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1Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University,
Tehran, Iran, 2Department of Molecular Biology of The Cell, Faculty of Bioscience, University of Milan,
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Small regulatory RNAs (sRNAs) encapsulated in outer membrane vesicles (OMVs)

are critical post-transcriptional regulators of gene expression in prokaryotic and

eukaryotic organisms. OMVs are small spherical structures released by Gram-

negative bacteria that serve as important vehicles for intercellular

communication and can also play an important role in bacterial virulence and

host-pathogen interactions. These molecules can interact with mRNAs or

proteins and affect various cellular functions and physiological processes in the

producing bacteria. This review aims to provide insight into the current

understanding of sRNA localization to OMVs in Gram-negative bacteria and

highlights the identification, characterization and functional implications of these

encapsulated sRNAs. By examining the research gaps in this field, we aim to

inspire further exploration and progress in investigating the potential therapeutic

applications of OMV-encapsulated sRNAs in various diseases.
KEYWORDS
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1 Introduction

Since the identification of bacteria as the primary cause of infectious diseases,

researchers have been interested in the variety of interactions between these tiny

organisms and their environment. In particular, bacterial interaction with eukaryotic

host cells has gained significant attention during the past few decades (Kaparakis-

Liaskos and Kufer, 2020). Bacterial cells release membrane vesicles known as

extracellular vesicles (EV) to communicate with host cells and other bacteria (Hosseini-

Giv et al., 2022). Depending on the cell structure, Gram-positive and Gram-negative

bacteria use various ways to create extracellular vesicles, known as outer membrane vesicles
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(OMVs) and membrane vesicles (MVs), respectively (Bose et al.,

2021). OMVs were first discovered in Escherichia coli (E. coli) in the

1960s, however, Gram-positive MVs were discovered much later

because scientists believed that the thick cell wall that surrounds

these bacteria would prevent the release of MVs (Brown et al., 2015;

Srivastava and Kim, 2022; Huang et al., 2023). The first proof of

vesiculation in Gram-positive bacteria was presented by Dorward

and Garon in 1990 (Bose et al., 2021).

EVs are small biological structures that are released by cells that

in both in physiological and pathological conditions, can play a

central role in cell-cell communication and transfer a variety of

cargos, including lipids, proteins, and nucleic acids, which are

employed to interact with and have an impact on host cells, such

as cytotoxicity and immunomodulation (Hosseini-Giv et al., 2022;

Palazzolo et al., 2022). EVs have also been used as drug delivery

systems since they have characteristics that made them ideal for this

purpose, leading to interesting results in preclinical and clinical

trials (Palazzolo et al., 2022). When EVs enter target cells, they

release their contents, which include proteins, short RNAs (sRNAs),

tRNA fragments, and microRNAs (miRNAs), which then control

the gene expression and function of the recipient cell (Stanton,

2021). Recent studies have demonstrated that bacterial vesicles

containing noncoding regulatory RNAs are released into the

surrounding environment , and trans fe rred to other

microorganisms and host cells, as already reported by the

protozoan pathogen Trypanosoma cruzi. However, intracellular

bacterial pathogens can express sRNAs that have regulatory

functions in a similar manner as miRNAs. The significance of

microbial sRNAs as molecules that can mediate host-microbe

interactions is highlighted by recent studies which have

demonstrated that bacterial vesicles containing noncoding

regulatory RNAs are released into the surrounding environment,

and transferred to other microorganisms and host cells, as already

reported for the protozoan pathogen Trypanosoma cruzi. However,

intracellular bacterial pathogens can also express sRNAs that have

regulatory functions in a similar manner as miRNAs (Ahmadi Badi

et al., 2020; Stanton, 2021). Extracellular sRNAs can then be found

in a variety of bodily fluids, such as serum, plasma, and urine, and

they exhibit altered circulating levels in a wide range of disorders,

making them potential biomarker possibilities for pathological

states (Cucher et al., 2023).

EVs secreted by the microbiota have recently emerged as a new

means of communication. The largest microbial ecosystem in the

human body, the gut microbiota, carry the message of antibiotic

resistance to the surrounding bacteria. Furthermore, they function

as a powerful system for the detoxification of substances that are

harmful to bacterial growth (Heydari et al., 2022). In the

intercellular signaling system, MEVs have become important

mediators that may play a crucial role in the communication

between the microbiota and the host. Microbiota-derived EVs

(MEVs) are tiny membrane-bound vesicles that contain a variety

of biologically active substances, including proteins, mRNA,

miRNA, DNA, carbohydrates, and lipids. These vesicles act as

carriers for their payload when transported horizontally across

cells (Sultan et al., 2021). In 2013, MEVs in mouse stools were

identified by Kang et al. (2013). They demonstrated how the stool
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MEVs from an IBD mouse model displayed substantial dysbiosis in

comparison to the difference in the microbiota composition

between the inflammatory and control phenotypes. This study

demonstrates that EVs play a regulating function in intestinal

immunity and homeostasis, even though it was unclear whether

the dysbiosis was an effect of the inflammation or its cause. For

instance, mice were prevented from developing colitis by the EVs of

the gut bacterium Akkermansia muciniphila , and the

proinflammatory cytokine IL6 was reduced in response to E. coli

treatment (Kang et al., 2013). Clinical research has shed light on

how the microbiome affects immunity and a variety of disorders.

For instance, Bacteroides thetaiotaomicron EVs contain hydrolytic

enzymes that, when shared with bacteria lacking hydrolytic

enzymes, boost the potential digestion of gut microbiota.

Therefore, administering EVs produced from particular bacterial

strains may alter host nutrition, immunological signaling pathways,

and the generation of bacterial metabolites. The EV-based network

most likely represents significant links that organize the gut

microbiota’s ecological units (Badi et al., 2017).
2 Small RNA and its
biological function

2.1 Eukaryotic sRNA

Non-coding RNAs (ncRNAs) are a large group of RNA

molecules that cannot encode proteins. ncRNA comprise 98% of

all transcriptional output, which can be divided into two main

subgroups: housekeeping ncRNA and short (less than 200 nt) and

long (more than 200 nt) ncRNA (Wang and Li, 2012). Small non-

coding RNAs (sncRNAs) are key mediators of post-transcriptional

regulators in bacteria and eukaryotes that control gene expression

through a variety of mechanisms (Wang and Fu, 2019). These

include micro-RNAs (miRNAs), small interfering RNAs (siRNAs),

Piwi-interacting RNAs (piRNAs) (Orendain-Jaime et al., 2021), and

tRNA-derived small RNAs (tsRNAs) (Li et al., 2018). Apart from

these, which mostly act as silencers, in 2006 Long-Cheng Li and

colleagues identified small RNAs that target gene promoter

sequences to activate expression in a process called RNA

activation (RNAa) (Li et al., 2006).
2.1.1 miRNA
miRNA is an endogenous sRNA with a length of about 22 nt

(Bhaskaran and Mohan, 2014), which was first discovered by Lee

and colleagues in the nematode Caenorhabditis elegans (Lee et al.,

1993). They have the role of post-transcriptional regulators of gene

expression and often lead to changes or prevent the production of

protein products through binding to the complementary sequence

of mRNA and interfering with the translation machines (Bhaskaran

and Mohan, 2014. It should be noted that miRNAs, in addition to

mRNA degradation, transcription silencing, and post-

transcriptional silencing, play an important role in humans in

modulating the process of apoptosis (Allmer and Yousef, 2014)

and inhibiting the proliferation and migration of cancer cells (Ding
frontiersin.org
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et al., 2021). It also serves as diagnostic and prognostic biomarkers

for diseases such as cancer (Saldanha et al., 2016; Liu et al., 2017;

Yang et al., 2017), neurological disorders (Khoo et al., 2012), and

type 2 diabetes (Mahjoob et al., 2022). In general, miRNAs in cancer

can be classified into two categories: oncogenic (oncomiRs) and

tumor suppressor (tsmiRs), which play a role in cancer progression

and suppression, respectively (Wang and Li, 2012).

2.1.2 siRNA
siRNAs are a class of 22 nt double-stranded RNAs (dsRNAs)

that are produced endogenously or synthetically and are known as

activators of the RNA interference (RNAi) mechanism (Wang and

Li, 2012). In 2006, Fire and Mello won the Nobel Prize for coining

the term “RNA interference” and discovering the mechanics of its

occurrence. They reported that dsRNAs induce gene silencing

through Watson-Crick base pairing with a complementary

sequence in mRNAs (Alshaer et al., 2021). This makes siRNAs

superior to monoclonal antibody drugs and small molecule

therapies, because theoretically, any gene of interest can be

targeted with the help of siRNA, while these drugs must

recognize the complex spatial composition of specific proteins

(Hu et al., 2020). Considering that, many human diseases are

caused by excessive production of specific gene products such as

oncogenes, siRNAs can be used to target the active genes. To date,

many siRNAs have been used to treat ocular (Nikam and Gore,

2018), liver (Zhao et al., 2019), kidney (Stokman et al., 2010), cancer

(Hou et al., 2006), etc., and are modified with various chemical

compounds, and are phosphonated for proper function.

2.1.3 piRNA
piRNA is an endogenous single-stranded sRNA with a length of

~27nt found in vertebrates and invertebrates (Wang and Li, 2012).

The PIWI as a gene encoding piRNA was first identified in

Drosophila in 1997, where mutants showed defects in germ cell

maintenance (Cox et al., 1998). Due to the larger size of piRNAs

compared to miRNAs, they bind to mRNA more tightly and it is

thought that they can inhibit protein synthesis (Kamenova et al.,

2023). Although the function of piRNA in humans is not fully

understood, abnormal expression of Hiwi (ortholog humans Piwi)

has been reported in a variety of cancers (Wang and Li, 2012).

piRNAs have been identified as new prognostic and diagnostic tools

for cancer (Guo et al., 2020) and MS (Kamenova et al., 2023).

2.1.4 tsRNA
tRNAs comprise about 4-10% of all cellular RNAs, which are

the most abundant type of small noncoding RNAs (sncRNAs). They

are key components in the translation process and transport amino

acids to the ribosome. Many studies have shown that many

sncRNAs are derived from tRNAs that are ~15-50 nt in length

(Watson et al., 2019) and play different roles in epigenetic

regulation, gene expression, protein translation, and immune

processes. tsRNAs are divided into two main types based on the

length and site of tRNA cleavage, tRNA stress-induced RNA

(tiRNA) and tRNA-derived fragment (tRF). Abnormal levels of

tsRNAs have been reported in infectious, neurological, acquired
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metabolic diseases and cancer in humans. Researchers have

examined the level of tsRNAs in serum as a biomarker in disease

diagnosis (S. Li et al., 2018).

2.1.5 saRNA
saRNA is a class of 21nt long sncRNAs that have the same

structure and chemical components as siRNA, although their

biological functions are opposite (Kwok et al., 2019). In 2000,

saRNAs were first identified by Li et al., who reported that

saRNAs activate gene expression in mammalian cells by targeting

gene promoters (Li et al., 2006). Considering that saRNA is a very

powerful tool for gene activation, it has been used in regenerative

medicine and it is predicted that it is possible to combine saRNA

with other drugs to improve treatment (Kwok et al., 2019). In

overall, in various reports, sRNAs have been used as non-invasive

clinical diagnostic biomarkers for diseases such as acute myeloid

leukemia (Xia et al., 2023), neurodegenerative disease (Watson

et al., 2019), renal cell carcinoma (Ding et al., 2021), and multiple

sclerosis (Piket et al., 2019).
2.2 Bacterial sRNA

Bacterial sRNAs are transcribed from the intergenic regions of

the bacterial genome, which are usually 50-400 nt in length (Wang

and Fu, 2019) and are recognized as important elements of bacterial

adaptation to environmental changes (Jørgensen et al., 2020). As

bacteria are exposed to environmental fluctuations such as changes

in pH, temperature, nutrient concentration, water and others, they

use fast and flexible mechanisms for survival and reproduction

(Raina et al., 2022). Bacterial sRNAs regulate various biological

processes such as energy metabolism, quorum sensing (QS), biofilm

formation, and stress response (Michaux et al., 2014). Gram-

negative bacteria have unique structural features that require

maintaining homeostasis in the inner membrane (IM), outer

membrane (OM), and periplasmic space for microbial growth

and cell proliferation. These cells use various stress response

systems to monitor the status of membrane proteins, with sRNAs

playing an essential role (Papenfort and Melamed, 2023). In

addition, sRNAs are involved in modulating the stability or

translation of mRNAs through short-base pair interactions and

are among the main post-transcriptional regulators in bacteria

(Raina et al., 2022). Here, pathways for bacterial metabolism and

homeostasis are summarized, and specific roles for sRNA in the

regulation of those pathways are presented in Table 1.

Cellular metabolism is essential in bacteria for optimizing

nutrient utilization. Regulatory mechanisms ensure that bacteria

preferentially use the most favorable carbon, nitrogen, and amino

acid sources based on their availability, energy efficiency, and

growth requirements. sRNAs regulate metabolic processes by

influencing metabolic enzymes, transporters and regulators.

(Michaux et al., 2014). Carbon metabolism is a versatile and

essential process that helps bacteria use organic compounds for

energy production and the biosynthesis of nucleic acids, amino

acids, lipids, and carbohydrates (Noor et al., 2010). Nitrogen
frontiersin.org

https://doi.org/10.3389/fcimb.2023.1305510
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Ajam-Hosseini et al. 10.3389/fcimb.2023.1305510
TABLE 1 sRNAs function in gram negative bacteria.

Role of sRNA Bacteria sRNA Function Ref

C
el
lu
la
r 
m
et
ab
ol
is
m

Carbon metabolism E.coli SgrS
Spot 42
GlmYZ

- Controlling the uptake and secretion of various carbohydrates
- A global regulator of secondary carbon metabolism
- Involved in cellular response to DNA damage
- Glucosamine-6-phosphate synthetase (GlmS) expression
control in response to its product (GlcN-6-P)

(Bobrovskyy and Vanderpool, 2014;
Prasse and Schmitz, 2018)

(De Lay and Gottesman, 2009; Prasse and
Schmitz, 2018; Zhang et al., 2019)

(Fröhlich and Gottesman, 2018; Prasse
and Schmitz, 2018; Jørgensen et al., 2020)

(Chareyre and Mandin, 2018; Fröhlich
and Gottesman, 2018)

Nitrogen
metabolism

E.coli

P.
stutzeri A1501

CyaR

SdsN
NfiS

- A posttranscriptional repressor
- Transcription regulator crp
- Suppression of genes involved in the metabolism of oxidized
nitrogen compounds
- Optimization of nitrogen fixation through base pairing with
the nitrogenase nifK mRNA

Amino
acid metabolism

P. aeruginosa
PAO1

E.coli/
Salmonella

E.coli

NalA
NrsZ

GcvB

Sr1

- RNA leader-mediated antitermination
- Translation activation
- Prevent nitrogen starvation

- Translation inhibition
- Represses peptide transporters
- Translation activation
- Transcription regulator of arginine metabolism

Iron
homeostasis
regulation

E.coli

V. cholera

S. dysenteriae

P. aeruginosa

Klebsiella
pneumonia

A. vinelandii

RyhB

RyhB

RyhB

PrrF1/
PrrF2

PrrH
RyhB1/

RyhB2
ArrF

- Inhibiting the synthesis of unnecessary iron binding proteins
(in iron deficiency conditions)
- Overcome stress by increasing available iron
- Controlling iron homeostasis genes

- Directly involved in pathogenesis
- Activation/suppression of pathogenicity during the course of
infection by iron
- Rapid degradation of iron-binding mRNAs

- Regulation of biosynthesis genes

- Involved in the capsule and acquisition of iron
- Regulation of genes encoding iron-containing proteins

Q
uo

ru
m
 s
en
si
n
g 
an

d 
bi
of
il
m
 fo

rm
at
io
n

QS

and

Biofilm formation

E.coli

P. aeruginosa

S. dysenteriae/
Vibrio
cholerae

Vibrio
cholerae

MicA/
McaS
CsrB/C
FimR2

PrrF

RyhB

Qrr1–5

- A post-transcriptional regulator of the OM protein
- Increased swimming mobility
- Regulation of cellular processes, such as biofilm formation
and motility
- Biofilm formation as a dominant mode of survival under
nutrient depletion conditions
- Control over motility and biofilm formation

- Regulate quorum sensing by preventing the degradation of
anthranilate

- Control of genes involved in motility and biofilm formation
- Increased virulence and biofilm formation through regulation
of s at least four mRNAs (luxO/U, hapR, aphA and vca0939)

(Bak et al., 2015; Chareyre and Mandin,
2018; Huber et al., 2022; Raad

et al., 2022)

St
re
ss
 r
es
po

n
se

Acid
stress response

E.coli

E.coli/
S.

Typhimurium

GadY
DsrA/
ArcZ/
RprA

6S RNA

- Regulation of acid stress tolerance
- Stabilization of rpoS mRNA secondary structure
- Increasing the response of bacteria to different stresses

- Increasing the ability to survive under acid stress

(Ren et al., 2017; Lin et al., 2021)

(Hu et al., 2019; Zhang et al., 2019)

(Continued)
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metabolism enables bacteria to utilize nitrogen in different forms

such as ammonium, nitrate, and amino acids, and use them to

synthesize nitrogen-containing compounds necessary for cell.

Amino acids metabolism includes the synthesis, breakdown, and

conversion of amino acids, which are essential for the adequate

supply of these building blocks for protein synthesis and carrying

out cellular processes (Prasse and Schmitz, 2018).

Iron plays a dual role in bacteria, serving as a crucial

micronutrient for bacterial growth while also potentially harming

bacterial cells by generating reactive oxygen species (ROS) during

aerobic metabolism. Therefore, iron homeostasis is critical for

bacterial survival, and bacteria use complex mechanisms to

absorb, store, and utilize iron (Klebba et al., 2021). Bacterial

sRNAs play a crucial role in these metabolic processes as post-

transcriptional regulators, influencing gene expression and

metabolic pathways (Papenfort and Melamed, 2023). Quorum

sensing (QS) is a cellular communication mechanism in bacteria

and fungi that indicates population density and plays an important

role in pathogenicity and biofilm formation (Michaux et al., 2014).

When the concentration of signaling molecules reaches a certain

threshold and binds to receptor proteins, it triggers the activation of

genes that promote biofilm formation (Williams, 2007). The

primary function of QS is to enable bacteria to monitor their

environment and adjust their behavior accordingly. As a result, it

allows bacteria to assess the number of neighboring bacteria and

coordinate their activities as a collective group (Wang et al., 2022).

Bacterial sRNAs are responsible for transcription regulation,

biofilm formation and information integration by QS systems

(Michaux et al., 2014).

In the natural habitat, bacteria face various stressors such as

temperature and pH fluctuations, nutrient limitation, exposure to

toxins, oxidative stress, and physical damage. Stress response

mechanisms enable bacteria to sense and respond to these

stressors and increase their survival. sRNAs play an essential role

in coordinating the stress response by regulating the expression of
Frontiers in Cellular and Infection Microbiology 05
stress-related genes, thereby enabling the activation or suppression

of stress response pathways to support bacterial survival (Holmqvist

and Wagner, 2017). When bacteria are exposed to acidic conditions

as a result of metabolic processes, acid stress is induced. This in turn

triggers the activation of bacteria’s acid resistance systems to protect

against cell damage and maintain homeostasis (Dawan and

Ahn, 2022).

ROS are released upon exposure to oxygen or as byproducts of

metabolic reactions. In these conditions, bacteria use antioxidant

defense systems (such as catalase and superoxide dismutase

enzymes and small molecule antioxidants) to neutralize ROS and

protect cellular components against oxidative damage (Seixas et al.,

2022). When the osmolarity of the surrounding environment

changes, it leads to a change in water availability and ion

concentration, which bacteria maintain osmotic balance through

the synthesis and absorption of compatible solutes and prevent cell

shrinkage or lysis (Krämer, 2010). Phosphosugar stress arises from

an imbalance in the availability or use of phosphosugars, which are

crucial for cellular processes like energy metabolism and cell wall

biosynthesis. Bacteria use regulatory proteins and metabolic

pathways to adapt and restore phospho-sugar homeostasis

(Papenfort et al., 2013). Overall, sRNAs are a flexible and rapid

tool for gene regulation in bacteria, allowing them to respond to

changing environmental conditions and optimize their survival

strategies (Papenfort and Melamed, 2023).
2.3 sRNA applications

Natural or synthesized sRNAs are used to silence or regulate

gene expression related to disease pathways, after identifying the

specific mRNA involved in the pathway. sRNAs complementary to

target mRNA sequences are designed or identified to inhibit their

activity. Using chemical modifications such as locked nucleic acids

(LNAs) or phosphorothioate linkages increases the stability and
TABLE 1 Continued

Role of sRNA Bacteria sRNA Function Ref

(Fröhlich et al., 2012; Bobrovskyy and
Vanderpool, 2014; Negrete and

Shiloach, 2017)

Oxidative
stress response

E. coli

P. stutzeri
A1501

E.coli

OxyS

NfiS

NfiS

- Inhibits rpoS translation
- Cell cycle arrest to allow DNA damage repair
- Acts as a regulator
- Integrates adaptation to H2O2 with other cellular stress
responses
- Help protect cells from oxidative damage
- Increased tolerance to oxidative and osmotic stress

Osmotic stress
and anaerobic

growth condition

E.coli RprA
MicF

MicA/
RybB
FnrS/
ArcZ

- Activation of translation of rpoS mRNA

- Repression of translation and stability of porin OmpF
- Expressed under conditions of oxygen limitation

Phospho-
sugar stress

E.coli/
Salmonella

SgrS - Changes in mRNA translation and stability
-Production of SgrT and inhibition of major glucose transporter
activity
-Reducing the accumulation of phosphorylated sugars and
stress
-Promote growth
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protects sRNAs from degradation by cellular nucleases Finally,

efficient delivery systems are used to deliver engineered sRNAs

(Rupaimoole and Slack, 2017). For example, in a study, a new sRNA

called EsrF was reported that through binding to flhB mRNA leads

to increased bacterial motility and adhesion to host cells, which is

ultimately associated with increased infection. Engineered sRNA is

predicted to reduce infection by not binding to mRNA (Jia

et al., 2021).
3 Bacterial outer membrane vesicles

Gram-negative bacteria produce ectosomes called outer

membrane vesicles (OMVs), which are spherical lipid bilayer

structures with sizes ranging from approximately 20 to 250 nm

(Yang et al., 2018). OMVs are present in all stages of bacterial

growth, and they represent the structure of the bacterial OM

(Furuyama and Sircili, 2021). In 1967, Chatterjee and Das first

identified OMVs during the natural growth of Vibrio cholera

(Chatterjee, 1967. After that, the presence of OMVs was observed

in different types of Gram-negative bacteria (Devoe and Gilchrist,

1973) and even in patients with meningococcal infection, which

indicates the role of OMVs in bacterial pathogenesis (DeVoe and

Gilchrist, 1975). The structure of OMVs allows them, in addition to

carrying different cargoes (l ipopolysaccharides (LPS),

phospholipids, peptidoglycan (PG), proteins, nucleic acids, etc.),

to be genetically engineered and chemically modified to increase

efficiency (Xue et al., 2022).

Bacterial extracellular vesicles contain a significant amount of

RNA, and among mRNA, tRNA, rRNA, and sRNA, sRNAs occupy

a significant part (Luo et al., 2023). In the Gram-negative bacteria,

which are characterized by an OM rich in lipopolysaccharide

outside the thin layer of PG, the formation of OMVs is a highly

spontaneous and conserved process (Xue et al., 2022). In general,

the biogenesis of OMVs is based on three mechanisms (Figure 1): 1)

Reducing the interaction between the OM and the underlying

structures such as the PG layer and its associated lipoproteins

(Pita et al., 2020). 2) Accumulating misfolded proteins, PG

fragments, and LPS in a specific region of the bacterial periplasm,

leading to deformation of the upper OM. 3) Altering membrane

chemical-physical properties and asymmetric distribution of

phospholipids, which modulates asymmetric membrane

expansion, protrusion, and OMV biogenesis (Luo et al., 2023).

In addition to OMVs, membrane vesicles of Gram-negative

bacteria can also be divided into outer-inner membrane vesicles

(OIMVs) and explosive outer membrane vesicles (EOMVs) based

on their formation pathways, structure, and composition (Toyofuku

et al., 2019). In general, three functions have been considered for

OMVs, including, bacterial survival (nutrient acquisition, stress

response), regulation of interactions in bacterial communities

(biofilm, quorum sensing), and induction of pathogenesis

(immunomodulation) (Diallo et al., 2022). OMVs, as protectors

and carriers of functional and gene-regulatory sRNAs, mediate

direct contact-free transfer of sRNA fragments between bacterial

and mammalian cells (Han et al., 2022). sRNAs in OMVs act as
Frontiers in Cellular and Infection Microbiology 06
interspecies communication molecules to modulate gene expression

in different cell types and species (Li et al., 2020).
3.1 Bacterial-derived nanoparticle

Nanoparticles (NP) have many potential properties that

promote their use in various biomedical applications including

diagnostics, cellular imaging, chemical assays, drug delivery and

therapy. However, NPs have limitations such as cytotoxicity, low

immunogenicity, low cellular uptake by target cells, non-selective

targeting and increased clearance rate, which make their use

challenging (Ajam-Hosseini et al., 2023). OMVs have gained

attention by overcoming these limitations and are valuable to

researchers in biomedical applications (Naskar et al., 2021). The

use of bacterial OMVs as a therapeutic strategy to overcome the

challenges of biocompatibility and large-scale production associated

with synthetic nanocarriers has been made possible by advances in

genetic engineering. Bacterial OMVs have a tough membrane that

provides stability and reduces leakage into the systemic circulation

(Gujrati et al., 2019), such that approximately 75% of the surface of

E. coli is occupied by rigid lipopolysaccharides (Magennis

et al., 2014).

OMVs have shown great potential in biomedical applications as

they are used as nanocarriers for drug delivery, bioimaging,

immune system modulation (Naskar et al., 2021) and various

therapeutic strategies, including vaccine development 48, gene

therapy, and cancer treatment (Pan et al., 2022). With the help of

genetic engineering, membrane modification, and membrane

coating bacteria can be manipulated as nanovesicles with non-

toxic OM components (Liu L. et al., 2020). Genetic engineering is an

ideal tool for designing nanoplatforms related to bacteria in the

treatment of various diseases with the help of transferring drugs,

genes, proteins, and enzymes.

In this regard, Gujrati et al. bioengineered E.coli to produce

OMVs with less toxicity to deliver siRNA and antitumor drug

melanin (Gujrati et al., 2019). Compared to Gram-positive bacteria,

Gram-negative bacteria are easier to bioengineer, so most studies

have focused on them (Liu L. et al., 2020). Some researchers have

studied the genetic modification of bacterial protoplasts because they

are easily manipulated to make nanovesicles with non-toxic OM

components. Therefore, bacterial protoplast-derived nanovesicles

(PDNVs) have been used for adjuvant-free vaccine delivery in

bacterial infection, showing remarkable efficacy and safety (Kim

et al., 2015). Coating NPs with bacterial OMVs (OMV-NPs) is a

facile process that has good biocompatibility and alleviates some of

the limitations of traditional surface modifications (Naskar et al.,

2021). Due to the large number of immunogenic antigens and

different pathogenic molecular patterns in the bacterial membrane

that play an important role in creating innate and adaptive immunity,

it makes them desirable in various research fields (Liu W. L. et al.,

2020). By modifying properties of bacteria such as membrane

proteins (Anwar et al., 2021), lipid compositions (Pichler and

Emmerstorfer-Augustin, 2018), the inflammatory responses of the

body against them and side effects can be reduced (Cao et al., 2019).
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Although, bacteria-derived nanoparticles have created a new frontier

in medical treatment strategies, the use of sRNA encapsulated with

OMV-NPs requires further investigation.
3.2 OMVs engineering

In therapeutic strategies, OMVs are engineered through

immune modulation, size, surface modification and composition.

Since OMVs have intrinsic immunomodulatory properties, it is

possible to modulate the immune response for therapeutic purposes

by modifying compounds such as immunostimulatory or

immunosuppressive molecules (Kim et al., 2013). OMV size can

be controlled during purification and can impact their stability,

biodistribution, and cellular uptake. OMVs’ efficiency in binding to

target cells can be improved by using specific ligands and peptides.

Furthermore, genetic modification of the original bacterial strain

can introduce the desired surface proteins. It should be noted that

the engineering of OMVs is different based on the desired

therapeutic application and desired cargo (Huang et al., 2022).

4 Clinical relevance of sRNA
encapsulated in OMVs derived from
Gram-negative bacteria

Due to the limited information available regarding the biological

role of bacterial sRNAs within OMVs, few studies have been

conducted so far. However, functional sRNAs derived from bacterial
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OMVs have been identified using high-throughput RNA sequencing.

Recent studies have investigated the potential role of vesicular and

bacterial sRNAs in host-pathogen interactions. For the first time,

Koeppen et al. delivered sRNAs into host cells using OMVs from

Pseudomonas aeruginosa bacteria (Koeppen et al., 2016). P. aeruginosa

is a Gram-negative bacterium that is the main cause of bacterial

colonization in chronic obstructive pulmonary disease (COPD)

affected patients (Nakamoto et al., 2019). They also showed that the

actual expression level of sRNAs in OMVs can lead to a decrease in

host immune response by reducing cytokine secretion. The pathogen-

associated molecular patterns (PAMP) on the outside of OMVs

induce a proinflammatory host immune response (Koeppen et al.,

2016). PAMPs, which includes LPS, peptidoglycan, flagellin,

lipoproteins, and purines, bind to toll-like receptors (TLR) of host

airway epithelial cells and lead to increased secretion of pro-

inflammatory cytokines, especially IL-8, through the mitogen-

activated protein kinase (MAPK) signaling pathway (Bauman and

Kuehn, 2006). Cytokine secretion recruits and activates neutrophils to

enhance the clearance of P. aeruginosa infection, and the increase of

IL-8, a potent chemoattractant for neutrophils, leads to extensive

neutrophil infiltration and the production of proteolytic enzymes such

as elastase, leading to bacterial phagocytosing and tissue destruction

(Huang et al., 2020) (Figure 2). In other words, sRNAs reduced OMV-

stimulated IL-8 secretion by translocation from OMVs to host cells

(Zhang et al., 2020).

P. aeruginosa has received much attention as the first virus to

use OMV-encapsulated sRNAs to suppress the host cell immune

response, so we investigated it for this purpose. In Table 2, we

reviewed more examples of the current application of OMV-
FIGURE 1

Actual and schematic structure of OMVs. Steps of OMVs biogenesis in Gram-negative bacteria. The arrows indicate OMVs. SEM, scanning electron
microscope; TEM, transmission electron microscopy.
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encapsulated sRNAs of Gram-negative bacteria for biomedical

purposes. Although, study of these processes remains complex

and challenging and requires further investigations in the field of

transmission mechanism, they provide a new model on host-

pathogen dynamics.
5 A summary of research challenges

Although OMVs-encapsulated sRNAs have been widely used in

research, there are still many challenges and gaps in this field that

limit the practical applications of OMVs, including:
5.1 OMV toxicity

There are two main strategies to reduce LPS-induced OMV

toxicity. 1) Modifying the genes responsible for LPS synthesis

(msbA2, msbB, lpxL1, lpxM) in order to reduce the number of acyl

chains or phosphate groups of LPS, which leads to the detoxification of
Frontiers in Cellular and Infection Microbiology 08
molecules in bacteria (Simpson and Trent, 2019). However, there are

G- mutant bacteria such as E. coli EMKV15 that do not contain LPS

and may be a better choice for drug delivery (Liu et al., 2022). 2)

Chemical modification of LPS species from Salmonella minnesota to

produce a mixture of mono-phosphorylated lipid A species (MPL)

with less toxicity as reported in 1982 by Riby et al. (Qureshi et al.,

1982). In 2009, following FDA approval, mainly 3-O-deacyl-4’-

monophosphoryl lipid A became an adjuvant in MPL vaccines

(Casella and Mitchell, 2008).
5.2 Ambiguous mechanism

Although engineered BEVs can serve as a targeted drug delivery

system, further research is still needed for more precise performance

with fewer side effects (Gujrati et al., 2014). BEVs are internalized

through various mechanisms such as clathrin/non-clathrin-mediated

endocytosis, micropinocytosis, andmembrane fusion (Liu et al., 2022).

For example, the size of H. pylori OMVs can determine the host cell

entry mechanism to be taken up by gastric epithelial cells through
FIGURE 2

The mode of action of the OMV-encapsulated sRNA of P. aeruginosa in human airway epithelial cells. P. aeruginosa produces OMVs after entering the
mucosal layer of the airways. (1) OMVs bind to TLRs through PAMPs. (2) The MAP-kinase (TLR/MAPK) signaling pathway is activated and induces the
host’s innate immune response. (3) Transcription factors are activated and cause up-regulation of IL-8 mRNA and IL-8 secretion (4) IL-8 attracts
neutrophils and they phagocytose P. aeruginosa by entering the lungs. (5) OMVs fuse with sRNA and enter cells, which by targeting mRNA of the MAPK
signaling pathway upstream of IL-8 leads to reduced host IL-8 secretion and neutrophil recruitment. Solid arrows, direct inhibitor; Dashed arrows,
indirect inhibitor.
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TABLE 2 Description of secreted sRNAs by Gram-negative bacterial and their clinical relevance.

Gram-negative bacterial Cargo Target cell Functions Ref

Escherichia coli BL21 (DmsbB)

Mutant E. coli

tRNALys-
pre-

miRNA-
126

siRNA

siRNA

Breast cancer
cell

Tumor cells

Kinesin
spindle protein

- Inhibits cell proliferation

- Target gene expression dropped in response to invading miRNA

- Accumulation within tumor tissues

- Inhibiting the growth of tumors

- Significantly accelerated tumor development

- In vivo inhibition by targeted gene silencing

- OMVs can be utilized to deliver drugs to targeted cancer cells.

(Aytar Çelik
et al., 2023)

(Kuerban
et al., 2020)

(Jalalifar
et al., 2023)

Pseudomonas
aeruginosa

sRNA52320 Airway
epithelial cells

- Decreased LPS- and OMV-induced IL-8 secretion by cultured primary
human airway epithelial cells.

(Koeppen
et al., 2016)

Klebsiella pneumoniae NA HEp-2 cells - Raised IL-1b and IL-8
(Intertracheal challenge in neutropenic mice as a model)

(Mehanny
et al., 2021)

Helicobacter pylori sncRNA gastric
adenocarcinoma

cell

- It has been discovered that the functions of sncRNAs sR2509025 and
sR989262, which interact with host cells via OMV secretion and inhibit the
secretion of interleukin 8 (IL-8), which targets mRNAs encoding multiple
kinases in the LPS-stimulated mitogen-activated protein kinase (MAPK)
signaling pathway, have not been fully elucidated.

(Jalalifar
et al., 2023)

Aggregatibacter
actinomycetemcomitans

sRNA Jurkat T-cells
Human

macrophage-like
cells

Macrophage

- IL-5, IL-13, and IL-15 anti-inflammatory cytokines are decreased in vitro
by msRNA.

- Microbiological EV-derived small seRNAs’ cytoplasmic transport and
activity in macrophages.

- Increased TNF-production through the NF-B and TLR-8 signaling
pathways.

- TLR-8 and NF-kB signaling pathways were used by exRNAs to enhance
the generation of TNF-a.

(Pita et al.,
2020) (Han
et al., 2019)

Porphyromonas gingivalis

(ATCC 33277)

sRNA Jurkat T-cells, - IL-5, IL-13, and IL-15 anti-inflammatory cytokines are decreased in vitro
by msRNA.

- OMVs are able to penetrate host cells.

- RNA transmission between P. gingivalis strains via vesicles.

(Zou
et al., 2023)

B. fragilis RNA Intestinal
epithelial cells

- Greater activation of innate immune receptors in the host

- Toll-like receptors (TLR)-2, -4, -7, and nucleotide-binding oligomerization
domain-containing protein 1 (NOD1) in the host are activated.

(Gilmore
et al., 2022)

Salmonella enterica

Salmonella sp.

sRNA

NA

HeLa cells

Dendritic
cells (MOUSE)

- Regulate JAK-STAT signaling in host cells.

- Actively influence both common and disparate host pathways to
successfully infect the host.

- Increased MHC-II and CD86 expression

- Increased TNF and IL-12 release.

(Lee, 2019)

(Westermann
et al., 2016)
(Mehanny
et al., 2021)
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clathrin-mediated endocytosis and lipid raft-mediated endocytosis.

Burkholderia pseudomallei is the causative agent of melioidosis, a

severe infectious disease in which EVs are taken up by host cells

through various mechanisms including clathrin-mediated

endocytosis, macropinocytosis, and phagocytosis (Li et al., 2020).

OMVs from Legionella pneumophila can deliver contents to the

host cell membrane by fusing with eukaryotic membrane systems.

Membrane properties and the exact mode of interaction between L.

pneumophila OMVs and host cell surfaces are not fully understood.

Adhesion to plasma membrane proteins and subsequent uptake by

phagocytosis are predicted to be effective (Jäger et al., 2015). These

examples demonstrate that the effectiveness of these uptakemechanisms

can vary depending on the characteristics of BEVs and the receptor cell

type, which is crucial for their manipulation in research.
5.3 Heterogeneous contents

BEVs are rich in biological and functional molecules whose

research field is still evolving. The specific cargo of BEVs can vary

depending on factors such as the bacterial strain, environmental

and host conditions, not all of which may be favorable for

internalization into recipient cells (Taboada et al., 2019). This

variability provides valuable insights into their functional roles

and potential impact on host-microbe interactions.
5.4 Complicated isolation and purification

Presented BEV separation and purification methods, such as

ultracentrifugation, are time-consuming and expensive and require

advanced equipment. It also usually results in low yield due to loss

of desired products (Huang et al., 2022). On the other hand, due to

insufficient knowledge about specific (surface) markers in BEVs, the

discovery of specific markers can be one of the most promising

methods (Liu et al., 2022). Thus, new methods such as membrane

bioreactors with separation functions and OMVs purification

methods based on reversible phase separation, can be utilized to

address these issues (Huang et al., 2022).

Additionally, there may be potential negative consequences

associated with the use of OMV-encapsulated bacterial sRNA in

treatment, such as unintended gene silencing or dysregulation in

non-target cells or tissues (Choi et al., 2017).

Since OMVs originate from bacteria, they can also trigger

immune responses that lead to inflammation or immunogenic

reactions. Prolonged exposure to OMV-encapsulated sRNA may

result in immune-related toxicities. Finally, the long-term effects of

this treatment could potentially cause genomic instability or

alterations in cellular processes (Kim et al., 2013).
6 Conclusion

New drug delivery systems use nanotechnology, biomaterials,

and RNA to improve drug stability, increase targeting capabilities,
Frontiers in Cellular and Infection Microbiology 10
and controlled release. Compared to conventional drug delivery

methods, nanotechnology-based systems offer advantages such as

controlled release, increased tissue penetration, and targeted

delivery to specific cells or tissues (Ajam-Hosseini et al., 2023).

Drug delivery systems based on biological materials such as

hydrogels, microparticles, and scaffolds can improve the sustained

release of drugs, local delivery, and therapeutic outcomes. This

system has the potential to overcome limitations associated with

conventional methods, such as repeated dosing and systemic side

effects (Sun et al., 2023).

RNA-based therapies, including mRNA and small interfering

RNA (siRNA), have attracted considerable attention in recent years

as they enable modulation of gene expression compared to

conventional methods and offer opportunities for personalized

medicine (Kwok et al., 2019). Significant structural investigations

have been conducted on RNA motifs and/or RNA-protein

complexes, which aid drug development through structure-based

virtual screening (Yang et al., 2023). The effectiveness of these new

systems depends on the specific application, the nature of the drug,

and the disease or condition in question.

For this purpose, this review provides sufficient insight into the

clinical significance of Gram-negative bacterial sRNAs in

biomedical applications. However, more studies are needed to

solve the mentioned research challenges and use the structure of

Gram-negative bacterial OMVs to diagnose human diseases with

robust methods and develop new clinical applications.
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