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With the advent of next generation sequencing, it is now appreciated that human

urine is not sterile. Recent investigations of the urinary microbiome (urobiome)

have provided insights into several urological diseases. Urobiome dysbiosis,

defined as non-optimal urine microbiome composition, has been observed in

many disorders; however, it is not clear whether this dysbiosis is the cause of

urinary tract disorders or a consequence. In addition, immunologically altered

disorders are associated with higher rates of urinary tract infections. These

disorders include immunoproliferative and immunodeficiency diseases, cancer,

and immunosuppressant therapy in transplant recipients. In this review, we

examine the current state of knowledge of the urobiome in immunologically

altered diseases, its composition and metabolomic consequences. We conclude

that more data are required to describe the urobiome in immune altered states,

knowledge that could facilitate understanding the role of the urobiome and its

pathophysiological effects on urinary tract infections and other disorders of the

urinary tract.
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Introduction

High throughput sequencing technologies facilitated the NIH Human Microbiome

project designed to study the microbiomes of several human anatomical sites, including the

gut, oral cavity, skin, cervicovaginal, and nasal cavities (The NIH HMP Working Group

et al., 2009). In contrast, the urinary tract microbiome (urobiome) was not evaluated due to

the misconception that bacteria in the urine are related to contamination (Roberts, 1881;

Zasloff, 2007). This changed when DNA sequencing-based analyses coupled with enhanced

culture methodologies reported the existence of a urobiome (Fouts et al., 2012; Wolfe et al.,

2012; Hilt et al., 2014; Pearce et al., 2014; Khasriya et al., 2020). Subsequent studies of the

urobiome have begun to generate hypotheses encompassing a variety of urogenital tract

disorders especially those with unknown etiology (for reviews, see (Brubaker et al., 2021;

Perez-Carrasco et al., 2021)).
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The standard urine culture (SUC) is the typical method used to

determine the presence or absence of uropathogens in the urine. In

this method, a small volume of urine is spread on only 2 solid

culture media, and incubated in a single atmospheric condition (air)

at 35-37 °C for 24 hours when colonies are counted (Hilt et al.,

2014). To diagnose infection, this method often relies on detection

of at least 105 colony forming units (CFU)/ml of an universally

accepted uropathogen, such as Escherichia coli (Price et al., 2016).

Since most bacteria inhabiting the urinary tract, including the

kidneys, uretrers, bladder, and urethra, cannot be cultured by

standard laboratory conditions, only a subset of fast growing,

nonfastidious, aerobic uropathogens are usually detected and

reported (Price et al., 2018; Brubaker et al., 2023). Recent

improvements in culture methods have been made with the aim

of detecting as many bacterial species as possible from urine. The

best known is expanded quantitative urine culture (EQUC).

Relative to SUC, EQUC uses larger volumes plated onto multiple

different growth media and incubated ~48h under different

atmospheric conditions (Hilt et al., 2014). EQUC has greater

sensitivity for detecting generally acknowledged uropathogens

compared to SUC (84% vs 33%) (Price et al . , 2016).

Concurrently, culture-independent methods, such as 16S rRNA

gene amplicon sequencing and shotgun metagenomic sequencing

(Jones-Freeman et al., 2021), have become more cost-effective and

thus generally accessible to the research community. In comparison

to culture-based methods, amplicon sequencing can detect many

more bacterial taxa at relatively lower costs (Gupta et al., 2019).

Amplicon sequencing involves amplification and sequencing of a

variable region of the 16S rRNA gene followed by bioinformatic

analysis to identify bacterial taxa present within a set of next

generation sequencing (NGS) reads. There are 9 hypervariable

regions in the 16S rRNA, each of which can be used for bacterial

identification. Sequencing one hypervariable region is usually

sufficient to obtain genus level identification for most taxa

(Thomas-White et al., 2016). Because amplification is part of this

method, it can detect rare and/or low abundant taxa, and

contamination with host DNA is usually not an issue. However, it

cannot provide genetic/functional information of the bacterial taxa/

community (Karstens et al., 2018; Neugent et al., 2020). Another

DNA-based approach, shotgun metagenomic sequencing analyzes

all DNA molecules in a sample with the potential to detect all

microbes, including eukaryotes (e.g., yeast) and viruses (both

eukaryotic and bacterial) given sufficient sequencing depth.

Because it sequences all the DNA, it can characterize the

functional potential of the microbial community by analysis of

resident microbial genes. Host contamination, however, is a

disadvantage depending on the proportion of host to microbial

DNA (Neugent et al., 2020).

For proper and reproducible taxonomic and functional analyses

of these culture-independent methods, pre-analysis steps, such as

urine collection and preservation, should be considered and

standardized. Urine collection methods are usually by midstream

void, transurethral catheter, or suprapubic aspiration (Karstens

et al., 2018). Voided urine typically samples microbiota from the

bladder, urethra, and external genitalia. Thus, it is a mixture of both

genital and urinary microbes and the resultant microbiome should
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be properly named urogenital (Brubaker et al., 2021). On the other

hand, the microbiomes obtained by either transurethral

catheterization or suprapubic aspiration should be termed bladder

microbiome (Figure 1) (Brubaker et al., 2021), as both bypass/

minimize potential urethral and skin contamination (Wolfe et al.,

2012). Since transurethral catheterization is less invasive and carries

minimal risks to the patients, it has become the urine collection

method of choice for studies that wish to understand the bladder

microbiome (Karstens et al., 2018). Additional considerations

include sample preservation considering handling prior to

preservation, the preservative, tubes, storage times, and

temperature. Reproducible urobiome analyses can be achieved

with biobanked samples through the addition of AssayAssure®

preservative and maintenance at 4°C or lower for up to 4 days,

then long-term storage at -80°C (Jung et al., 2019).
Urobiome

The anatomy of the male and female urinary tracts differ

substantially (Abelson et al., 2018).Thus, it should not be

surprising that their urobiomes also differ (Abelson et al.,

2018).The presence of Lactobacillaceae family members is known

to control the growth of uropathogens (Abdul-Rahim et al., 2021).

Indeed, the asymptomatic adult female urobiome is most often

predominated by Lactobacillus genus members, including those that

commonly colonize the adult female cervicovaginal area: L.

crispatus, L. jensenii, L. iners and L. gasseri (Price et al., 2020;

Perez-Carrasco et al., 2021). However, these species are not equal in

their biology. For example, L. crispatus is reported to be associated

with a lack of symptoms, whereas L. gasseri is reported to be

associated with urgency and urinary incontinence (Pearce et al.,

2014). Adult females undergoing urogynecological surgery are less

apt to experience post-operative urinary tract infections (UTIs) if

their presurgical urobiome is predominated by L. iners (Thomas-

White K. J. et al., 2018), although this is surprising given the

enigmatic properties of L. iners (Petrova et al., 2017). In the adult

female urobiome, Gardnella is the second most prevalent and

abundant genus. It is frequently reported in association with

symptoms of urgency and incontinence where UTI has been

ruled out (Pearce et al., 2015; Joyce et al., 2022). An important

factor that should be considered when studying the female

urobiome is menopausal status. Lactobacillus is found in both

pre- and postmenopausal states, but is less common in

postmenopausal women (Curtiss et al., 2018; Ammitzbøll et al.,

2021). The decrease of estrogen usually associated with menopause

reduces the levels of glycogen, a key nutritional source for

Lactobacillus (Mirmonsef et al., 2015; Ammitzbøll et al., 2021). In

contrast, the asymptomatic male urobiome is characterized by the

absence of Lactobacillus and Gardnerella species, but has a higher

abundance of Cornybacterium, Staphylococcus, and Streptococcus

(Modena et al., 2017; Pohl et al., 2020; Joyce et al., 2022). These

latter genera are also found in asymptomatic females but are less

prevalent and often less abundant (Modena et al., 2017; Pohl et al.,

2020; Joyce et al., 2022).
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With respect to the association of the urobiome and age, the

results differ across studies. For instance, one study found no

significant relationship between age and urobiome genera (Curtiss

et al., 2018), while another reported decreased relative abundance of

Lactobacillus in elderly (>60 years old) female patients and

increased Peptococcus (Liu et al., 2017). Gardnerella and

Escherichia were also reported to be enriched in young and

elderly females, respectively (Price et al., 2020). Indeed, age is

linked to other factors, especially menopausal state. Women older

than 55 are predominantly menopausal, less sexually active and

experience low estrogen levels, leading to decreased vaginal

secretions (Shen et al., 2016). Chen and co-authors reported that

woman older than 55 tended to have less Lactobacillus and more

diverse bladder microbiomes, including the genera Actinomyces,

Corynebacterium, and Streptococcus (Chen et al., 2020).

Alpha (within sample) diversity attempts to quantify the

richness (numbers of taxa), evenness (distribution of taxa), and/or

abundance of taxa in each sample. The alpha diversity of the

urobiome varies across individuals; for example, urobiomes

predominated by a Lactobacillus species are often not rich and

very uneven. Other urobiomes are very rich and very even. Alpha

diversity can distinguish populations with different disorders. For

instance, greater alpha diversity was observed in adult females with

urgency and urinary incontinence relative to unaffected controls

(Thomas-White et al., 2016). Beta (between sample) diversity can
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reveal differences in composition. For example, it provided evidence

that the urobiomes of adult females with urgency and urinary

incontinence differ from unaffected controls (Pearce et al., 2014).

Indeed, urobiome composition has been classified into urotypes

where a specific taxon (species, genus or family) predominates

(Pearce et al., 2014; Perez-Carrasco et al., 2021), a terminology

analogous to community state types in the vagina (Ravel et al.,

2011). The most reproducibly common urotype of adult females are

Lactobacil lus followed by Gardnerella, Staphylococcus,

Streptococcus, and Enterobactericae (Pearce et al., 2014; Karstens

et al., 2018).
Urinary virome

Although viruses rarely cause UTI, their reactivation from

latent infections can cause fatal disseminated infections, including

UTI in immunocompromised patients such as adenoviruses

(Hierholzer, 1992), BK viruses (Egli et al., 2009), cytomegalovirus

(Wojciuk and Giedrys-Kalemba, 2012) and human papilloma virus

(Pathak et al., 2014). Polyomaviruses, especially the BK and JC

viruses, show high tropism for the kidney and can undergo

reactivation (Divers et al., 2019). Both eukaryotic viruses (those

that infect human cells) (Iwasawa et al., 1992; Samarska and

Epstein, 2005; Hanaoka et al., 2019) and bacteriophages (those
FIGURE 1

Urobiome analyses. Panel 1 shows the methods of obtaining urine for microbiome analyses. Suprapubic aspiration and transurethral catheterization
are considered specific for the bladder urobiome, while collection of a mid-stream urine sample is considered representative of the urogenital
microbiome. Panel 2 shows the evaluation of samples by either culture-dependent and/or culture-independent. Standard urine culture (SUC) and
expanded quantitative urine culture (EQUC) are frequently used to detect pathogenic bacteria in urine followed by identification of bacterial colonies
that grow on the culture medium. Colony isolates can be identified by a variety of methods including sequencing and/or mass spectrometry
(MALDI). Culture independent methods involve next generation sequencing (NGS) of DNA isolated from urine samples by either 16S rRNA gene
sequencing (amplicon) or shotgun metagenomic sequencing followed by bioinformatic analyses of the NGS reads.
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that infect bacteria) (Malki et al., 2016; Miller-Ensminger et al.,

2018) have been detected in and isolated from the urine. Shotgun

metagenomic sequencing of urine samples has identified sequences

of phages (Santiago-Rodriguez et al., 2015; Rani et al., 2016;

Garretto et al., 2018) and eukaryotic viruses (Santiago-Rodriguez

et al., 2015). Notably, phage genomes were more common than

either bacterial genomes and eukaryotic viruses (Santiago-

Rodriguez et al., 2015; Miller-Ensminger et al., 2018). Some

urobiome bacterial isolates were found to contain no phage

sequences (e.g., Dolosicoccus paucivorans), while others contained

more than one phage type (e.g., Lactobacillus) (Miller-Ensminger

et al., 2018). HPV, BK, JC, and Torque teno viruses were the most

commonly detected eukaryotic viruses (Salabura et al., 2021).

However, they are also detected at lower concentrations than

phage genomes in urine (Santiago-Rodriguez et al., 2015).
Is the urobiome unique?

From where does the bladder microbiome originate? The

answer is not completely known, although ascending, perhaps

descending and acquisition from the blood remain possibilities.

The bladder microbiome and the microbiomes of adjacent

anatomical niches are similar, although not identical (Thomas-

White K. et al., 2018; Adebayo et al., 2020; Komesu et al., 2020; Sung

et al., 2023). Some species appear to be specialists, favoring one

niche over another, whereas others are more generalists with no

obvious tropism for a niche (Chen et al., 2020). For example,

prevalent and abundant species in the bladder and vagina include

Lactobacillus, Gardnerella, and Prevotella. In contrast, while

Escherichia can be found through the urogenital tract, it is often

the most abundant genus in the bladder (Chen et al., 2020). Some

consider the origin of the urobiota to be the gut (Dubourg et al.,
Frontiers in Cellular and Infection Microbiology 04
2021). For example, Thänert et al. (2019) argue that recurrent UTIs

could come from a bloom of uropathogens in the gut microbiome

(Thänert et al., 2019). Two studies support this concept, reporting

that the presence of even 1% relative abundance of E. coli in the gut

microbiome represents a risk factor for future UTI in the same

person and an increase of Enterococcus in the gut microbiome

increases Enterococcal UTIs in kidney transplant patients (Lee

et al., 2014; Magruder et al., 2019). However, most microbes in

the urobiome likely do not originate in the gut. Whereas there is

strong evidence that some motile uropathogens, especially

Escherichia, can migrate from the gut to the bladder (Chen et al.,

2013), there is no similarity in functional diversity between the gut

and bladder microbiomes, which supports the hypothesis that they

are primarily distinct communities (Thomas-White K. et al., 2018;

Adebayo et al., 2020).
Immune-altered conditions and possible
relationship with UTIs

Immune-altered conditions discussed in this review are four

groups (Figure 2), (i) Autoimmune diseases, (ii) immunodeficiencies

(iii) Cancer (Shurin and Smolkin, 2007), and (iv) immune therapy-

associated immune system disorders (Aiyegbusi et al., 2022). UTIs are

strongly associated with immune-mediated diseases and can result in

death from an overwhelming infection (Wu et al., 2016; Matas et al.,

2020; Sime et al., 2020). Indeed, several studies have reported urobiome

dysbiosis in these diseases or disorders (Liu et al., 2017; Shrestha et al.,

2018; Mansour et al., 2020; Liu et al., 2022). Thus, a possible

relationship exists between immune disorders and urobiome

dysbiosis either by causing a UTI that affects the urobiome

composition or by altering urobiome composition, which may lead

to a UTI. In the rest of this review, we will discuss urobiome dysbiosis
FIGURE 2

Immune-altered conditions can be divided into 4 groups.
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in immune disorders, focusing on similarities and differences and

discussing the possible connections between them.
Autoimmune diseases

Autoimmune diseases result from a breach of tolerance in the

body when the immune system fails to distinguish self from non-self

antigens or overreacts to foreign epitopes. Examples of autoimmune

diseases include multiple sclerosis, type 1 diabetes, ulcerative colitis,

systemic lupus erythematosus, and rheumatoid arthritis (Wang

et al. , 2015). The relationship between infections and

autoimmune diseases is controversial. Some studies suggest that

infections trigger autoimmune diseases (Wilson et al., 1995; Ercolini

and Miller, 2009), while others report high susceptibility to

infections after autoimmune disease diagnoses and might

represent a secondary phenomenon (Mowat et al., 1970; Tishler

et al., 1992; Petri, 1998). For instance, the presence of glucose in the

urine of diabetic patients enables growth of certain uropathogens in

the urinary tract system (Geerlings et al., 2014).

In the systemic lupus erythematosus (SLE) population, the

kidney is commonly affected. A recent study found a massive

change in the bladder microbiome, which could be seen even at

the phylum level. This was especially true in patients with lupus

nephritis, in whom 5 genera were enriched: Alistipes, Bacteroides,

Phocaeicola, Phascolarctobacterium, and Megamonas. These

bladder microbiome differences also were reflected in the bladder

metabolomes of these patients. Furthermore, this study revealed

associations between cytokines and the urinary microbiome,

including an association between SLE-enriched cytokines (e.g., IL-

17) and Bacteroides (Liu et al., 2022). Moreover, the SLE-depleted

taxa Streptococcus was correlated with IgG responsible for

elimination of pathogens. All these findings suggest an interaction

between urinary microbiome, metabolome, and cytokines in SLE

disease. More studies are required to evaluate specific

disease mechanisms.

Rheumatoid arthritis (RA) is a chronic autoimmune disease

primarily affecting the joints and is associated with the secretion of

autoantibodies against immunoglobulin G and citrullinated

proteins (Smolen et al., 2018). Elevated incidence of UTIs has

been observed in rheumatoid arthritis patients (Mowat et al.,

1970; Tishler et al., 1992; Ebringer and Rashid, 2006). Jin and co-

authors (Jin et al., 2023) studied the urogenital microbiome of RA

patients, revealing a dysbiotic state in comparison to non-affected

controls; genera positively correlated with disease included

Rhizorhapis, Stenotrophomonas, and Alcaligenes (Jin et al., 2023).

Furthermore, Proteus a known cause of UTI, was detected in in the

urogenital microbiome of RA patients (Ebringer and Rashid, 2014).

Similar to the microbiomes of SLE patients, those of RA patients

included several bacterial genera that correlated with immune

responses. These included Rhizorhapis, Stenotrophomonas, and

Alcaligenes, which were associated with plasma cells, serum LBP,

and/or sCD14 (Jin et al., 2023) These studies illustrate interactions

between urinary microbiome, metabolome, and immune response

in autoimmune diseases and its associated complications

including UTIs.
Frontiers in Cellular and Infection Microbiology 05
Cancer

Studying the urobiome in the context of urologic cancers makes

sense for several reasons: a) the local microbiome has been linked to

malignances in anatomically related niches (Ashley A Hibberd

et al., 2017; Kovachev, 2020); b) the exposure to carcinogenic

chemicals (e.g., aromatic amines, pesticides, heavy metals, and

other pollutants) increases susceptibility to cancer (Cogliano

et al., 2011), particularly since the body eliminates toxins through

the urinary tract and the urobiome also will be exposed to these

compounds during urine generation, storage and elimination

(Mansour et al., 2020); and c) chronic inflammation caused by

recurrent and/or persistent infections can lead to carcinoma

(Shrestha et al., 2018). For example, recurrent prostate infections

can lead to prostatic atrophy associated with inflammatory

infiltrates, which may be a risk factor for prostatic cancer (Sfanos

et al., 2013). Also, infection with Schistosoma haematobium, a

eukaryotic parasite can lead to bladder cancer (Ishida and Hsieh,

2018). Below, we discuss the urobiome in the context of prostate

and bladder cancers.
Prostate cancer

Worldwide, prostate cancer is the 2nd most common cancer in

men after lung cancer (Bray et al., 2018). Clinically, the course of

prostate cancer is heterogenous and there is a need to identify

biomarkers for early diagnosis of significant disease. The frequent

use of antibiotics has been reported to increase the risk of prostate

cancer (Boursi et al., 2015), and recurrent infections can lead to

inflammation, causing histological changes in prostate tissues and

potentially cancer initiation and/or progression (Strickler and

Goedert, 2001; Kwon et al., 2014). Thus, studying the urobiome

has the potential to reveal currently unknown features of the

pathogenesis of this malignancy. Differences in urobiome

composition between patients with and without prostate cancer

has revealed a possible role for the urobiome in initiation and/or

progression of this cancer (Shrestha et al., 2018). The species

Ureaplasma parvum and U. urealyticum were enriched in cancer

samples versus benign samples (Shrestha et al., 2018). Alanee et al.

(2019) performed analyses on paired gut and genitourinary

microbiomes prior to prostate biopsy. There was no difference in

the gut microbiomes of cancer and non-cancer participants. In

contrast, the genitourinary microbiome of the prostate cancer

patients was distinct from that of the non-cancer participants

(Alanee et al., 2019). There is a need for further research in this area.
Bladder cancer

Bladder cancer is more common in males than females,

especially those over 65 years old (Ferlay et al., 2015; Kamat

et al., 2016). Thus, most studies have been performed on male

patients. In a small study (n=36) conducted by Popovic and co-

authors, the genera Fusobacterium and Campylobacter hominis
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were overrepresented in affected individuals’ urine (Bučević et al.,

2018). Intriguingly, Fusobacterium has been linked to multiple

cancers (Kostic et al., 2012; Gholizadeh et al., 2017; Wang et al.,

2021). Interestingly, Fusobacterium binds to D-galactose-b(1-3)-N-
acetyl-D-galactosamine (Abed et al., 2016), which is expressed on

the surfaces of several tumors, including urothelial carcinoma

(Bučević et al., 2018). Another study (n=49 participants) reported

a significant difference between bladder cancer and non-cancer

participants. Here, the genera Acinetobacter and Anaerococcus were

enriched in those with bladder cancer (Wu P. et al., 2018). One

study was conducted on both males and females, but there was no

clear distinction between the male and female urogenital

microbiomes (Bi et al., 2019). Zeng et al. (2020) reported high

alpha diversity in the urobiome in a bladder cancer group relative to

the non-cancer control group. Based on receiver operating

characteristic curve (ROC) curves, the authors suggest that

measurements of bacterial richness could support a bladder

cancer diagnosis (Zeng et al., 2020). The increased alpha diversity

richness appears to be a sign of overgrowth of harmful bacteria

rather than beneficial ones. The phylum Bacilliota (formerly

Firmcutes) has also been reported to be more abundant in

bladder cancer patients (Mansour et al., 2020). One phylum

reported in bladder cancer patients was Cyanobacteria. These

bacteria are responsible for producing microcystin (Turner et al.,

2018), which has been associated with hepatocellular carcinoma

(Svirčev et al., 2010) and colorectal cancer invasion (Miao et al.,

2016); their role in urothelial cancers remains to be determined.

It should be noted that bladder cancer is the only malignant

disease treated by live bacteria, Mycobacterium ovis bacille

Calmette-Guérin (BCG) (Redelman-Sidi et al., 2014). Although

the treatment with BCG vaccine is efficacious, over time 40% of

patients became non-responsive and 50% had progressive disease

(Fahmy et al., 2013). The exact mechanism of how BCG vaccine

prevents bladder cancer recurrence is still unknown. However,

some studies reported interaction between BCG and fibronectin

(Kavoussi et al., 1990) and a5b1 integrins (Kuroda et al., 1993).

Whiteside et al. proposed that BCG vaccine efficacy may depend on

bladder urobiome composition where the presence of L. iners,

which binds to fibronectin (McMillan et al., 2013) could affect the

success of therapy (Whiteside et al., 2015). A recent study

conducted by James and co-authors investigating changes in

bladder microbiome after treatment with a BCG vaccine observed

a decrease in alpha diversity in most patient samples. Moreover,

they found that the genus Aerococcus was a biomarker for poor

response to BCG vaccine; in contrast, the genus Escherichia/Shigella

appeared to be associated with a favorable response (James et al.,

2023). These studies point to the probable interaction of BCG

vaccine with the urobiome to promote protection against

bladder cancer.

Another popular cause for bladder cancer is chronic infection

with the eukaryotic parasite Shistosoma haematobium. Shistosoma

infection has been reported in 78 countries where preventive

chemotherapy is needed for 51 endemic countries (WHO, 2023).

The mechanism underlying its carcinogenesis is not clear (Zaghloul

et al., 2020). However, Shistosoma egg disposition in the bladder

leads to multiple immunological and inflammatory responses that
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predispose the patients to bladder cancer (Ray et al., 2012; Zaghloul

et al., 2020). One study performed analyses evaluating differences in

the urine microbiome between Shistosoma infected patients in

comparison to non-infected participants in Nigeria (Ladan et al.,

2014; Adebayo et al., 2017). They showed a reduction in diversity in

advanced stages of Shistosoma infection and interestingly higher

abundance of the genus Fusobacterium in advanced stages more

than early ones (Adebayo et al., 2017). However, more studies are

needed for replication of the results using larger cohorts.
Immunodeficiency diseases

There are few reports investigating the relationship between the

urobiome and immunodeficiency diseases, although the rate of UTIs is

high in this set of diseases. For instance, HIV patients are at increased

risk of UTI when the viral load reaches detectable levels in the blood

(Park et al., 2002). Patients with primary immunodeficiency conditions

often present with UTI symptoms (Capistrano et al., 2018). Additional

studies are needed to understand the relationship between the

urobiome and immunodeficiencies.
Kidney transplant

Kidney transplant is the treatment of choice for end stage renal

failure (Meier-Kriesche et al., 2004). However, the transplantation

process could alter the urobiome due to surgical stress,

immunosuppressant therapy, and occasional use of antibiotics

(Modena et al., 2017). Immunosuppressant therapy specifically

increases the rate of opportunistic infections, leading to UTIs,

usually in the first three years post-transplant (Abbott et al., 2004;

Lee et al., 2013; Hollyer and Ison, 2018). Antibiotics often

prescribed to treat these opportunistic infections could negatively

affect the human microbiome (Jakobsson et al., 2010). An alteration

of the urobiome could lead to pathogen enrichment and subsequent

increase of lipolysaccarides, which could act as a costimulatory

immunogen (Grover et al., 2012; Modena et al., 2017). Presence of

this immunogen could lead to failure of the transplanted kidney

through buildup of extracellular matrix, which could also lead to

interstitial fibrosis and tubular atrophy (Nankivell et al., 2001;

Modena et al., 2017; Perez-Carrasco et al., 2021). Thus, the

urobiome could be affected by multiple anatomic and biochemical

alterations occurring in patients with a kidney transplant.

Analysis of the urobiome of allograft patients was conducted for

different purposes. One study sought differences in the urobiomes

of transplant patients and non-transplant controls (Rani et al.,

2017). A second study found a significant difference in alpha

diversity richness between the two sets of participants and a

significant increase in uropathogenic bacteria, such as E. coli, in

transplant patients. (Fricke et al., 2014). A third study looked at the

urobiome for biomarkers of graft rejection. The authors reported

lower abundance of the genera Lactobacillus and Streptococcus in

women and men, respectively, in those patients who rejected their

kidney transplant. In contrast, these patients exhibited enrichment

of pathogens, including the species Cutibacterium (formerly
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Propionibacterium) acne, Prevotella disiens, Gardnerella vaginalis

and Finegoldia magna (Modena et al., 2017). A fourth study

investigated the urobiome during acute kidney injury in

transplant and non-transplant participants (Gerges-Knafl et al.,

2020). Often, UTIs are a cause of acute kidney injury in

transplant patients (Lee et al., 2013). One team reported 7

bacterial taxa in transplant patients as opposed to non-transplant

participants, including Flavobacteriaceae, Gemella, Pseudomonas,

Arthrobacter, Gp2, Phyllobacteriaceae, and Rothia (Gerges-Knafl

et al., 2020). Finally, a study of the urobiome in early chronic

allograft rejection in comparison to controls revealed significant

differences in the genus Cornyebacterium (Wu J. F. et al., 2018). No

consensus has emerged from these studies on the characteristics of

the urobiome in transplant patients. However, the transplantation

procedure apparently affects the urobiome, especially to increase the

presence of pathogenic bacteria.

The use of immunosuppressant therapy sometimes reactivates

latent infections of BK and JC viruses (Pinto and Dobson, 2014).

These viruses affect 10% of the kidney transplant patients and

eventually lead to graft rejection (Menter et al., 2013). Studying the

urinary virome of patients infected with BK virus revealed high

abundance of Polyomaviridae, Adenoviridae, and Anelloviridae

viruses in BK+ samples and lowered Shannon diversity relative to

BK- samples (Rani et al., 2016). Other studies searched for viral

peptides in the urine using a LC-MS platform (Sigdel et al., 2018).

They classified patients into healthy control, stable graft, acute
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rejection, chronic nephropathy, and BK nephritis. Presence of viral

peptides in healthy controls implies presence of commensals in the

urinary virome. Upon examining the other groups, they found BK

virus reads in acute rejection (60-70%) and chronic nephropathy

(70-80%) in addition to samples from subjects with BK nephritis

(100%). They assumed that presence of BK reads in the acute injury

group is attributed to BK activation amongst those using

immunosuppressant therapy (Mbianda et al., 2015; Sigdel et al.,

2018). Additional studies are needed to determine whether early

diagnosis of graft rejection might be facilitated by identifying the

urinary virome composition.
Urinary metabolome

Urine is often used to determine metabolic status. Measuring

urine metabolites can reveal interesting connections to the

urobiome and overall metabolism of the body. Gerges et al.

reported a change in urine metabolite patterns during recovery of

acute kidney failure in one transplant patient (Gerges-Knafl et al.,

2020). They observed a significant increase of many compounds,

including methylsuccinic acid, succinic acid, hypoxanthine,

xanthosine, ethylmalonic acid, methylguanine, lactic acid,

hydroxyglutaric acid, oxoglutaric acid, isoleucine, lactose,

citrulline, histidine, uracil, asparagine, and alanine, while a

decrease was detected of iditol, mannitol and ornithine. These
TABLE 1 Summary of studies relating urine microbiome to different forms of Immune-altered conditions.

Disease Sample Participants Gender References

Prostate cancer Urogenital specimen 65 Cancer patients
65 benign biopsy patients

Male (Shrestha et al., 2018)

Prostate cancer Urogenital specimen 14 cancer patients
16 non cancer patients

Male (Alanee et al., 2019)

Bladder cancer Urogenital specimen 17 cancer patients
19 controls

Male (Bučević et al., 2018)

Bladder cancer Urogenital specimen 31 cancer patients
18 non cancer patients

Male (Wu P. et al., 2018)

Bladder cancer Mucosal tissue samples 22 cancerous tissues
12 normal tissues

Male (Liu et al., 2019)

Bladder cancer Urogenital specimen 29 cancer patients
26 non cancer patients

63% female
37% male

(Bi et al., 2019)

Bladder cancer Urogenital specimen 73 cancer patients
26 non cancer patients

Male (Zeng et al., 2020)

Kidney transplant Urogenital specimen 35 patients
32 controls

28% male
78% female

(Wu J. F. et al., 2018)

Kidney transplant Urogenital specimen 21 Patients
8 Controls

58% male
41% female

(Rani et al., 2017)

Kidney transplant Urogenital specimen 21 renal transplants recipients
9 non transplant patients

14 Female
16 males

(Gerges-Knafl et al., 2020)

Systemic lupus erythematosus (SLE) Bladder specimen 50 SLE patients
50 controls

44% female
56% male

(Liu et al., 2022)

Rheumatoid arthritis Urogenital specimen 39 RA patients
37 healthy individuals

76.4%females
23.6% males

(Jin et al., 2023)
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metabolite alterations may be due to changes in kidney function

and/or differences in the urinary microbiome itself (Gerges-Knafl

et al., 2020). Another study explored the urinary metabolome in

SLE patients. These authors found differences in 10 urinary

metabolites between SLE patients and control, and 53 metabolite

differences between patients with lupus nephritis and controls (Liu

et al., 2022). Moreover, there were associations between the urinary

microbiome and metabolome, including Bacteroidetes with

olopatadine, antihistaminic, and anti-inflammatory compounds.

These findings indicate that urine metabolites could be a potential

diagnostic test to differentiate between SLE and control. Jin and

colleagues studied the urogenital microbiome in RA patients and

noticed a negative association between citric acid and the genus

Proteus in the urobiome (Jin et al., 2023). Citric acid is associated

with proinflammatory factors in macrophages (Infantino et al.,

2014) and Proteus is highly prevalent during UTI in RA patients

(Mowat et al., 1970). Although these initial studies are interesting,

additional research with larger numbers of participants is required

with immune altered states to confirm these findings, since urine

metabolites can be affected by many factors that should be taken in

consideration during analysis, including diet and comorbidities.
Conclusions and future perspectives

The reported literature supports the fact that there are changes

in the urobiome in immunologically altered conditions. The

observed differences in the urobiome may be caused by the

altered immune state and they may contribute to subsequent

morbidities, such as UTIs. In some cases, the observed alterations

may result from repeated UTIs and the subsequent use of

antibiotics. Several studies described in this review provide

evidence for an association between altered immune states and

the urobiome. However, these studies differed in sample collection

techniques, sampling size, and gender studied, all of which could

affect the results (Table 1). To effectively compare the findings of the

studies dealing with the urobiome in immune altered conditions, a

consensus should be developed on proper research methods.

Moreover, there are many autoimmune diseases that affect the

urinary tract system for which the urobiome has not been

characterized; for example, multiple sclerosis and Type 1 diabetes.

Furthermore, the urinary fungal microbiome (mycobiome) and

metabolome should be investigated to provide a full picture of
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potential alterations in the urobiome and its functional features

with urinary tract abnormalities and disease. Finally, the urine

virome is now coming to light and several questions in immune

altered conditions need to be addressed, especially whether viral

infections can trigger autoimmune diseases (Altindis et al., 2018;

Divers et al., 2019) such as Epstein-Barr virus and if there are

associations with multiple sclerosis (Soldan and Lieberman, 2023)

and systemic lupus erythematosus (Hanlon et al., 2014).
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