = 2.773 × 10-3), but

not for those based on day 7 (Supplementary Figure S5). We

obtained largely similar results in models fitted using stepwise

logistic regression, random forest, and SVM in internal validation

(Supplementary Figures S6–S9; Supplementary Table S22).

However, elastic net showed relative better performance in

external validation (P = 5.155 × 10-4 and 9.419 × 10-7 for random

forest and SVM, respectively), followed by stepwise logistic

regression (P = 2.121 × 10-2 and 8.430 × 10-4 for random forest

and SVM, respectively), indicating that simple linear combination

might be somewhat acceptable for gene expression to predicting

vaccination response. We also observed similar results in sensitive

analysis that used both p-values and abs(log2(FC)) to select

predictors (Supplementary Figures S10–S12). When we used

seroconversion to define influenza vaccine response, we observed

a significantly higher AUC in internal validation, but lower AUC in

external validation (Supplementary Figures S12–S14). However, we

are surprised to find that models built on selected known gene

modules had a relatively poor performance in internal validation,

despite comparable performance in external validation

(Supplementary Figures S12, S15, S16).

We further explored whether data at the single-cell level can be

leveraged to optimize the predictive models. We used CIBERSORTx to

deconvolute the cellular composition and cell-type-specific expression

of target genes, and found that the predictive model built on the

expression profile of plasma cells recovered from influenza vaccine

response-associated patterns identified at day 7 post-vaccination

showed a better performance in external validation (P = 7.937 × 10-

3, Figure 7). As for those identified at days 1–3 post-vaccination, we

tried to incorporate the recovered cellular composition changes into

model 8 that used a combination of DFGday1–3 and DEGs at baseline.

However, these composition changes were filtered out in the parameter

and variable selection of the elastic net model. As we set the mixing

parameter to 0 to use a ridge regression, we still did not get improved

AUCs in internal validation or external validation (Figure 7).
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4 Discussion

In this study, we used the DEGs and DFGs to predict the

influenza vaccine response. We tried several new model strategies,

including combining DEGs and DFGs from both pre- and post-

vaccination, and using features deconvoluted from scRNA-seq data.

We also compared these models with those built on DEGs and DFGs

from a single time point, and performed a series of sensitive analysis

to explore the robustness of these strategies. Our study may provide

valuable clues for developing improvement predictive models for

influenza vaccine response using transcriptional signatures.

In predictor selection, DE analysis between high and low

responders to influenza vaccine revealed that at days 1–3 post-

vaccination, there were few DEGs but relatively more DFGs

compared with baseline, among which BCAS2 (P = 7.042 × 10-3)

and USH2A (P = 3.959 × 10-2) represented both top DEGs and
Frontiers in Cellular and Infection Microbiology 10
DFGs downregulated in high responders. BCAS2 is a pre-mRNA-

splicing factor and was reported to play an important role in

alternative mRNA splicing and development of oocyte,

spermatogonia, and cancer cells, as well as DNA break repair

(Kuo et al., 2015; Liu et al., 2017; Wang et al., 2020; Zhang et al.,

2022). USH2A, which encoded a protein called usherin, was

reported to be mainly involved in retinopathy and hearing loss

(Toualbi et al., 2020; Dulla et al., 2021; del Castillo et al., 2022).

Genes showing relatively lower FC in high responders were also

significantly enriched in processes and pathways related to mRNA

splicing. In addition, differential expression analysis day 7 post-

vaccination also revealed two top DEGs and DFGs upregulated in

high responders. The first was TNFRSF17, which was known to

encode the B-cell maturation antigen and was associated with the

pathogenesis and treatment of multiple myeloma and colon cancer

(Shah et al., 2020; Song et al., 2022). The second ITM2C also
FIGURE 5

Boxplots indicating expression of gene sets in different cell types. Pre-defined gene sets contained genes upregulated (panels 1 and 3) or
downregulated (panels 2 and 4) between high and low responders at baseline (panels 1 and 2), days 1–3 post-vaccination (panels 3 and 4), or day 7
post-vaccination (panels 3 and 4), or those showing relatively higher (panels 5 and 7) or lower FCs (panels 6 and 8) in high responders at days 1–3
post-influenza vaccination (panels 5 and 6) or day 7 post-influenza vaccination (panels 7 and 8) compared with baseline. ISG, interferon stimulated
gene; Treg, regulatory T cell; MAIT, mucosal-associated invariant T cell; NK, natural killer cell; NKT, natural killer T cells; DC, dendritic cell; pDC,
plasmacytoid dendritic cell; PLT, platelet.
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encoded proteins expressed on antibody secreting plasma cells and

was involved in multiple myeloma (Trezise et al., 2018; Sarıman

et al., 2019). Mapping these features to single-cell data also

found that DEGs and DFGs upregulated in high responders at

day 7 post-vaccination primarily expressed in plasma cells,

underlining the critical roles of plasma cells activation at day 7

post-vaccination in favorable vaccine response later. We also

observed that the plasma cell fraction at day 7 post-vaccination

had a great impact on the association between DEGsday7 and

influenza vaccine response, suggesting the need to take the

proportion of plasma cell into consideration when using DEGs at

day 7 to predict vaccine response.

When we further explored the predictive potential of these

features identified, we found that models 3 and 7 based on DEGs

and DFGs at day 7 performed the best in internal validation,

consistent with studies by Hagan et al. and Avey et al. (Avey
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et al., 2020; Hagan et al., 2022). Notably, three genes in the

plasma cell module (M156.1) used by Hagan et al., namely,

TNFRSF17, POU2AF1, and PNOC, were also present in our

models 3 and 7 (Hagan et al., 2022). Although almost all models

showed a diminished performance in external validation, which was

also reported in previous studies (Team et al., 2017; Avey et al.,

2020), we found that models based on DFGs showed better

performance than those based on DEGs, which was also

confirmed in our several sensitivity analyses. Using a multicohort

analysis, the HIPC-CHI Signatures Project Team and the HIPC-I

Consortium identified a baseline transcriptional signature specific

to young individuals predictive of influenza vaccination responses

(Team et al., 2017). Several studies also found the predictive

potential of baseline predictors (Forst et al., 2022; Wang et al.,

2022). However, baseline bulk transcriptional features alone did not

show an ideal predictive performance in a subsequent study, as well
FIGURE 6

Boxplots indicating AUC of different modeling strategies for predicting response to influenza vaccination using elastic net regression in five-cross
internal validation and external validation. Models 1–3 were built using influenza vaccination response-associated DEGs at baseline, days 1–3 post-
vaccination, and day 7 post-vaccination as predictors, respectively. Models 4 and 5 were built using influenza vaccination response-associated DFGs
at days 1–3 post-vaccination and day 7 post-vaccination as predictors, respectively. Models 6–9 were built on the combination of DEGs at baseline
and predictors in models 2–5, respectively. Sex, age, and ethnicity were treated as covariates in all modeling strategies. AUC, area under curve.
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as in our study (Avey et al., 2020). Instead, we found that

incorporating baseline predictors could improve the performance

of models based on days 1–3, although this did not apply to those

based on day 7. As an alternative, the predictive model based on the

expression profile of plasma cells deconvoluted from model 3 that

used DEGs at day 7 as predictors showed an improved performance

in external validation.

Our study also has several limitations. First, we did not evaluate

the performance of models based on the expression FC in some

specific cell types from baseline to post-vaccination. Although,

thanks to CIBERSORTx, we can estimate the expression profile of

target genes in specific cell types from the bulk gene expression

profile, as our deconvolution is performed separately at each time

point, CIBERSORTx may be able to make good estimations on the

expression FC in specific cell types from baseline to post-
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vaccination only when the target gene has a certain variation

across samples at both time points (Newman et al., 2019; Steen

et al., 2020). Second, since the abs [log2(FC)] identified in this study

are relatively small, we used only p-values to select predictors in our

main analysis, which may be somewhat sample size sensitive. We

thus added a sensitive analysis by taking both p-values and abs [log2

(FC)] into consideration for predictor selection. Third, we

constrained all of our analysis in participants who received the

inactivated influenza vaccine, which may limit the extrapolation of

our results. Finally, the scRNA-seq data and bulk transcriptomic

data we used were generated from different sources and platforms.

Although CIBERSORTx enables robust deconvolution analysis on

complex tissues, independent of expression profiling platform or

tissue preservation state, as demonstrated by many previous studies

(Bohuslavova et al., 2023; Zhang et al., 2023a; Zhang et al., 2023b), it
FIGURE 7

Boxplots indicating comparison of AUC using elastic net regression for models using influenza vaccination response-associated DEGs at day 7 post-
vaccination or plasma cell-specific expression profile recovered from these DEGs as predictors (panels 1 and 2), and for models using a combination
of influenza vaccination response-associated DFGs at days 1–3 post-vaccination and influenza vaccination response-associated DEGs at baseline or
adding recovered cellular composition changes from baseline to days 1–3 post-vaccination additionally as predictors (panels 3 and 4) in internal
validation (panels 1 and 3) or external validation (panels 2 and 4). "**" denotes P value < 0.01.
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would still be hard for us to exclude bias caused by the differences in

data sources.

In summary, leveraging information from baseline predictors

and from the single-cell level in predictive model construction could

pave the way for vaccine response prediction.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Author contributions

RY and PH designed the study. XY, JT, and LX performed the

datasets quality control. XY and SY performed the data analysis.

RY, PH, and HC interpreted the analysis results. XY, SY, and JT

wrote the draft manuscript. SY, YW, and HC revised the article. All

authors approved the final manuscript.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported by the Natural Science Foundation of China (Nos.

82173585 and 82273741), the Priority Academic Program
Frontiers in Cellular and Infection Microbiology 13
Development of Jiangsu Higher Education Institutions (PAPD),

the Nanjing Important Science & Technology Specific Projects (No.

2021–11005), and the Science and Technology Program for Social

Development of Jurong (No. ZA42205).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fcimb.2024.1243586/

full#supplementary-material
References
Avey, S., Mohanty, S., Chawla, D. G., Meng, H., Bandaranayake, T., Ueda, I., et al.
(2020). Seasonal variability and shared molecular signatures of inactivated influenza
vaccination in young and older adults. J. Immunol. 204 (6), 1661–1673. doi: 10.4049/
jimmunol.1900922

Bohuslavova, R., Fabriciova, V., Smolik, O., Lebrón-Mora, L., Abaffy, P., Benesova, S.,
et al. (2023). NEUROD1 reinforces endocrine cell fate acquisition in pancreatic
development. Nat. Commun. 14 (1), 5554. doi: 10.1038/s41467-023-41306-6

Breiman, L. (2001). Random forests. Mach. Learn. 45 (1), 5–32. doi: 10.1023/
A:1010933404324

Chou, C.-H., Mohanty, S., Kang, H. A., Kong, L., Avila-Pacheco, J., Joshi, S. R., et al.
(2022). Metabolomic and transcriptomic signatures of influenza vaccine response in
healthy young and older adults. Aging Cell 21 (9), e13682. doi: 10.1111/acel.13682
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