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Background: Timely diagnosis and appropriate antifungal therapy are critical for

improving the prognosis of patients with invasive fungal disease (IFD) after

hematopoietic stem cell transplantation (HSCT). We evaluated the

performance of metagenomic next-generation sequencing (mNGS) and

conventional microbiological testing (CMT), as well as the diagnosis,

therapeutic management, and outcomes of IFD after HSCT.

Methods: We retrospectively studied 189 patients who underwent HSCT and

were considered at risk for IFD. In total, 46 patients with IFD were enrolled in this

study. The IFD consensus was followed for classifying IFD incidents.

Results: Forty-six patients were diagnosed with proven/probable (n = 12), possible

(n = 27), and undefined (n = 7) IFD. Aspergillus was the most commonly detected

fungal genus. Mucormycosis was found in 15 patients; two had Aspergillus, and

one had Candida infections. Compared to CMT, mNGS significantly reduced the

time required to identify pathogens (P = 0.0016). mNGS had a much higher

sensitivity than CMT (84.78% vs. 36.96%; P < 0.0001). A total of 76.09% of patients

received antifungal prophylaxis during fungal infections. All Pneumocystis

infections occurred later than 100 days after transplantation. Among patients

with Pneumocystis infection, 71.43% occurred following sulfonamide withdrawal,

and subsequent treatment with sulfonamide alone or in combination with other

drugs was effective. Based on the empirical antifungal treatment, the dosages,

modes of administration, frequency of administration, or antifungal of 55.26% of

the patients were changed according to the mNGS results. The 4-year overall

survival rate of patients diagnosed with IFD after transplantation was 71.55% (95%

CI, 55.18%–85.82%). Hypoproteinemia and corticosteroid use are independent risk

factors for IFD.
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Conclusion: mNGS, which has a high sensitivity and a short detection time, aids

in the diagnosis and prognosis of pathogenic fungi. As a powerful technology,

mNGS can influence treatment decisions in patients with IFD following HSCT.
KEYWORDS

metagenomic next-generation sequencing, invasive fungal disease, hematopoietic stem
cell transplantation, immunosuppression, diagnosis
1 Introduction

Invasive fungal disease (IFD) is a common complication after

hematopoietic stem cell transplantation (HSCT) and a leading cause

of transplant-related mortality (Pagano et al., 2007; Sun et al., 2015).

Patients experience conditioning regimens, agranulocytosis,

impaired mucosal barrier, use of central venous catheterization,

graft-versus-host disease (GVHD), immunosuppression, and

delayed immune reconstitution, which all significantly increase

the risk of IFD (Kuster et al., 2018; Sun et al., 2021). Advances in

microbiological techniques and antifungal drugs have resulted in

improvements in IFD diagnosis and treatment (Akan et al., 2013;

Tissot et al., 2017; Chinese Association, H and Chinese Invasive

Fungal Infection Working, G, 2020; Ruhnke et al., 2020; Chinese

Society Of Hematology and Chinese Medical Association,

Antimicrobial Infection Branch, 2023). The specific symptoms

and adequate diagnostic procedures for IFD remain lacking,

resulting in delayed diagnosis and treatment of IFD and a poor

prognosis of patients. Early detection of IFD and prompt initiation

of appropriate treatment are critical factors in the survival of

patients following HSCT (Puerta-Alcalde and Garcia-Vidal, 2021)

Standard diagnostic techniques are clinically challenging for

IFD diagnosis because of their invasiveness, long detection period,

and lack of sensitivity, specificity, and species identification

(Ostrosky-Zeichner, 2012). The gold standard for diagnosing IFD

is culture-based testing; unfortunately, sterile specimens frequently

necessitate potentially invasive procedures (Donnelly et al., 2020).

Moreover, serum biomarkers, including galactomannan (GM) and

1,3-b-D-glucan (BDG), are the adjunct to clinical diagnosis of IFD

(Guo et al., 2010; Lu et al., 2011a; Li et al., 2015; Donnelly et al.,

2020). However, GM and BDG cannot detect all fungal pathogens,

and their diagnostic efficacy in HSCT varies (Ullmann et al., 2018;

Warris et al., 2019). According to the European Conference on

Infections in Leukemia guidelines, serum BDG can help diagnose

Pneumocystis jirovecii pneumonia (Maertens et al., 2016).

However, GM performance remains significantly lower in non-

neutropenic patients and/or those receiving prophylactic therapy

(Wu et al., 2021). Radiographic findings may aid in the diagnosis of

fungal lung lesions in patients with fever and neutropenia (FN).

Nonspecific observations, on the other hand, often lead to

overdiagnosis and incorrect treatment. Although PCR-based
02
technologies have been shown to be effective in the identification

of some fungal pathogens, false-positive and false-negative results

limit their widespread application (Lu et al., 2011b; Trubiano et al.,

2016; Ala-Houhala et al., 2018).

Metagenomic next-generation sequencing (mNGS) is a

promising culture-independent technique that has been extensively

used to diagnose infections (Gabaldón, 2019; Irinyi et al., 2020).

mNGS may detect many types of microorganisms in a microbial

sample both rapidly and concurrently (Barreda-Garcıá et al., 2018)

while also recognizing non-culturable microbes (Yang et al., 2022).

The application of mNGS to identify fungal infections has recently

increased (Alonso et al., 2018; Shivaji et al., 2019; Chien et al., 2022).

However, there have been relatively few investigations on the use of

mNGS for diagnosis in patients with IFD following HSCT, and its

clinical application has not been standardized. Owing to the severity

and specificity of IFD after HSCT, efforts to optimize pathogen

detection technologies are important for a favorable prognosis. This

study examined the efficacy of standard mNGS technology in

detecting infections in patients with IFD after HSCT by comparing

the diagnostic performance of mNGS and conventional

microbiological testing (CMT). In addition, we describe IFD

diagnoses, survival, and risk factors for IFD following HSCT.
2 Material and methods

2.1 Study design and patients

We retrospectively studied 189 patients who underwent HSCT

and were considered at risk of IFD at the Hematopoietic Stem Cell

Transplantation Center, Tongji Hospital, affiliated with Huazhong

University of Science and Technology, between June 2020 and

October 2022. At least one of the following enrollment criteria

was present: (1) prolonged fever with neutropenia (FN) after broad-

spectrum antibiotics (≥ 96 h), (2) FN recurrence, or (3) anomalous

conditions to consider fungal infections. Ultimately, 46 patients

with IFD were enrolled in this study. Figure 1 depicts a flow

diagram of the study participants based on STARD 2015 (Cohen

et al., 2016). All patients received antifungal prophylaxis, according

to revised recommendations from a consensus process led by the

Gruppo Italiano Trapianto Midollo Osseo (Girmenia et al., 2014).
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Treatment should be continued for at least 100 days following

transplantation, or 180 days in higher-risk patients, or until

immunosuppressive therapy is discontinued. Different types of

specimens were collected depending on the type of suspected

infection. CMT included microscopy, culture, serological tests,

RT-PCR, and radiological examinations. NGS tests were

performed at Huada Laboratories (Shenzhen, China) or Genskey

Laboratories (Tianjin, China). Patients’ antifungal treatment as well

as clinical and laboratory data were collected retrospectively at the

onset of infection symptoms. The follow-up ended on 31

January 2023.
2.2 Diagnosis of IFD

According to the revised definitions of IFD from European

Organization for Research on Treatment of Cancer (EORTC) and

the Chinese guidelines for the diagnosis and treatment of IFD in

patients with hematological disorders and cancers (Chinese

Association, H and Chinese Invasive Fungal Infection Working,

G, 2020; Donnelly et al., 2020; Alexander et al., 2021), the 46

patients were classified as having proven, probable, possible, or

undefined IFD. Patients were defined as having a proven IFD if

fungi were discovered in a sterile specimen using cytology,

microscopy, or culture. Patients were classified as having probable

IFD if a host factor met both clinical criteria (i.e., radiographic

findings, bronchoscopy, or sinus analysis) and mycological criteria

(i.e., direct detection of fungi in a sterile specimen or detection of

specific fungal antigens and cell wall components). Patients were

classified as having possible IFD if a host factor met clinical criteria

but not mycologic criteria and as having undefined IFD if a host

factor did not match both clinical and mycological criteria yet the

diagnostic-driven therapy was effective. Positive results for multiple

microorganisms in the same specimen were treated as separate

events. Overall survival (OS) was measured from the start of HSCT

until death or the last follow-up for any reason.
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2.3 mNGS procedure

2.3.1 Plasma sample processing and
DNA extraction

Within 8 h of collection, 3 mL of blood was collected from

patients, deposited in a blood collection tube, and held at room

temperature for 3 min to 5 min before plasma separation and

centrifugation at 4,000 rpm for 10 min at 4°C. Plasma samples were

transferred to new sterile tubes. TIANamp Micro DNA Kit (DP316,

TIANGEN BIOTECH, Beijing, China) was used to extract DNA

from 300 µL of plasma according to the manufacturer’s

instructions. The extracted DNA specimens were then utilized to

build DNA libraries (Long et al., 2016).
2.3.2 Other samples processing and
DNA extraction

BALF/CSF/hydrothorax sample (1.5 mL to 3mL) from patient was

collected according to standard procedures. A 1.5-mL microcentrifuge

tube containing 0.6 mL of the sample and 250 mL of 0.5-mm enriching

beads were attached to a horizontal platform on a vortex mixer and

agitated vigorously at 2800–3200 rpm for 30 min. Then, 7.2 mL of

lysozyme was added for wall-breaking reaction. The 0.3-mL sample

was separated into a new 1.5-mL microcentrifuge tube, and DNA was

extracted using the TIANamp Micro DNA Kit (DP316, TIANGEN

BIOTECH) according to the manufacturer’s recommendation.
2.3.3 Construction of DNA libraries
and sequencing

DNA libraries were constructed through DNA fragmentation,

end-repair, adapter-ligation, and PCR amplification. Agilent 2100

(Agilent Technologies, Santa Clara, California) was used for quality

control of the DNA libraries. Quality-qualified libraries were

pooled, and DNA Nanoball (DNB) was made and sequenced by

MGISEQ-200/MGISEQ-2000 platform (Jeon et al., 2014).

2.3.4 Bioinformatic analysis
High-quality sequencing data were generated by removing low-

quality reads, followed by computational subtraction of human host

sequences mapped to the human reference genome (hg19) using

Burrows–Wheeler Alignment (Li and Durbin, 2009). The remaining

data by removal of low-complexity reads were classified by

simultaneously aligning to Pathogens metagenomics Database,

consisting of bacteria, fungi, viruses, and parasites. The classification

reference databases were downloaded from National Center for

Biotechnology Information (NCBI) (ftp://ftp.ncbi.nlm.nih.gov/

genomes/). RefSeq contains 4,945 whole-genome sequence of viral

taxa, 6,350 bacterial genomes or scaffolds, 1,064 fungi related to human

infection, and 234 parasites associated with human diseases.

2.3.5 Criteria for a positive mNGS result
1. The total number of sample sequences is higher than or

equal to 20 million reads.
FIGURE 1

Flow diagram of the patients included in the study.
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2. The ratio of the reads per million sample divided by the

reads per million of the no-template control from any given

taxon (species, genus, or family) ≥10 (Mongkolrattanothai

et al., 2017; Simner et al., 2018).

3. Bacteria (mycobacteria excluded), virus, and parasites:

mNGS identified a microbe (species level) whose coverage

rate scored 10-fold greater than that of any other microbes

(Langelier et al., 2018; Miao et al., 2018).

4. Fungi: mNGS identified a microbe (species level) whose

coverage rate scored five-fold higher than that of any other

fungus because of its low biomass in DNA extraction

(Bittinger et al., 2014; Schlaberg et al., 2017; Miao

et al., 2018)
2.4 Statistical analysis

We used the Kaplan–Meier method for survival analysis, and

groups were compared using the log-rank test. The kappa (k) statistic
was used to assess the consistency of different assays. Independent

risk factors for IFD were examined using univariate and multivariate

logistic regression models. SPSS (version 26.0; SPSS Inc., Chicago, IL,

USA), GraphPad Prism (version 8.0; GraphPad Software, La Jolla,

CA, USA), and R (version 3.6.3; the R Foundation, Indianapolis, IN,

USA) were used to analyze and generate the graphs. P-values < 0.05

(two-tailed) were considered statistically significant.
3 Results

3.1 Clinical characteristics

Table 1 displays the baseline patient information and baseline

characteristics. Forty-six patients with a median age of 43 years were

enrolled in this study. The majority of the patients (41.30%) had an

underlying diagnosis of AML. Most (89.13%, n = 41) underwent

allogeneic HSCT, whereas five (10.87%) underwent autologous

HSCT. Eleven (23.91%) had a history of fungal infection. When the

symptoms first appeared, 25 (32.2%) of the patients had

agranulocytosis, and 36 (78.26%) were given immunosuppressive

medication. GVHD occurred in 16 allogeneic HSCT patients, and 35/

46 (76.09%) received prophylactic antifungal therapy during IFD.

Central venous catheters were placed in 35 patients during the IFD.

The median values of LDH, CRP, PCT, and IL-6 in all patients were

339.00 U/L [interquartile range (IQR), 252.50–552.50], 100.20 mg/L

(IQR, 42.75–207.88), 0.63 ng/ml (IQR, 0.24–2.37) and 101.20 pg/ml

(IQR, 36.53–415.60), respectively.
3.2 IFD diagnoses

In total, 46 patients were diagnosed with IFD, and the prevalence of

proven, probable, possible, and undefined IFD was 2.18% (1), 23.91%

(11), 58.69% (27), and 15.22% (7), respectively. Candida tropicalis was
tiers in Cellular and Infection Microbiology 04
cultured from the peripheral blood of a patient with proven IFD.

Figure 2A depicts the distribution of pathogens detected using mNGS

and CMT. The most common IFD was Aspergillosis, which accounted

for 30.43% of the episodes (14); Candidiasis and Pneumocystis each
TABLE 1 Demographics and clinical characteristics of patients.

Characteristic All patients (n = 46)

Age, years (median, IQR) 43(17.75-52.25)

Male 26(56.50%)

Protopathy

AA 12(26.09%)

ALL 7(15.22%)

AML 19(41.30%)

MDS 2(4.35%)

MM 3(6.52%)

Lymphoma 3(6.52%)

Transplant-related characteristics

Donor type

MRD 30(65.22%)

MSD 9(19.56%)

MUD 2(4.35%)

Auto 3(6.52%)

Auto+CART 2(4.35%)

Absolute counts of CD34+ cells (106/kg) 6.72(4.08-8.00)

N engraftment, days, median (IQR) 14(13-15)

PLT engraftment, days, median (IQR)* 14(13-19.5)

Concomitant conditions#

Central venous line 35(76.08%)

Agranulocytic 25(54.35%)

Immunosuppressive drugs 36(78.26%)

Diabetes 5(10.87%)

Hypoproteinaemia 35(76.09%)

Previous fungal infections 11(23.91%)

Prophylactic antifungal therapy 35(76.09%)

Voriconazole + Sulfamethoxazole 29

Posaconazole + Sulfamethoxazole 6

LDH (U/L), median (IQR) 339.00(252.50-552.50)

CRP (mg/L), median (IQR) 100.20(42.75-207.88)

PCT (ng/ml), median (IQR) 0.63(0.24-2.37)

IL-6 (pg/ml), median (IQR) 101.20(36.53-415.60)

Graft versus host disease 16(34.78%)

(Continued)
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accounted for 15.22% of the episodes (7). One of whom had

Candidiasis and Aspergillosis, and another had Candidiasis and

Pneumocystis. Fifteen patients were diagnosed with mucormycosis,

three of whom had Aspergillus infection and one had Candida

infection. Trichosporon, Meyerozyma, and Stachybotrys were detected

in one case each. The remaining six cases of IFD were diagnosed

without formal identification of fungal species, for example, by BDG.

mNGS outperformed other methods in detecting fungi and accurately

detected specific fungal pathogens. The majority (56.52%) of patients

with IFD were co-infected with bacteria and/or viruses (Figure 2B).

Figure 2C displays the pathogen distribution in 46 patients with IFD at

different times following transplantation. A total of 57.14% of the

Aspergillus infections in our study occurred during the peri-planting

period. All Pneumocystis infections occurred later than 100 days

after transplantation.
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3.3 Diagnostic performance of mNGS
compared to CMT

The sensitivity of both mNGS and CMT in all patients is shown

in Table 2. Our results showed that mNGS and CMT had a sensitivity

of 84.78% and 36.96%, respectively. mNGS significantly

outperformed CMT (P < 0.0001). Fifteen (32.61%) of the 46

patients had congruent mNGS and CMT results. Additionally,

sample selection is essential for testing performance. The sensitivity

rates of mNGS and CMT for different specimens are shown in

Figure 3A. The sensitivity of peripheral blood samples to mNGS was

significantly higher (P < 0.0001), but, for specimens from potentially

pathological tissues, such as sputum and bronchoalveolar lavage fluid

(BALF) from patients with cough, the sensitivity rates of mNGS and

CMT were comparable. When compared to CMT, mNGS

significantly reduced the time needed to identify pathogens (P =

0.0016) (Figure 3B). mNGS had a higher positive testing % for the

detection of various pathogenic fungi than CMT. The consistency for

Pneumocystis was 85.72% (Figures 3C, D).
TABLE 2 Performance of mNGS and CMT in all patients with IFD.

mNGS

CMT Positive Negative Total

Positive 15 2 17

Negative 24 5 28

Total 9 7 46
frontier
B
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FIGURE 2

Distribution of pathogens identified in patients with IFD after HSCT. (A) The figure showed the number of subjects in whom each causative fungus
was detected. Orange bars indicate fungi detected by both CMT and mNGS (mNGS+CMT+). Purple bars indicate fungi detected by mNGS only
(mNGS+CMT−). Green bars indicate fungi detected only by CMT (mNGS−CMT+). (B) Distribution of pathogens was shown in patients. Fungal
infections accounted for 43.48% among all the subjects. (C) Different fungal infections occurred at different periods after transplantation.
TABLE 1 Continued

Characteristic All patients (n = 46)

Sample collection time

pre-engraftment period 20(43.48%)

<100D 5(10.87%)

>100D 21(45.65%)

Follow-up time, median (IQR) 16.500 (6.830-32.491)
PLT engraftment, days (median, IQR)*: 1 patient without engraftment was excluded;
Concomitant conditions #: Concomitant conditions during infection; AA, Aplastic anemia;
AML, Acute myeloid leukemia; ALLL, Acute lymphoblastic leukemia; MDS, Myelodysplastic
syndromes; MM, Multiple myeloma; MRD, Mismatched related donor; MSD, Matched sibling
donor; MUD, Matched unrelated donor; Auto, Autologous; CART, Chimeric Antigen
Receptor T-Cell Immunotherapy; IQR, Interquartile range.
sin.org
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3.4 Antifungal therapy

All patients received prophylactic antifungal therapy. When

symptoms appeared, 35/46 (76.09%) patients received prophylactic

antifungal therapy, including 29 patients who received voriconazole

plus sulfamethoxazole and six patients who received posaconazole plus

sulfamethoxazole. However, 71.43% of the patients with Aspergillus

infection had breakthrough infection after starting voriconazole, and

intravenous voriconazole was substituted in the context of routine drug

monitoring. Of these, 78.75% received two or more antifungal drugs in

subsequent treatment. In addition, 71.43% of pneumocystis infections

occurred withrow the sulfamethoxazole, and all patients were still

effectively treated in the subsequent therapy using sulfamethoxazole in

combination with or without other antifungal drugs. At the time of

infection, 12 of the 15 (80%) patients with mucormycosis received

prophylactic antifungal therapy, with nine patients receiving

voriconazole + sulfamethoxazole and the remaining three receiving

posaconazole + sulfamethoxazole. Fourteen of the 15 patients (93.3%)

with mucormycosis subsequently received posaconazole or

amphotericin B in combination with other antifungal drugs. Two of

them had undergone surgery, and one patient, according to mNGS

results, was not treated with appropriate antifungal drugs in time,

resulting in disease progression and death. All patients with Candida

infection had the central venous line removed and received antifungal

therapy. Posaconazole in combination with amphotericin B was

administered to one patient with Trichosporon infection and another
Frontiers in Cellular and Infection Microbiology 06
with Meyerozyma infection. The patient with Stachybotrys infection

was treated with amphotericin B and pneumocystis. Based on the NGS

results, dose adjustments or medication changes using empiric

antifungal treatment occurred in 56.52% of patients with IFD.

Details of the antifungal treatments are described in Table 3. Such

high values may be attributed to the combination of

antifungal therapies.
3.5 Outcomes and survival

The median follow-up time was 16.50 months (range, 0.57–

59.79 months). The estimated 4-year OS of patients with IFD was

71.55% (95% CI, 55.18%–85.82%), and the median survival time

(mOS) was 59.07 months (95% CI, 55.30–62.84 months). The

median time from fungal infection to death or the end of follow-

up was 11.79 months. The fungi-related mortality rate was 18.82%

(95% CI, 9.08%–30.72%). The survival data of patients with IFD are

presented in Figure 4. Multivariate logistic regression analyses were

performed for all 189 patients to identify the independent risk

factors for IFD following HSCT and to correct for potential

confounding factors. Univariate analysis was used to select

variables for the multivariate logistic regression studies.

Independent risk factors for IFD (Table 4) included corticosteroid

use (Hazard ratio (HR), 8.008; 95% CI, 3.550–18.063; P < 0.001) and

hypoproteinemia (HR, 5.121; 95% CI, 2.245–11.681; P < 0.001).
B

C D

A

FIGURE 3

Performance of mNGS and CMT in pathogens identified. (A) The positive rates of mNGS and CMT in different samples were compared. The positive
rate of mNGS in peripheral blood samples was significantly higher than that of CMT. (B) The diagnostic time required for mNGS and CMT were
compared in patients with IFD. (C, D) The positive detection rate of mNGS and CMT and their consistency in different pathogens. **P < 0.01 and
****P < 0.0001 by Wilcoxon rank sum test.
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4 Discussion

IFD is a common complication of HSCT that is associated with

high morbidity and mortality rate (Neofytos et al., 2009; Sun et al.,
Frontiers in Cellular and Infection Microbiology 07
2015). Although IFD treatment has advanced significantly, delayed

diagnosis causes significant morbidity and mortality (Ostrosky-

Zeichner, 2012). Substantial advances in the diagnostic approaches

for IFD include radiographic findings, biomarkers (e.g., GM and
TABLE 3 Antifungal therapy and mortality in IFD patients after HSCT.

N The period of
symptoms
occurs (N)

Prophylactic
antifungal therapy

Antifungal therapy Outcome (N)

≤100
d

>100
d

Regimen
1 (N)

Regimen
2 (N)

Regimen
1

Regimen 2 Regimen 3 Regimen 4 Improved Death

Aspergillus

Probable 1 0 1 POS+SOX (1) VOR 1 0

Possible 5 5 0 VOR
+SOX (5)

VOR ABCD
+VOR

VOR+AMB 4 1

Undefined 4 4 0 VOR
+SOX (4)

VOR AmBisome
+
VOR

4 0

Mucor1

Probable 2 1 1 VOR
+SOX (2)

POS+AMB ABCD 1 1

Possible 9 4 5 VOR
+SOX (5)

POS+SOX (2) POS ABCD AmBisome
+POS

MIF+VOR 6 3

Candida2

Proven 1 1 0 VOR
+SOX (1)

CAS 1 0

Probable 1 0 1 VOR
+SOX (1)

ABCD
+VOR

1 0

Possible 1 1 0 VOR
+SOX (1)

CAS 1 0

Undefined 1 1 0 POS+SOX (1) CAS
+ ABCD

1 0

Pneumocystis

Probable 4 0 4 VOR
+SOX (2)

SOX 4 0

Possible 1 0 1 SOX 1 0

Undefined 1 0 1 SOX 1 0

Mixed pathogenic fungi

Probable 1 0 1 VOR
+SOX (1)

ABCD
+VOR

1 0

Possible 4 2 2 VOR
+SOX (1)

AmBisome
+
VOR+CAS

VOR+CAS AMB+POS SOX
+VOR+CAS

2 2

Undefined 1 1 0 POS+SOX (1) ABCD
+MIF

1 0

Others

Probable 2 2 0 VOR
+SOX (1)

ABCD,
AMB

2 0

Possible 7 4 3 VOR
+SOX (5)

POS+SOX (1) AMB+POS VOR MIF+POS AMB+VOR 6 1
frontie
1. Two patients had been treated with surgical procedure; 2. All patients had removed central venous line.
POS, posaconazole; VOR, voriconazole; SOX, sulfamethoxazole; AMB, amphotericin B; CAS, caspofungin; MIF, micafungin; AmBisome, liposomal amphotericin B; ABCD, amphotericin B
cholesteryl sulfate.
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BDG), and PCR assays (Greene et al., 2007; Arvanitis et al., 2015).

However, CMT may not be appropriate for rare fungi, particularly

those that are difficult to culture, resulting in delayed detection,

whereas mNGS can directly execute DNA or RNA sequencing
Frontiers in Cellular and Infection Microbiology 08
(Tsang et al., 2021). Jiang et al. (2022) report that mNGS is

increasingly being used to treat fungal infections.

The predominant fungal species in our study were Aspergillus (14 of

46, 30.43%) and Rhizopus (8 of 46, 17.39%). Candida and Pneumocystis

accounted for 15.22% (7 of 46) of the infections. Owing to the different

characteristics of immune function damage, the pathogens of IFD also

differ at different stages after transplantation. Twenty (43.48%) of the 46

patients developed IFD during the conditioning period to the engraftment

period, five (10.87%) within 100 days after transplantation, and 21

(45.65%) cases occurred more than 100 days later.

In our study, mNGS technology had distinct advantages over

CMT in diagnosing different types of fungal species. The

detectability increased significantly from 36.96% to 84.78%. The

detection time was significantly reduced using mNGS. mNGS also

provides accurate identification of specific fungal pathogens and is

more specific than CMT. The mNGS results for 15 patients were

consistent with those of CMT. The quick and accurate diagnosis of

fungal species is critical for selecting appropriate antifungal agents,

avoiding resistance, and managing patients (Omrani and

Almaghrabi, 2017; Wang et al., 2020; Stemler et al., 2022).

Pathogens are distributed in a variety of tissues and organs and

have the ability to detect variations in different types of samples.

The sensitivity of peripheral blood samples to CMT, particularly

blood cultures, was significantly lower than that of mNGS; however,

for specimens from possible pathological tissues, the sensitivity of

mNGS and CMT was comparable.

In two incidents the CMT results in this study were positive, but

the NGS produced a false negative in two patients. The specific

analysis was as follows: mNGS detected human beta-herpesvirus 5

and torque teno virus in P1, whereas blood culture detected

Candida albicans. Further analysis of the original mNGS data

revealed that mNGS detected Candida albicans using an updated

database. The second incident involved P6, where a positive GM

test in the BALF was accompanied by an abnormal chest CT scan,

which improved after receiving antifungal therapy.
TABLE 4 Univariate and multivariate analyses for IFD.

Univariate analysis

P-value HR 95% CI

Age (years) 0.015 1.025 1.005–1.046

Male gender 0.818 1.082 0.553–2.118

Diabetes 0.232 0.490 0.152–1.579

Prior fungal infection 0.026 2.661 1.122–6.309

Agranulocytic 0.498 1.259 0.646–2.454

Corticosteroid <0.001 6.231 2.910–13.344

Immunosuppressive drugs 0.833 1.090 0.489–2.429

Monoclonal antibodies 0.373 1.484 0.623–3.536

Central venous catheterization 0.459 1.336 0.620–2.879

Unrelated donor 0.359 1.820 0.506–6.551

Haplo 0.573 0.819 0.409–1.630

GVHD 0.255 1.514 0.742–3.088

CMV 0.503 1.278 0.623–2.621

Hypoproteinemia <0.001 9.369 4.313–20.353

Multivariate analysis

P-value HR 95% CI

Corticosteroid <0.001 8.008 3.550–18.063

Hypoproteinemia <0.001 5.121 2.245–11.681
HR, hazard ratio; CI, confidence interval.
BA

FIGURE 4

Overall survival of all patients (A) and the patients who died of IFD (B). Two patients were excluded from the overall survival analysis because of
intracranial hemorrhage and disease recurrence during conditioning.
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Sometimes, the CMT results can indicate that the patient

experienced suspected IFD following HSCT; however, the

identification of fungal species is nonspecific. mNGS has low

sensitivity when: 1) the pathogen load is below the detection limit

or is filtered owing to low-ranking readings; 2) the pathogen’s

nucleic acid is easily degraded; 3) the pathogen is suspected to be a

background microorganism; and 4) the dataset or database has

limitations. Further reasonable interpretations of the results are

then required. The mcfDNA-Seq assay and serum GM can

generally provide complementary results for the diagnosis of

invasive pulmonary mold infections following HSCT (Hill et al.,

2021). As proposed for P. jirovecii infection following HSCT (Liu

et al., 2021), mNGS and BDG may aid in distinguishing

colonization from infection. By using CMT in conjunction with

mNGS technologies, the vision of a “one-stop” for IFD diagnosis

seems promising in the foreseeable future.

Despite a decline in IFD-related deaths over the past decade, IFD

remains a significant limiting factor for effective HSCT (Neofytos et al.,

2009; Kontoyiannis et al., 2010). As a result, patients with suspected IFD

after HSCT are frequently given prophylactic or empirical antifungal

treatments. Most of the patients (76.09%) in our study received

prophylactic antifungal therapy, with voriconazole being the most

widely used drug. Although most patients received antifungal

prophylaxis, many patients developed GVHD or required

corticosteroids and immunosuppressants following HSCT. Among

the patients with Pneumocystis infection, 71.43% occurred withrow

the sulfamethoxazole, and all patients were still successfully treated in

the subsequent therapy with sulfamethoxazole in combination with or

without other antifungal drugs. This suggests that prophylactic

antifungal therapy lowers the risk of IFD. According to the NGS

results, dose adjustments or medication changes on the basis on

empiric antifungal treatment, occurred in 56.52% of patients with

IFD. The estimated 4-year OS was 71.55%, whereas the mOS of

patients was 59.07 months. Eight patients died because of IFD. In this

investigation, corticosteroid use (HR, 8.008; 95% CI, 3.550–18.063) and

hypoproteinemia (HR, 5.121; 95% CI, 2.245–11.681) were identified as

independent risk factors for IFD using multivariate logistic regression.

This study has several limitations. First, being a retrospective

study, there were some inherent limitations, such as information

bias and selection bias. The sample size of our study was relatively

small. In addition, mNGS was usually performed only once owing

to its high cost. Finally, there was no information on antifungal

susceptibility or resistance. Further prospective randomized

controlled studies with larger sample sizes are needed to be

designed to elucidate the diagnostic value of mNGS for IFD

following HSCT according to STARD 2015.

In conclusion, our study demonstrated the feasibility of mNGS

in patients with IFD following HSCT. We recommend that

clinicians use mNGS technology more actively when there is a

clinical suspicion of IFD after HSCT. For clinical infection related

samples, the traditional microbiological detection should be

improved first. Pathology and sterile specimen culture are still the

gold standard for infection diagnosis. Pathogenic mNGS is a

powerful supplement and extension, which may be a helpful

adjunct to the clinical diagnosis of IFD, allowing for more rapid

and focused antifungal treatment.
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