
Frontiers in Cellular and Infection Microbiology

OPEN ACCESS

EDITED BY

Manuel L. Lemos,
University of Santiago de Compostela, Spain

REVIEWED BY

Nicholas Cianciotto,
Northwestern University, United States
Inês Bezerra Gomes,
University of Porto, Portugal

*CORRESPONDENCE

Gregory G. Anderson

ga2@iupui.edu

RECEIVED 16 October 2023
ACCEPTED 20 December 2023

PUBLISHED 11 January 2024

CITATION

Bhaumik R, Aungkur NZ and Anderson GG
(2024) A guide to Stenotrophomonas
maltophilia virulence capabilities, as we
currently understand them.
Front. Cell. Infect. Microbiol. 13:1322853.
doi: 10.3389/fcimb.2023.1322853

COPYRIGHT

© 2024 Bhaumik, Aungkur and Anderson. This
is an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

TYPE Mini Review

PUBLISHED 11 January 2024

DOI 10.3389/fcimb.2023.1322853
A guide to Stenotrophomonas
maltophilia virulence capabilities,
as we currently understand them
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Department of Biology, Purdue School of Science, Indiana University Purdue University Indianapolis,
Indianapolis, IN, United States
The Gram-negative pathogen Stenotrophomonas maltophilia causes a wide

range of human infections. It causes particularly serious lung infections in

individuals with cystic fibrosis, leading to high mortality rates. This pathogen is

resistant to most known antibiotics and harbors a plethora of virulence factors,

including lytic enzymes and serine proteases, that cause acute infection in host

organisms. S. maltophilia also establishes chronic infections through biofilm

formation. The biofilm environment protects the bacteria from external threats

and harsh conditions and is therefore vital for the long-term pathogenesis of the

microbe. While studies have identified several genes that mediate S. maltophilia’s

initial colonization and biofilm formation, the cascade of events initiated by these

factors is poorly understood. Consequently, understanding these and other

virulence factors can yield exciting new targets for novel therapeutics.
KEYWORDS

Stenotrophomonas maltophi l ia , ant ib iot ic, biofi lm, virulence, chronic
infection, opportunistic
1 Introduction

Stenotrophomonas maltophilia is an opportunistic pathogen emerging globally as a

multidrug-resistant organism (Brooke et al., 2017). It causes severe nosocomial infections,

such as pneumonia, bacteremia, endocarditis, meningitis, mastoiditis, biliary sepsis, and

catheter-related urinary tract infections (Looney et al., 2009; Chang et al., 2015). This

microbe causes particularly severe infections in immunocompromised individuals,

intensive care unit (ICU) patients, those taking high doses of antibiotics, burn patients,

cancer patients, and patients with transplants (Nseir et al., 2006a; Demiraslan et al., 2013;

Hofmann et al., 2016; Adegoke et al., 2017). A 10-year case study from 2008 to 2017 showed

a ~162% increase in the rate of S. maltophilia isolates from individuals with lower

respiratory tract infection (Gajdacs and Urban, 2019). It is reported that there is a

higher risk of transmission of infection through contaminated healthcare associated

water supplies, such as tap water, hemodialysis water, and dental unit reservoirs (Cervia
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et al., 2008). Notably, S. maltophilia infections exhibit a mortality

rate of up to 69% (Senol et al., 2002), with higher incidences in

patients with chronic kidney diseases and foley catheter usage (Jian

et al., 2022). S. maltophilia also causes severe lung infection and

pulmonary exacerbation (Talmaciu et al., 2000; Waters et al., 2013;

Berdah et al., 2018) in the lungs of 11.9-14% of individuals with

cystic fibrosis (CF) (Ewig et al., 2000; Nseir et al., 2006b; Trifonova

and Strateva, 2019a; McCutcheon and Dennis, 2021). Despite the

wide range of infections it can cause, there is very little known about

the immune response to S. maltophilia infection. Different S.

maltophilia strains show different degrees of survival inside

immature dendritic cells (iDCs) (Roscetto et al., 2015). They

plausibly also evade phagocytosis of these effector cells, rendering

these cells incapable of antigen presentation and immune activation

along with utilizing the cells as a point of bacterial dissemination for

infection spread.
2 S. maltophilia infection in individuals
with cystic fibrosis

The most well studied S. maltophilia infection is in the lungs of

CF individuals. CF is a genetic disorder resulting from point

mutation of the cystic fibrosis transmembrane conductance

regulator (CFTR) gene (Knowles and Durie, 2002). Over 160,000

people worldwide are known to be suffering from CF (Guo et al.,

2022). These individuals experience defective clearance of the

bronchial airways and bronchopulmonary system, causing build-

up of mucus in the lungs (Gardner, 2007). They eventually

experience abnormal respiratory inflammation, increased mucus

deposition, and periodic bacterial infections. Thus, individuals with

CF have symptoms like wheezing, coughing, and shortness of

breath. More than 95% of these patients die due to pulmonary

disease (Gardner, 2007).

S. maltophilia is commonly isolated from the airways of CF

patients (Hansen, 2012). There has been a steady increase in

incidence of S. maltophilia infection associated with CF individuals

over the last decade (Amin and Waters, 2016). Reports indicate that

mortality or lung transplantation is 3-fold higher in CF individuals

with chronic S. maltophilia infection (Gallagher et al., 2019). It is

possible that the high intrinsic antibiotic resistance of S. maltophilia

provides it a colonization advantage in the CF lung, as these

individuals are treated with large doses of many antibiotics. The

weakened immune system of these individuals can also be a risk

factor for S. maltophilia infection. In any case, S. maltophilia can be

isolated at high levels (105-106 CFU/mL), suggesting deterioration of

the individuals’ pulmonary function (Ballestero et al., 1995; Colin and

Rabin, 2011). In fact, S. maltophilia infections are associated with

lower forced expiratory volume (FEV1) (47.06%) than in individuals

without this bacterium (73.40%), indicating rapid deterioration of

lung function (Waters et al., 2011). Studies have also shown

respiratory tract co-infections of S. maltophilia with P. aeruginosa,

Burkholderia cepacia, methicillin resistant Staphylococcus aureus

(MRSA), methicillin sensitive S. aureus (MSSA), Aspergillus spp,

Candida spp, or Achromobacter xylosoxidans (Goss et al., 2002;

Colin and Rabin, 2011; Granchelli et al., 2018).
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Very little research has been done on the immune responses to

S. maltophilia bacterial infection in CF persons. Chronic S.

maltophilia infection in CF airways presents with measurable

immunological reaction (production of anti- extracellular protease

and antiflagellin antibodies) (Waters et al., 2011; Hansen, 2012).

Higher antibody levels have also been found in the sera of CF

individuals chronically infected with S. maltophilia than CF

individuals with intermittent or no infection (Brooke et al., 2017).

Apart from this, it is said that the immunological response of S.

maltophilia towards the pulmonary infection in CF patients is quite

similar to that of P. aeruginosa (Hansen, 2012). Experimentally,

mice infected with S. maltophilia via a nebulizer exhibited higher

IL-6, IL-12, IL1b, IFN-g, and TNF-a cytokine levels and lower IL-4

levels early in infection, compared to mock infected mice (Di

Bonaventura et al., 2010). Later in infection, only IFN-g was

found to be significantly higher than any other cytokines in the

infected mice. There were also higher keratinocyte-derived cytokine

(GROa/KC), monocyte chemotactic protein 1 (MCP-1/JE),

macrophage chemoattractant protein 5 (MCP-5), macrophage

inflammatory protein 1a (MIP-1a), macrophage inflammatory

protein 2 (MIP-2), and thymus and activation regulated

chemokine (TARC) levels during early infection in the infected

mice than in the control (Di Bonaventura et al., 2010). Although the

studies discussed here were not with a murine model of CF, they

explore the dynamic immune response that could be observed for

CF based on the infection response in these mice. It will be

important for future studies to elucidate this response and

comprehend the complex interactions of this bacterium in a CF

lung environment.
3 Antibiotic resistance

One of the most confounding features of S. maltophilia is its strong

resistance toward many antibiotics, including aminoglycosides,

fluroquinolones, b-lactams, cephalosporins, macrolides, carbapenems,

chloramphenicol, tetracyclines, polymyxins, and sulfonamides (Brooke,

2012). Of particular concern pan-resistant strains, which are resistant

to nearly all known antibiotics, have been documented (Valdezate et al.,

2001). In general, though, combinational therapy of trimethoprim

sulfamethoxazole (TMP-SMX) is an effective treatment (Muder et al.,

1996; Muder, 2007; Nicodemo and Paez, 2007; Goldberg and Bishara,

2012). A study in Taiwan, showed that 20.5% of patients with S.

maltophilia infections exhibited TMP-SMX resistance (Wang et al.,

2017). Additionally, all tested fluoroquinolones were seen to effectively

reduce S. maltophilia infection at one half of the MIC (Di Bonaventura

et al., 2004). Similarly, in one study of patients suffering from sepsis

caused by S. maltophilia, levofloxacin worked well in 70.5% of the

patients (Soumya et al., 2020). However, prior levofloxacin use may

induce increased S. maltophilia resistance to TMP-SMX (Wang

et al., 2017).

Recently, many antibiotic resistant S. maltophilia infections

have been seen in patients with certain co-morbidities. For

instance, ventilator associated pneumonia patients infected with S.

maltophilia showed resistance to carboxypenicillin and carbapenem

(Ibn Saied et al., 2020). A case study of a 70 year old woman with
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hypoglycemia, chronic respiratory failure, adenocarcinoma of the

lung, anemia, and other co-morbidities reported the presence of S.

maltophilia in the respiratory tract; this infection showed resistance

to broad spectrum antibiotics except for TMP-SMX and

levofloxacin (Kanderi et al., 2020). These cases, and many others,

indicate that new treatments are needed to treat this

uncompromising, deadly pathogen.
3.1 Mechanism of antibiotic resistance

S. maltophilia displays antibiotic resistance through several

mechanisms. S. maltophilia clinical isolate K279a carries nine

Resistance Nodulation Division (RND)-type efflux pump genes

that confer resistance to a number of different antibiotics

(Crossman et al., 2008). For example, efflux pump operon

smeABC contributes greatly to antimicrobial resistance, due to

production of the outer membrane efflux lipoprotein SmeC (Li

et al., 2002). Also, over-expression of smeDEF induces tetracycline,

erythromycin, and fluoroquinolone resistance (Alonso and

Martinez, 2000). Among the rest of the other RND efflux pumps

genes, smeZ, smeJ, and smeK each contribute to aminoglycoside,

fluoroquinolone, and tetracycline resistance (Gould et al., 2013). It

was also seen that smeYZ conferred aminoglycoside and TMP-SMX

resistance (Lin et al., 2015). Apart from this, a fusaric acid extrusion

efflux pump (FuaABC), an MSF type efflux pump (EmrCABsm),

and two ABC-type efflux pumps (SmrA, MacABCsm) confer

antimicrobial resistance (Al-Hamad et al., 2009; Hu et al., 2012;

Huang et al., 2013). Some strains of S. maltophilia encode floR, a

gene found in insertion element common region (ISCR) adjacent

sequences that aids in phenicol class of antibiotic resistance via

expression of an exporter (Toleman et al., 2007).

In addition to efflux pumps, several antibiotic modifying enzymes

make this bacterium resistant to many antimicrobials. L1 and L2 b-
lactamases produced by S. maltophilia hydrolyse b-lactams (Avison

et al., 2001). The L1 enzyme is a metallo-b-lactamase conferring

resistance to all b-lactams, including penicillins, cephalosporins, and

carbapenems (Saino et al., 1982; Paton et al., 1994; Walsh et al., 1994;

Crowder et al., 1998), whereas L2 is a cephalosporinase (Saino et al.,

1984; Walsh et al., 1997). S. maltophilia also carries anmphBM gene,

which displays high homology to a macrolide phosphotransferase in

S. aureus that makes S. aureus resistant to erythromycin (Alonso

et al., 2000). It is possible that this factor does the same in S.

maltophilia. Presence of sul1, sul2, and the ISCR element have been

found in some strains of S. maltophilia rendering them resistant to

TMP-SMX and other sulfonamides (Barbolla et al., 2004; Toleman

et al., 2007; Chung et al., 2015). dfr genes expressing the enzymes

dihydrofolate reductase has been also helpful in making strains

resistant to trimethoprim. Thus both sul and dfr genes are seen in

the TMP-SMX resistance strains (Hu et al., 2011; Hu et al., 2016).

Other resistance genes have also been found in ISCR adjacent

sequences such as dhfrA10, dhfrA9, dhfrA20 (aiding in

trimethoprim resistance), tetR (aiding in resistance to the

tetracycline class), and strA (aiding in streptomycin resistance)

(Toleman et al., 2007). Interestingly, research has shown that some

innately resistant environmental bacteria, such as S. maltophilia, can
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metabolize the carbon from antimicrobial agents to aid in growth

(Martinez, 2008) (Dantas et al., 2008). Additionally, a truncated

phosphoglucosamine mutase, encoded by glmM, indirectly counters

the effects of antibiotics that target bacterial cell wall peptidoglycan

(Avison et al., 2001), and the qnr gene protects bacteria from

quinolone antibiotics targeting DNA gyrase and topoisomerase

(Zhang et al., 2023). However, prevalence of most of these

resistance factors is unknown.
4 Metal resistance

S. maltophilia can also grow in the presence of most heavy

metals such as copper, zinc, cobalt, nickel, mercury, silver,

antimony, tellurite, selenite, lead, and molybdenum among other

metals (Pages et al., 2008; Deredjian et al., 2016; Yu et al., 2018;

Zhang et al., 2023). For instance, S. maltophilia strain D457R, a

multiresistant derivative of clinical isolate D457, displays cadmium

resistance due to the cadmium efflux pump encoded by cadA (Pages

et al., 2008). cadC, a regulator of cadA gene expression aids in

making the bacteria cadmium resistant (Alonso et al., 2000; Pages

et al., 2008). S. maltophilia was seen to express a SulP family protein,

potentially involved in sulfate permease activities responsible for

uptake of oxyanions such as selenate and selenite (Yu et al., 2018). A

phosphate uptake protein with a PitA-like sequence had also been

found in S. maltophilia conferring arsenate resistance. Genes

putatively encoding homologs of metal transporters MgtA, MgtE,

CorA, MntH, and ZupT have been identified, and these potential

transporters can cause accumulation of Mg²+, Mn²+, Ni²+, Zn²+,

Cd²+, Co²+, and Cu²+ (Yu et al., 2018). Additionally, genome

annotations have revealed multicopper oxidases and copper

transporting, binding, and storage proteins conferring bacterial

resistance to copper. Furthermore, genome analysis has revealed

MdtABC efflux pumps of zinc; CzcA, CzcB, and CzcC proteins

causing efflux of zinc, cadmium, and cobalt; and ArsC, arsenite

reductase, mercury reductase, and other arsenite and mercury

transporter proteins conferring arsenic and mercury resistance

(Yu et al., 2018). This metal resistance, combined with the

extreme antibiotic resistance that S. maltophilia displays, makes

this pathogen extremely difficult to kill (Edet et al., 2023).
5 Virulence factors

Though traditionally considered a low virulence pathogen, S.

maltophilia contains genes with homology to numerous classical

virulence factors, though many have not been experimentally validated

(Trifonova and Strateva, 2019a). Here, we highlight the vast arsenal that

S. maltophilia contains with which it conducts pathogenesis.
5.1 Lytic enzymes

S. maltophilia can secrete a variety of different extracellular

enzymes, including phospholipase, DNAase, RNAse, esterases,

gelat inase , l ipases , prote inase , proteases , heparinase ,
frontiersin.org
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hyaluronidase, and hemolysin (Crossman et al., 2008; Thomas et al.,

2014) (Figure 1). Serine proteases StmPr1, StmPr2, and StmPr3,

have particularly been shown to make S. maltophilia highly

cytotoxic. Among other effects, these proteases sever the host cell

extracellular matrix (ECM) proteins like human type I collagen,

fibrinogen, and fibronectin (DuMont and Cianciotto, 2017). These

proteases also show caseinolytic, gelatinase, and hydrolytic

activities, and they are associated with loss of mammalian cell

structural viability, changes in actin cytoskeleton, loss of integrin/

ECM connections, cell detachment, and degradation of IL-8. These

effects can trigger the process of apoptosis (anoikis) by activating a

cascade of caspases starting from caspase 3, 6, and 7 (DuMont and

Cianciotto, 2017).
5.2 Secretion systems

S. maltophilia also produces type I, type II, type IV, type V, type

VI secretion systems. Many of the above lytic enzymes are secreted

through one of these apparatuses. For instance, the StmPr proteases,

secreted through the xps-encoded type II secretion (T2S) system,

causes cell rounding, actin rearrangement, degradation of

extracellular matrix proteins, degradation of IL-8, cell detachment,

and ultimately cell death of alveolar epithelial cells (Karaba et al.,

2013; DuMont et al., 2015; DuMont and Cianciotto, 2017) (Figure 1).

S. maltophilia also express a type IV secretion system (T4SS) whose

effector molecules render the pathogen advantage in interbacterial

competition with P. aeruginosa (Nas et al., 2021) and also lyses

infected mammalian macrophages (Nas et al., 2019). It is suggested

that the VirB/D4 apparatus of T4SS has pro- and anti-killing effector

molecules which have disparate actions on normal and infected

mammalian cells and heterologous bacteria inhabiting the human

host (Nas et al., 2019). Another study suggests that there are two

effector molecules of the T4SS in S. maltophilia, namely TcfA and

TcfB, which on expression kill the target bacterial cell in a mixed
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bacterial environment (Nas et al., 2021). Based on assays, sequence

analysis of the effector protein and structural prediction, it is

hypothesized that in a coculture environment, TcfA, a lipase

enzyme, on injection to the outer or inner membrane of the

targeted competitor cell causes cell death. Sequence similarity and

software prediction also shows that TcfB is anticipated to belong to a

family of endolysins that exhibit lethal properties linked to an activity

resembling lysozyme. It is hypothesized to interact and degrade the

peptidoglycan for effective killing of the targeted cell. S. maltophilia

environmental and clinical isolates also possess a type VI secretion

system (T6SS) (Crisan et al., 2023). Genome annotation suggest that

this system expresses proteins with putative phospholipase,

endopeptidase, and lysozyme like activity. There is also evidence

that pulmonary S. maltophilia strain STEN00241 can utilize a T6SS to

compete with P. aeruginosa, and outcompete B. cenocepacia and E.

coli in a co-culture environment (Crisan et al., 2023). Finally, genome

annotations indicate the presence of type I secretion systems in

strains K279a and R551-3 (Rocco et al., 2009) and type V secretion

system (autotransporter) in strain K279a (Crossman et al., 2008).

Intriguingly, this Gram-negative pathogen does not make a type III

secretion system.
5.3 Diffusible signaling factor

Pathogenesis in S. maltophilia is governed by a quorum sensing

molecule called diffusible signaling factor (DSF), or cis-11-methyl-

2-dodecenoic acid. DSF synthesis is encoded by rpfF (An and Tang,

2018) (Figure 1). rpfF is transcribed as part of an operon with rpfB,

encoding a long chain fatty acyl coA ligase (on which the secretion

of DSF is partially dependent) (Yero et al., 2020). A convergently

transcribed operon consisting of rpfC and rpfG encodes a 2-

component system of sensor kinase and response regulator,

respectively, which are involved in DSF transcriptional regulation.

DSF has been shown to regulate S. maltophilia biofilm formation,
FIGURE 1

Schematic representation of the different virulence and attachment factors in S. maltophilia. The role of LPS, lytic enzymes, quorum sensing,
secretion systems, iron uptake mechanisms contributing to the overall bacterial pathogenesis, along with the presence of pili and flagella aiding in
their initial attachment and colonization. Not drawn to scale.
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synthesis of extracellular polymeric substance (EPS), and secretion

of protease (Huang et al., 2006; Ryan et al., 2015; Yero et al., 2020).

It also contributes to bacterial motility. Furthermore, DSF was seen

to influence the production of b-lactamase, making the bacterium

resistant to b-lactams. This finding was the first evidence for the

role of DSF signaling in antibiotic resistance (Alcaraz et al., 2019).

DSF can also regulate the expression of an outer membrane receptor

FecA, used for the uptake of ferric citrate in S. maltophilia (Matera

et al., 2004). Some S. maltophilia strains contain an extra DSF-

related gene, rpfS, which contributes to epiphytic disease (An et al.,

2014). Intriguingly, DSF also mediates interspecies communication

and can thus mediate coculture of S. maltophilia with other species

(Ryan et al., 2015).
5.4 Lipopolysaccharide

The LPS layer of Gram-negative bacteria, including S.

maltophilia, can greatly influence the antimicrobial activities of

the cell. The LPS in S. maltophilia is primarily made of O-specific

polymer formed of D-glucose, L-rhamnose, and D-fucose (Winn

et al., 1993). The endotoxicity of the LPS layer is associated with

neutrophil activation or IL-8 production inside the host which gives

rise to a systemic immune response. Various combinations of

antibiotics interacting with the LPS could increase (ceftazidime)

or decrease (b-lactams and aminoglycosides) this immune response

(Matera et al., 2004). In S. maltophilia, the spgM gene, encoding for

phosphoglucomutase and phosphomannomutase enzyme activities

(like the phosphoglucomutase producing gene algC in P.

aeruginosa), contributes to the production of a thicker LPS layer

(McKay et al., 2003) (Figure 1). A strain with mutation of the spgM

gene exhibited a two to four fold increased susceptibility to

aminoglycosides, quinolones, vancomycin, polymyxin B and E,

and many other antibiotics. The spgM mutant was also unable to

colonize rat lungs, suggesting that the gene is an important factor in

the virulence of the bacterium. Other genes affecting S. maltophilia

LPS production include xanB, rmlA, and rmlC (Huang et al., 2006).

Mutation of rmlAC and xanB results in lowered O-antigen

production in the bacterial LPS, leading to a defective outer
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membrane layer and impaired flagellar production, motility,

adherence, and biofilm formation (Huang et al., 2006).
5.5 Attachment factors

5.5.1 Pili
Microscopy studies have demonstrated the presence of

peritrichous semiflexible pili on the surface of S. maltophilia (de

Oliveira-Garcia et al., 2003) (Figure 1). These pili have been named

S. maltophilia fimbriae-1, or Smf-1. Electron microscopy images

reveal that Smf-1 has a size of 5-7nm in width and forms primarily

at 37°C (Flores-Trevino et al., 2019; Kalidasan and Neela, 2020).

The Smf-1 N-terminal amino acid sequence is similar to that of the

CupA fimbriae in P. aeruginosa and similar chaperone/usher pili in

other Gram-negative bacteria (de Oliveira-Garcia et al., 2003). Smf-

1 is capable of agglutinating red blood cells from several animals,

including humans (de Oliveira-Garcia et al., 2003). It also binds to

several abiotic and biotic surfaces, such as medical devices and

human epithelial cells (de Oliveira-Garcia et al., 2003). Additionally,

this pilus is highly immunogenic. Mice administered purified Smf-1

showed a high innate immune response with increase in pro-

inflammatory cytokines (e.g. IL-1b, and TNF-a). These mice also

exhibited elevated IL-8 levels in the bladder, suggesting neutrophil

chemotaxis, followed by high nitric oxide production (Zgair and Al-

Adressi, 2013).

Through genome annotations, it has been reported that S.

maltophilia expresses a type I pilus that is assembled via the

chaperone usher pathway (Rocco et al., 2009). These types of pili

are comprised of a shaft made of a primary fimbrial protein and two

other ancillary proteins. This S. maltophilia pilus has been linked to

bacterial adhesion and initial stages of biofilm formation (Ryan

et al., 2009).

Type IV pili also play a role in S. maltophilia virulence

(Trifonova and Strateva, 2019b). Type IV pili in S. maltophilia CF

isolates contribute to the bacterial biofilm development (Pompilio

et al., 2011). They also putatively mediate adherence to surfaces,

auto-aggregation, and twitching motility of the bacterium (Ryan

et al., 2009). Importantly, the S. maltophilia type IV pilus is also a
FIGURE 2

Schematic representation of the metabolism of S. maltophilia affecting its pathogenesis. The fatty acid catabolism, citric acid cycle, sugar catabolism,
amino acid catabolism, central carbon catabolism, and iron acquisition come together in contributing to the overall bacterial virulence. Not drawn
to scale.
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receptor for several bacteriophages such as DLP1 and DLP2

(McCutcheon et al., 2018). Additionally, AXL3 bacteriophage has

been shown to interact with the PilA subunit present in the type IV

pilus rod, and the subsequent viral penetration is facilitated as the

physical retraction of the type IV pilus allows the attached phage to

reach the cell surface (McCutcheon et al., 2020). If we can

understand and control this interaction, it is possible that this

mechanism can be exploited in developing specialized tools and

treatments tailored to fight this multidrug resistant pathogen.

5.5.2 Flagella
S. maltophilia produces a polar flagellum, which is considered a

significant attachment factor aiding colonization of host cells

(Figure 1). The main structural protein of S. maltophilia flagella is

a 38kDa protein called FliC (de Oliveira-Garcia et al., 2002). Studies

have shown that, in several clinical isolates of S. maltophilia,

presence of flagella correlates with binding to mouse tracheal

mucus (Zgair and Chhibber, 2011). The flagellin protein acts as

an adhesin, and anti-flagellin antibody significantly lowers bacterial

adherence to mucus. Additionally, a homolog of the Xanthomonas

campestris flil gene (encoding a flagellin associated ATPase)

demonstrated an important role in flagellar production and

bacterial colonization of S. maltophilia strains isolated from

individuals with cystic fibrosis (Di Bonaventura et al., 2007).

Another study showed that mutation of the ompA gene (encoding

a porin protein) severely compromised the integrity of the S.

maltophilia outer membrane. This action caused a defect in

flagellar assembly which resulted in failure of bacterial swimming

motility (Liao et al., 2021). In S. maltophilia, BsmR (biofilm and

swimming motility regulator) regulates the expression of 349 genes,

including fsnR, which in turn switches on the expression of 2

operons required for flagella production (Kang et al., 2015; Liu

et al., 2017). With the activation of these operons, flagella

production is increased, which increases the bacterial motility.

5.5.3 Phosphoglycerate mutase impacts
bacterial attachment

A recent genetic screen of S. maltophilia strain K279a identified

gpmA, encoding glycolytic enzyme phosphoglycerate mutase, as

affecting biofilm formation (Ramos-Hegazy et al., 2020).

Subsequent isogenic deletion of gpmA resulted in defects in

adhesion to biotic and abiotic surfaces. Initial attachment of the

DgpmA strain was greatly reduced at early time points compared to

the wild type strain on polystyrene plates. Nevertheless, there was

no difference in biofilm formation at later time points, which

suggests that this gene is required for early attachment and

development of biofilms on abiotic surfaces. It was also observed

that the DgpmA strain exhibited a 100-fold reduction in binding to

CF bronchial epithelial cells (CFBE) compared to the wild type

strain at 1 hour. As with polystyrene plate biofilms, though, there

was no significant difference between the wild type and DgpmA

strains at later time points. It is unclear why a metabolic gene affects

attachment, though this finding suggests an intriguing link between

metabolism and virulence in S. maltophilia.
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5.6 Other virulence factors

Genome annotation show that S. maltophilia strain K279a also

produces a YadA-like protein, of the BuHA family of proteins

(Nseir et al., 2006a). First identified in Burkholderia mallei

(Tiyawisutsri et al., 2007), members of this protein family have

been shown to have filamentous hemagglutinin, invasin, and

hemolysin properties, and they are considered as important

virulence factors in the pathogenesis and rapid spread of bacteria

(Colombi et al., 2006; Holden et al., 2009). Indeed reports mention

the presence of filamentous hemagglutinins via genome annotation

in various environmental and clinical strains of S. maltophilia that

conduct virulence through cell to cell aggregation (Ryan et al.,

2009). S. maltophilia strains were also found to produce outer

membrane vesicles that are cytotoxic to alveolar epithelial cells and

induce a strong inflammatory response in both in vitro and in vivo

environments (Kim et al., 2016). Additionally, the bacterium can

protect itself from host defenses through expression of enzymes

such as alkyl hydroperoxidase, superoxide dismutase, catalase, and

melanin pigments that can disrupt or counteract host defense

products (Thomas et al., 2014; Jair et al., 2019; Li et al., 2020).

Southern blot hybridization and PCR analysis have shown S.

maltophilia to carry a phage gene sequence mildly homologous to

a sequence in Vibrio cholerae producing the zonula occludens toxin

(zot) (Hagemann et al., 2006). This toxin impairs the intercellular

junctions in host cells allowing easy access for infection (Fasano

et al., 1991).
6 S. maltophilia biofilm formation

Most microorganisms in nature attach to and grow on surfaces

(Armbruster and Parsek, 2018). This attachment facilitates the

aggregation of the bacteria into microcolonies, which increase in

size as bacteria multiply and other cells attach to the cluster. The

constituent microbial cells produce a polymer matrix that

surrounds the cluster, creating a slimy layer. This process is called

biofilm formation (Hernández-Jiménez et al., 2013; Deepigaa,

2017). Bacteria generally remain in sessile communities within

the biofilm, as the biofilm matures (Crouzet et al., 2014).

Eventually, as the biofilm ages, cells disperse and spread to other

locations. Because of the chemical and physical conditions within

biofilms, the bacterial community is protected from adverse

environmental conditions, such as extreme temperatures and

extreme pH, high salt concentrations, UV radiation, depletion of

nutrients, host immune responses, antimicrobial agents, peptides

(LL37, b-defensins, dermcidin, for example), and even antibiotics

(Hoiby et al., 2010; Yasir et al., 2018; Yin et al., 2019). Biofilms can

be found in nature, in medical settings, and in industrial settings

(Mah and O’Toole, 2001; Hall-Stoodley et al., 2012), and during

infection, biofilms contribute to pathogenesis due to their highly

resistant nature (Yin et al., 2019). Some estimates indicate that in

humans, about 60-80% of microbial infections involve a biofilm

component (Costerton et al., 1999). Thus, it is important to
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understand the pathways that trigger this physiological process so

we can better fight the causative organisms.

S. maltophilia is a known biofilm producer. In one study, 98.7%

of 150 clinical S. maltophilia isolates produced biofilm (Azimi et al.,

2020). Among this percentage, 46% had strong biofilm producing

capabilities. In a few molecular studies of S. maltophilia biofilm, smf-

1, rmlA, rpfF, and spgM genes were found to influence S. maltophilia

biofilm initiation and development (Azimi et al., 2020); these genes

are widespread among S. maltophilia strains (Azimi et al., 2020).

Additionally, studies have shown that iron regulation in S.

maltophilia influences biofilm formation (Garcıá et al., 2015). For

instance, the Fur protein regulator that maintains iron homeostasis

in the cell also regulates certain virulence factors and mediates

oxidative stress response (Kalidasan et al., 2018a). Isogenic deletion

of the fur gene results in decreased biofilm in iron depleted

conditions, compared to iron-rich environments. Moreover,

upregulation of two iron repressed outer membrane proteins

(IROMPs) in such conditions also affects biofilm. These proteins

are putatively required for scavenging iron from the environment to

induce higher biofilm growth.

While S. maltophilia strains producing strong biofilms on

abiotic surfaces show significant resistance to many antibiotics,

like ticarcillin clavulanate, ceftazidime, ciprofloxacin, and

doxycycline (Azimi et al., 2020), some antibiotics have been

found to be quite effective in treating biofilms of this microbe.

For instance, TMP-SMX was found to be active in reducing

bacterial viability of S. maltophilia in biofilm (Di Bonaventura

et al., 2004). The fluoroquinolone moxifloxacin was also useful in

stopping bacterial adherence, by inducing cell lysis, resulting in

detachment of bacterial cell surface glycocalyx from polystyrene

surfaces (Di Bonaventura et al., 2004). Another study showed that

levofloxacin could inhibit biofilm formation of clinical S.

maltophilia strains in the presence of erythromycin (Sun et al.,

2016). Erythromycin can also act synergistically with cefoperazone/

sulbactam, and piperacillin in increasing susceptibility among

constituents of biofilms (Sun et al., 2016). This indicates a

potential use of combination therapy of certain antibiotics with

macrolides in combating S. maltophilia biofilm formation.

Interestingly, one study found an inverse relationship between

antibiotic resistance and the biofilm formation of S. maltophilia

(Pompilio et al., 2020). It was seen that pathogenic strains of S.

maltophilia susceptible to ceftazidime, levofloxacin, colistin, and

ticarcillin clavulanate showed greater biofilm formation capabilities

than pathogenic strains resistant to the same antibiotic. However,

there was no significant difference in the level of biofilm for non-

pathogenic S. maltophilia strains for any antibiotic (Pompilio et al.,

2020). Studies also showed mutation of smeYZ genes, conferring

aminoglycoside and TMP-SMX resistance to the bacteria, produced

lesser biofilm than the wild type clinical isolate S. maltophilia KJ

(Lin et al., 2015).
7 S. maltophilia and metabolism

The name “Stenotrophomonas” means “narrow eating unit”,

which refers to the comparative lack of substrates utilized by this
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microorganism for growth. “Maltophilia” means “maltose lover”

(Denton and Kerr, 1998). Historically, it has been thought that this

pathogen mainly utilizes hexose sugars, and growth studies

somewhat support that assumption. Beyond sugar, though, S.

maltophilia displays some intriguing metabolic characteristics. In

fact, recent studies have made connections between S. maltophilia

metabolism and virulence behaviors, including biofilm

formation (Figure 2).

Iron acquisition has an important role in S. maltophilia

metabolism (Kalidasan et al., 2018b). This includes the use of

siderophores like enterobactin and stenobactin, alongside multiple

other pathways that can utilize various iron sources (Ryan et al.,

2009; Adamek et al., 2014; Suvorova and Rodionov, 2016; Nas and

Cianciotto, 2017; Kalidasan et al., 2018b; Azman et al., 2019;

Brooke, 2021). The microbes’s central carbon catabolism is

crucial for biosynthesis and energy production (Munoz-Elias and

McKinney, 2006). S. maltophilia contains genes for several

glycolytic pathway, including Embden-Meyerhof-Parnas, Entner-

Doudoroff, and pentose phosphate pathways (Stanier et al., 1966;

Munoz-Elias and McKinney, 2006; Crossman et al., 2008). As

mentioned above, glycolytic gene gpmA appears to affect S.

maltophilia attachment. gpmA encodes phosphoglycerate mutase,

which catalyzes the interconversion of 2-phospho-D-glycerate and

3-phospho-D-glycerate. It was further discovered that without

gpmA, S. maltophilia planktonic growth and biofilm formation

are severely decreased when grown on different substrates (Isom

et al., 2022; Ramos-Hegazy et al., 2020). Intriguingly, recent work

suggested that under low nutrient conditions this pathogen

preferentially utilizes amino acid over glucose as carbon source,

potentially shuttling carbons through GpmA (Isom et al., 2022).

Beyond iron acquisition pathways and glycolysis, S. maltophilia

contains genes for the citric acid cycle (Kanehisa et al., 2023), b-
oxidation and fatty acid synthesis (Haydon and Guest, 1991; Heath

and Rock, 1996; Rock and Cronan, 1996; Textor et al., 1997; Cronan

and Subrahmanyam, 1998; DiRusso and Nyström, 1998; Wang and

Cronan, 2004; Fujita et al., 2007; Shuman, 2010; Kanehisa et al.,

2023), and utilization of various amino acids like alanine, leucine,

isoleucine, lysine, valine, aspartate, glutamate, arginine, ornithine,

histidine, proline, tyrosine, and tryptophan (Omenn, 2010).

Investigating the possible connection of these metabolic pathways

to pathogenesis will be an intriguing and potentially fruitful avenue

of research in the future.
8 Conclusion

S. maltophilia is a fascinating microorganism that presents us

with extensive challenges and opportunities. Because of the lack of

knowledge of its virulence mechanisms and basic biology, there is a

huge potential for further research to understand the evolution,

adaptability, and the versatility of this pathogen. It is evident that we

know quite a bit about the antibiotic resistance of S. maltophilia, the

types of virulence factors it can produce, and its role in infection of

the bronchopulmonary system. Additionally, much work has been

done regarding S. maltophilia multi-species biofilm, roles of iron,

DSF factor, different lytic enzymes, and treatment options for CF
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individuals colonized with this microbe, but very little work has

been done to understand the mechanism of biofilm formation, the

regulators in biofilm growth, the specific immune responses to the

formation of S. maltophilia biofilm, and the cascade of virulence

factor events during an infection. An integrated disease model

should be established to develop newer understanding into such

various topics. These efforts may aid in understanding infection

patterns and pathogenesis and yield insights about novel molecular

and cellular drug targets. Moreover, greater efforts should also be

placed on surveillance of the worldwide drug resistance situation

and the role opportunistic pathogens like S. maltophilia play in

genetic transfer of resistance determinants. Apart from this, climate

change has been identified as a significant factor in altering the

transmission patterns of S. maltophilia, rendering it an extremely

hazardous pathogen (Lafferty, 2009; Omenn, 2010; Shuman, 2010;

Brooke, 2012). According to current research, the global average

temperature will increase 1.8°C to 5.8°C over the next 100 years and

that may alter the hydrolytic cycle of the environment, increase

pollution, and create poorer sanitation (Shuman, 2010). It is also

expected that this will change the geographical distribution of

waterborne S. maltophilia, alter its microbial evolution pattern,

and give the bacterium a susceptible environment to increase its

spread (Brooke, 2012; Brooke, 2021). Further investigation could

ultimately lead us to update our knowledge about this emerging

global opportunistic pathogen, S. maltophilia, and to identify novel

therapies to inhibit its growth and spread.
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