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Background: Previous studies have shown that alterations in the gut microbiota

are closely associated with Acute Coronary Syndrome (ACS) development.

However, the value of gut microbiota for early diagnosis of ACS

remains understudied.

Methods: We recruited 66 volunteers, including 29 patients with a first diagnosis

of ACS and 37 healthy volunteers during the same period, collected their fecal

samples, and sequenced the V4 region of the 16S rRNA gene. Functional

prediction of the microbiota was performed using PICRUSt2. Subsequently, we

constructed a nomogram and corresponding webpage based on microbial

markers to assist in the diagnosis of ACS. The diagnostic performance and

usefulness of the model were analyzed using boostrap internal validation,

calibration curves, and decision curve analysis (DCA).

Results: Compared to that of healthy controls, the diversity and composition of

microbial community of patients with ACS was markedly abnormal. Potentially

pathogenic genera such as Streptococcus and Acinetobacter were significantly

increased in the ACS group, whereas certain SCFA-producing genera such as

Blautia and Agathobacter were depleted. In addition, in the correlation analysis

with clinical indicators, the microbiota was observed to be associated with the

level of inflammation and severity of coronary atherosclerosis. Finally, a

diagnostic model for ACS based on gut microbiota and clinical variables was

developed with an area under the receiver operating characteristic (ROC) curve

(AUC) of 0.963 (95% CI: 0.925–1) and an AUC value of 0.948 (95% CI: 0.549–

0.641) for bootstrap internal validation. The calibration curves of the model show

good consistency between the actual and predicted probabilities. The DCA

showed that the model had a high net clinical benefit for clinical applications.
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Conclusion: Our study is the first to characterize the composition and

function of the gut microbiota in patients with ACS and healthy

populations in Southwest China and demonstrates the potential effect of

the microbiota as a non-invasive marker for the early diagnosis of ACS.
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Introduction

Acute coronary syndromes (ACS), including ST-segment

elevation myocardial infarction (STEMI), non-ST-segment

elevation myocardial infarction (NSTEMI), and unstable angina

(UA), are leading causes of morbidity and mortality worldwide

(Bergmark et al., 2022). Its major pathological mechanism is the

rupture or erosion of unstable atherosclerotic plaques, leading to

myocardial ischaemia and thrombosis, which is characterized by

sudden onset and rapid progression, and may lead to malignant and

life-threatening lesions at any time if left untreated(Bhatt et al.,

2022). Currently, ACS diagnosis relies on clinical symptoms,

electrocardiographic dynamics, and alterations in myocardial

necrosis markers such as myoglobin, creatine kinase isoenzyme

MB (CK-MB), cardiac troponin T (cTnT), and cardiac troponin I

(cTnI) (Byrne et al., 2023). However, one of the main problems in

the clinical diagnosis ACS is the late onset of disease symptoms or

only atypical symptoms, which may lead to a delay in consultation

and miss the optimal time to save the patient’s life(Brieger et al.,

2004). In addition, myocardial necrosis markers are not released

from the myocardium until after myocardial ischaemia and

necrosis, and are not elevated in unstable angina or in the early

stages of acute myocardial infarction, making it impossible to

diagnose early ischaemia(Mair, 1997; Braunwald, 2012).

Therefore, the identification of novel biomarkers for the early

diagnosis of ACS is an emerging priority, as it may facilitate the

timely receipt of appropriate treatment and reduce the mortality

and disability of patients(Katus et al., 2017).

Recently, a growing body of evidence has shown that gut

microbiota is closely related to the pathogenesis of cardiovascular

diseases, particularly coronary artery disease(Koeth et al., 2013; Jie

et al., 2017; Zhu et al., 2018; Liu et al., 2019), hypertension(Yang

et al., 2015), and heart failure(Pasini et al., 2016). This interaction

between the gut and the heart is known as the “gut-heart axis”(Du

et al., 2020; Troseid et al., 2020). On the one hand, Dysbiosis of the

gut microbiota contributes to the progression of cardiovascular

diseases by manipulating the host immune response and

exacerbating the inflammatory response(Chistiakov et al., 2015;

van den Munckhof et al., 2018). On the other hand, the microbial

community in the gut can produce various metabolites, including

trimethylamine oxides, bile acids, and short-chain fatty acids, which
02
enter the systemic circulation and affect the host’s lipid metabolism,

bile acid metabolism, and energy metabolism(Zhu et al., 2016;

Fatkhullina et al., 2018; Haghikia et al., 2022; Tousoulis et al.,

2022). Numerous studies have demonstrated the presence of gut

microbiota dysbiosis in patients with coronary artery disease,

accompanied by changes in the structure, composition and

function of the microbiota(Jie et al., 2017; Zhu et al., 2018).

Furthermore, a diagnostic model based on gut microbiota and

clinical features was developed to improve the diagnostic

performance of CAD(Zheng et al., 2020). Recently, the

composition and function of the gut microbiota were shown to

vary in patients with different subtypes of coronary artery disease.

In particular, the microbiota profile of patients with ACS is

significantly different from that of patients with stable coronary

artery disease(Liu et al., 2019; Khan et al., 2022; Dong et al., 2023).

However, no study has established a gut microbiome-based

diagnostic model for ACS.

To address these questions, we investigated the characteristics

and differences in gut microbiota composition between patients

with ACS and healthy populations by 16S rRNA gene sequencing

and explored the effectiveness of gut microbiota as a tool for early

diagnosis of ACS.
Materials and method

Study population

This was a single-center cross-sectional study. We consecutively

recruited 29 patients with newly diagnosed ACS, including those

with ST-segment elevation myocardial infarction (STEMI), non-

ST-segment elevation myocardial infarction (NSTEMI), and

unstable angina (UA), January 2022–June 2022 at the First

Affiliated Hospital of Kunming Medical University. The diagnosis

of ACS was based on a combination of clinical symptoms,

electrocardiograms, myocardial enzymes, and coronary

angiography and the detailed diagnostic criteria were based on

the ESC guidelines(Byrne et al., 2023). The control group comprised

37 asymptomatic healthy volunteers who underwent routine

physical examination at the First Affiliated Hospital of Kunming

Medical University during the same period. All participants were
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long-term local residents, aged between 18 and 80 years, and

volunteered to provide a complete medical history, clinical

examination parameters, and stool samples. We excluded patients

with previous coronary artery disease, heart failure, structural heart

disease, gastrointestinal disease (including peptic ulcer, acute

gastroenteritis, inflammatory bowel disease, etc.), severe liver or

kidney disease, autoimmune disease, malignant tumours, antibiotic

or probiotic use in the past three months, and those with a history of

prolonged diarrhoea or constipation. The study protocol was

approved by the Ethics Committee of the First Affiliated Hospital

of Kunming Medical University and all patients provided written

informed consent to participate in the study. All procedures were

performed in accordance with the ethical standards of the

Declaration of Helsinki and its subsequent revisions.
Clinical data and sample collection

Clinical data were collected from all participants, including

demographic characteristics such as age, sex, height, weight, smoking

and drinking habits, and medical history. All patients underwent

coronary angiography, the results of which were independently

confirmed by two professional cardiologists, and the severity of

coronary atherosclerosis was assessed using the Gensini score

(Gensini, 1983). Five milliliters of fasting peripheral venous blood

were collected from each participant on the morning of the day

following admission, and routine blood tests, liver function, renal

function, and lipid analyses were performed. All participants were

asked to collect stool samples within the next day of admission and

were trained in sample collection. Each subject was provided with a

sterile disposable tray and sterile stool sampler with a spoon for stool

sample collection by researchers beforehand. All participants were

asked to empty their urine, wash their hands, and wear disposable

gloves prior to stool collection. The subjects’ stools were collected in

sterile disposable trays and the middle portion of the stool was collected

using a sterile stool sampler with a spoon. Each subject’s stool sample

was then divided equally into five portions of 200 mg each and

transported immediately to the laboratory for freezing at -80°C.
DNA extraction and 16S rRNA gene V4
region sequencing

The fecal bacterial DNA was extracted using cetyltrimethylammonium

bromide (CTAB) method. The DNA concentration and purity were

monitored on a 1% agarose gel. According to the concentration, DNA

was diluted to 1ng/µL using sterile water. The V4 region of the 16S rRNA

gene was amplified by polymerase chain reaction (PCR) using the extracted

DNA as template. The sequence of the forwarding primers used was 515F

(5’-GTGCCAGCMGCCGCGGTAA-3’) and the reverse primer used

sequence was 806R (5’-GGACTACHVGGGTWTCTAAT-3’). Sequencing

libraries were generated using the TruSeq® DNA PCR-Free Sample

Preparation Kit (Illumina, USA) and index codes were added according to

the manufacturer’s recommendations. Library quality was assessed using a

Qubit@ 2.0 Fluorometer (Thermo Scientific) and an Agilent Bioanalyzer

2100 system. Finally, the validated libraries were sequenced using an Illumina
Frontiers in Cellular and Infection Microbiology 03
NovaSeq 6000 (NovoGene, Beijing, China), generating 250 bp paired-end

reads according to the manufacturer’s instructions.
Gut microbiome analyses

The data for each sample was split from the downstream data

based on the barcode and PCR amplification primer sequences and

after truncating the barcode and primer sequences, the reads for each

sample were spliced using FLASH (V1.2.7, http://ccb.jhu.edu/software/

FLASH/) to obtain the raw tags. Quality filtering of raw tags was

performed under specific filtering conditions to obtain high-quality

clean tags according to the QIIME (V1.9.1, http://qiime.org/scripts/

split_libraries_fastq.html) quality-controlled process. Then the tags

were then compared with a reference database (Silva database,

https://www.arb-silva.de/) using the UCHIME algorithm (http://

www.drive5.com/usearch/manual/uchime_algo.html) to remove

chimeric sequences and obtain effective tags. Operational taxonomic

units (OTUs) were analyzed for clustering and species classification

based on effective data using UPARSE software(Edgar, 2013).

Sequences with ≥ 97% similarity were grouped into the same OTU

and representative sequences from each OTU were annotated with

taxonomic information based on the Mothur algorithm using the Silva

database. The community composition of each sample was assessed at

different taxonomic levels (phylum, order, order, family, and genus)

and compared among groups of taxonomic levels. Alpha and beta

diversity analyses were performed using the QIIME software (V1.9.1)

and R software (V4.3.1). The alpha diversity of the samples was

described using the observed species and Chao1 and ACE indices

and p-values were calculated using Wilcoxon’s test. Beta diversity was

assessed using an unweighted UniFrac distance matrix and visualized

using principal coordinate analysis (PCoA) and non-metric

multidimensional scaling (NMDS) plots; while differences in

microbial community composition between the two groups were

compared using ANOSIM analysis. We used a hierarchical clustering

method, the Unweighted Pair-group Method with Arithmetic Means

(UPGMA), which interprets distance matrices using average linkage

via the QIIME software (version 1.9.1), for comparing the similarity of

the gut microbiota in each group of samples. Linear discriminant

analysis effect size (LEfSe) was used to identify key microbial taxa that

differed significantly between the two groups(Segata et al., 2011) with

an LDA threshold greater than 3.0 (NovoMagic Cloud Platform,

https://magic.novogene.com/). To reveal potential differences in

metabolism, a phylogenetic investigation of communities by

reconstruction of unobserved state analysis (PICRUSt2) based on the

MetaCyc database was used to predict the functional pathways in the

microbiota(Douglas et al., 2020). The relative predicted abundance of

the MetaCyc pathways was calculated by dividing the abundance of

each pathway by the sum of the abundance of all pathways per sample.
Construction and validation of
diagnostic models

For clinical modeling, univariate logistic regression analysis

combined with ROC curve analysis was used to screen out
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clinical variables with significant predictive value (p < 0.05, AUC ≥

0.7). These variables were then included in the multivariate logistic

regression analysis and those with p < 0.05 were further screened as

independent risk factors for ACS and included in the final model.

The “Forestplot” package in R was used to generate a forest map to

show the Odds Ratio (OR), lower/upper 95% CI, and p-value. For

microbiome modelling, we built a 10-fold cross-validated random

forest model via “randomForest” R package to identify the

microbiota biomarkers. Further, three diagnostic models were

developed: clinical, microbiome and combined models. The

accuracy of each model was assessed using the AUC value for the

area under the ROC curve. The internal validation of the models

was carried out using a bootstrap resampling method with a total of

1,000 resamples and was implemented using the “caret” R package

and the ROC curves were plotted using the “pROC” R package.

Based on the selected clinical variables and gut microbiome, a

nomogram was constructed using the R package “rms” and a

visualised dynamic nomogram web page with an interactive

interface was developed using the R package “DynNom” to

facilitate clinical application. The calibration of the model was

assessed by Hosmer-Lemeshow test and calibration curves using

the “rms” and “ResourceSelection” R packages. Decision curve

analysis (DCA) was also performed using the “rmda” R package

to assess the clinical utility of the diagnostic model.
Statistical analysis

The continuous variables were expressed as mean ± standard

deviation or median and interquartile range (IQR), and categorical

variables were expressed as frequencies (percentages). Analysis of

differences between groups that conformed to normal distribution

was performed using the independent samples t-test and non-

normally distributed differences were compared using the Mann–

Whitney test. Categorical variables between the two groups were

analyzed using the chi-squared test. Correlations between

microbiota and clinical parameters as well as metabolic pathways

were analyzed using Spearman’s correlation coefficients and

presented visually by the R package “pheatmap”. All data analyses

were performed using SPSS software (version 26.0), GraphPad

Prism 9.0, and R 4.3.1 software. P < 0.05 was considered

statistically significant.
Results

Baseline characteristics of the participants

After rigorous screening and exclusion criteria, 66 individuals,

including 29 patients with ACS and 37 healthy controls, were

included in the study. As shown in Table 1, patients with ACS

had significantly higher levels of white blood cells (WBC),

neutrophils (NEU), aspartate aminotransferase (AST), alanine

aminotransferase (ALT), creatinine (Cr), and uric acid (UA), as

well as higher rates of smoking history and hypertension, and

significantly lower levels of beats per minute (BPM) and left
Frontiers in Cellular and Infection Microbiology 04
ventricular ejection fraction (LVEF) compared to healthy

controls. No significant differences were observed in demographic

data, including age, body mass index (BMI), history of drinking,

diabetes mellitus, hyperlipidemia, systolic blood pressure (SBP),

total bilirubin (TBIL), blood urea nitrogen (BUN), fasting blood

glucose (FBG), and serum lipid levels between the two groups.
Data quality assessment and gut
microbiota diversity

Gut microbiota analyses were performed using 16S rRNA

sequencing of fecal samples from the included study population.

To determine whether the sample size was sufficient to estimate the

abundance of the microbial community, the species accumulation

boxplot showed a gradual increase in species diversity with

increasing sample size, with the curve flattening out at 66 samples

(Figure 1A). This suggests that the current sequencing sample size

was sufficient to detect most species in each sample. The abundance

rank curves indicated high species richness and evenness in each

sample group (Figure 1B). Through 16S rRNA gene sequencing, the

sequenced samples were clustered into OTUs at a 97% similarity

level, and 2614 OTUs were obtained. The Venn diagram

(Figure 1C) displays the identified OTUs and shows a decreasing

trend in the number of OTUs in patients with acute myocardial

infarction (AMI) and unstable angina pectoris (UA) compared to

the control group. In addition, the number of OTUs was

significantly higher in the AMI group than in the UA group.

Alpha-diversity analyses consistently showed similar results.

Although no significant difference was observed in a-diversity
between the ACS and control groups (Figures 1D–F), further

subgroup analyses showed that the bacterial community richness

and diversity were significantly increased in the AMI group

compared to those in UA group (Figures 1G–I). To assess the

overall structure of the gut microbiota, a principal coordinate

analysis (PCoA) score plot was constructed based on the

unweighted UniFrac distance. The results showed that the ACS

group and healthy control group were separated, and the

distribution between the two groups was approximately

symmetrical (Figure 2A, P < 0.001). Analysis of non-parametric

similarity (ANOSIM) further showed that the distribution and

composition of the gut microbiota were significantly different

between the two groups (R = 0.229, p = 0.001, Figure 2B). In

addition, subgroup analyses using principal coordinate analysis

(PCoA) score plots and non-metric multidimensional scaling

(NMDS) analyses showed a clear separation between the AMI

and control groups, with significant differences in the distribution

of bacterial communities (Figures 2C, D).
Composition and comparison of the gut
microbiota in patients with ACS and
healthy controls

Based on the species annotation results, the top ten species of

phyla and genera with the highest relative abundance were selected,
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and relative abundance histograms were generated. At the phylum

level, Firmicutes (AMI: 54.1%, UA: 53.3%, control: 58.7%) and

Bacteroidota (AMI: 21.9%, UA: 35.9%, control: 20.5%) were the

dominant phyla in all three groups (Figure 3A). The ratio of

Firmicutes to Bacteroidota (F/B ratio) has been reported to be

associated with metabolic disease (Magne et al., 2020). In our

study, no significant differences were observed among the three

groups in terms of the Firmicutes phylum (Figure 3C). The

abundance of Bacteroidota was significantly higher, and the F/B

ratio was significantly lower in the UA group than in the control

and AMI groups (Figures 3D, E), which is consistent with the

results of a previous multicenter study(Zheng et al., 2020). At the

genus level, Bacteroides (AMI: 16.6%, UA: 29.2%, control: 16.3%)

and Faecalibacterium (AMI: 6.6%, UA: 8.3%, control: 10.2%) were

the most abundant genera in the three groups (Figure 3B). Further,

we compared the differences in expression abundance among the

three groups at the genus level and found that five genera were

significantly different (Figures 4A, B). Overall, the genera

Bacteroides, Streptococcus and Allobaculum were significantly

more abundant in the case group than in the control group,

whereas Megamonas and Prevotella_9 were significantly less

abundant. In addition, we observed subtle differences in the

characteristics between the AMI and UA groups. In the UA

group, a significant increase was observed in the genera

Bacteroides, whereas the AMI group was characterized by a

significant increase in Streptococcus spp. and Allobaculum spp

abundance. To investigate the similarities between different

samples, we constructed a cluster tree of the samples by UPGMA

(Unweighted Pair-group Method with Arithmetic Mean) cluster

analysis (Figure 5). The results showed that the clustering of the

samples in the ACS and healthy control groups was clearly

separated, whereas the AMI and UA samples in the ACS group

were very close to each other, suggesting that the overall structure of

the gut microbiota within the ACS group was similar. Therefore, we

took acute coronary syndrome as a whole and further analysed the

differences in gut microbiota between the ACS and control group,

using linear discriminant analysis effect size (LEfSe) to identify

specific differential genera between the two groups. The cladogram

shows the phylogenetic distribution of the gut microbiota in
TABLE 1 Baseline characteristics of the participants.

Variables ACS(n=29) Control(n=37) P-values

Age, years 57.17 ± 9.86 57.78 ± 12.9 0.833

Male, n (%) 26(89.66) 22(59.46) 0.006

BMI, kg/m2 24.97 ± 3.60 23.91 ± 3.24 0.213

Smoking, n (%) 14(48.28) 6(16.22) 0.005

Drinking, n (%) 4(13.79) 3(8.11) 0.157

Hypertension, n (%) 20(68.97) 10(27.03) 0.001

Hyperlipidemia,
n (%)

4(13.79) 5(13.51) 0.974

DM, n (%) 3(10.34) 3(8.11) 0.754

Type of ACS

STEMI, n (%) 7(24.14) NA NA

NSTEMI, n (%) 12(41.38) NA NA

UA, n (%) 10(34.48) NA NA

No. of
stenosed vessels

1, n (%) 11(37.93) NA NA

2, n (%) 9(31.03) NA NA

3, n (%) 9(31.03) NA NA

Gensini score 68.55 ± 32.07 NA NA

SBP, mmHg 126.59 ± 17.57 121 ± 17.48 0.203

BPM 78.66 ± 11.47 87.78 ± 11.58 0.002

LVEF(%) 66.59 ± 7.06 71.41 ± 5.21 0.002

Laboratory results

WBC, ×109/L 7.99(6.04,10.72) 5.54(4.73,6.42) <0.001

NEU, ×109/L 5.64(3.42,8.35) 2.77(2.47,4.00) <0.001

LYM, ×109/L 1.61(1.14,2.25) 1.79(1.30,2.12) 0.752

Hb, g/L 151.28 ± 16.22 144.30 ± 17.41 0.101

PLT, ×109/L 226.34 ± 56.98 234.46 ± 53.88 0.556

ALB, g/L 42.17 ± 6.58 41.26 ± 3.66 0.482

AST, U/L 36(18.15,67.55) 18.2(15.1,23.55) <0.001

ALT, U/L 28.5(18.15,42.5) 18.6(13.75,25.55) 0.010

TBIL, umol/L 12.09 ± 3.85 10.75 ± 4.28 0.194

BUN, mmol/L 5.42 ± 1.81 5.78 ± 1.52 0.378

Cr, umol/L 86.46 ± 19.62 74.4 ± 13.66 0.005

UA, umol/L 411.98 ± 108.36 358.98 ± 93.68 0.037

FBG, mmol/L 6.34 ± 2.63 5.24 ± 1.87 0.063

TC, mmol/L 4.63 ± 1.11 4.64 ± 0.85 0.949

TG, mmol/L 1.88 ± 1.27 1.53 ± 0.83 0.182

(Continued)
TABLE 1 Continued

Variables ACS(n=29) Control(n=37) P-values

LDL-C, mmol/L 2.77 ± 0.89 2.79 ± 0.72 0.928

HDL-C, mmol/L 1.09 ± 0.27 1.22 ± 0.30 0.073
fr
Continuous variables are presented as mean ± SD or median (interquartile range). Categorical
variables are expressed as n (%). BMI, body mass index; DM, diabetes mellitus; STEMI, ST-
segment elevation myocardial infarction; NSTEMI, non-ST-segment elevation myocardial
infarction; UA, unstable angina; LVEF, left ventricular ejection fraction; SBP, systolic blood
pressure; DBP, diastolic blood pressure; BPM, beat per minute; WBC, white blood cells; NEU,
neutrophil; LYM, lymphocyte; Hb, hemoglobin; PLT, platelets; ALB, albumin; AST, aspartate
aminotransferase; ALT, alanine aminotransferase; TBIL, total bilirubin; BUN, blood urea
nitrogen; Cr, creatinine; UA, uric acid; FBG, fasting blood glucose; TC, total cholesterol; TG,
triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density
lipoprotein cholesterol.
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patients with ACS and healthy controls (Figure 6A), and the LDA

score plot showed that 22 genera were significantly different

between the two groups (Figure 6B). Specifically, 10 genera such

as Streptococcus, Acinetobacter, Allobaculum and Dubosiella were

significantly enriched in ACS group; whereas 12 genera of Blautia,

Agathobacter, Clostridium_sensu_stricto_1, Ruminococcus and

Megamonas were more abundant in healthy controls (all ps <

0.05, LDA > 3).
Correlations between the gut microbiome
and clinical characteristics

Subsequently, we analyzed the correlation between these

different genera and key clinical indicators to identify the key

bacteria that are closely associated with the occurrence of ACS

(Figure 6C). The results showed that the microbiota was

significantly more strongly correlated with smoking, hypertension

history, inflammation levels, and Genisi scores; whereas it was
Frontiers in Cellular and Infection Microbiology 06
weakly correlated with lipid levels and a history of diabetes and

hyperlipidemia. Specifically, we found that the microbiota was

significantly associated with cardiovascular risk factors including

smoking, hypertension, and levels of inflammation assessed by

WBC count and NLR, with Acinetobacter showing the strongest

positive correlations with WBC count (r = 0.419, p < 0.05) and NLR

(r = 0.401, p < 0.05). In addition, the microbiota were strongly

associated with cardiovascular protective factors, including HDL-C

and LVEF, with Anaerostipes showing the highest positive

correlation with HDL-C (r = 0.356, p < 0.05) and LVEF (r=

0.393, p < 0.05). Finally, we also observed that among these 22

genera, 21 genera had significant correlations with the severity of

coronary atherosclerosis assessed by the Genisi score (10 positive

and 11 negative), with Acinetobacter showing the highest positive

correlation with the Genisi score (r= 0.799, p < 0.05) and Dorea

showing the highest negative correlation with Genisi score (r=

-0.511, p< 0.05). These results suggest that alterations in

microbial communities, particularly those of Acinetobacter, Dorea,

and Anaerostipes, may indicate changes in inflammation,
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FIGURE 1

Data quality and alpha diversity of microbial sequences. (A) The species accumulation curve showed a flattening of the curve as the sample size
increased, suggesting that the sample size was sufficient to show the richness of the community. (B) The rank abundance curve indicated high
species diversity and good species evenness in the sample. (C) Venn diagram showing the number of unique OTUs and their shared OTUs in the
AMI, UA and control groups. (D) Observed species index for ACS and control groups. (E) Chao1 index for ACS and control groups. (F) ACE index for
ACS and control groups. (G) Observed species index for the three groups. (H) Chao1 index for the three groups. (I) ACE index for the three groups.
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FIGURE 2

Analysis of the beta diversity of the gut microbiota. (A) PCoA score plot showing that samples from the ACS group (red) and the control group
(green) were significantly separated (p<0.001). (B) ANOSIM showed a significant difference between the two groups (R = 0.229, p = 0.001). (C) PCoA
score plot for AMI, UA and control groups. (D) NMDS analysis of AMI, UA and control groups(stress=0.14 (< 0.2)).
A B

D EC

FIGURE 3

Analysis of microbial composition. (A) Composition of gut microbiota at the phylum level. (B) Composition of gut microbiota at the genus level.
(C) Differences in abundance of Firmicutes phyla between the three groups. (D) Differences in abundance of Bacteroidota phyla between the three
groups. (E) Differences in the ratio of Firmicutes to Bacteroidota (F/B) between the three groups.
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metabolism, and severity of coronary atherosclerosis in patients

with ACS.
Microbial function prediction analysis

To investigate functional alterations in the microbial

community of patients with ACS, we identified the functional

potential of the gut microbiota using the PICRUSt2 tool based on

the MetaCyc database. A total of 94 metabolic pathways were

significantly different (p < 0.05, FDR < 0.2; Figure 7A, Table S1)

(56 pathways enriched and 38 pathways depleted in the ACS

group). The results showed that the pathways of glycolysis,

homolactic fermentation, pyrimidine deoxyribonucleotides de

novo biosynthesis, purine nucleotides de novo biosynthesis were

enriched in the ACS group, whereas adenosylcobalamin

biosynthesis, glycogen degradation, L-glutamate and L-glutamine

biosynthesis, L-lysine biosynthesis and thiamin salvage were

enriched in the control group. Notably, glycolytic metabolic

pathways were highly enriched in the ACS microbiome, whereas

adenosylcobalamin biosynthesis was significantly reduced, which

may be related to the disease state. Furthermore, these metabolic
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pathways were closely associated with important differential

microbiota (Figure 7B). The glycolytic pathway was positively

associated with the ACS-enriched genera, particularly

Acinetobacter and Allobaculum, whereas the adenosine synthesis

pathway was positively associated with the ACS-negative genera.
ACS diagnostic models based on gut
microbiome and clinical features

Subsequently, to identify important microbial biomarkers for the

construction of diagnostic models, we constructed a random forest

model with a 10-fold cross-validation among the different genera

screened. As shown in Figure 8A, random forest analysis filtered the

top 10 genera that were most important for distinguishing patients

with ACS from healthy controls based on the mean decrease accuracy

index. Among the top five genera in terms of variable importance

were selected as gut microbiome markers, including Acinetobacter,

Dubosiella, Exiguobacterium, Coriobacteriaceae_UCG.002, and

Allobaculum. Based on the five selected gut microbial markers, we

calculated the Probability of Disease (POD) index, which reflects the

diagnostic value of microbial markers in the ACS group and healthy
A

B

FIGURE 4

Differences in the relative abundance of major genera among the three groups. (A) Significant differences were observed in the genera Bacteroides
and Streptococcus. (B) Megamonas, Prevotella_9, and Allobaculum were significantly different between the three groups. ns, no significance;
*p < 0.05; **p < 0.01; ***p < 0.001.
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controls(Zheng et al., 2020). As shown in Figure 8B, the POD index

was significantly higher in ACS samples than in control samples (p <

0.001). The POD index was then used to construct the microbiome

model and ROC curves were plotted, reaching an AUC value of 0.947

with a 95% CI of 0.899–0.995 (Figure 8D). These results indicated

that the diagnostic model based on microbial markers had good

diagnostic efficacy. Although the gut microbiome has performed well

in diagnosing ACS, it alone may not be sufficient owing to the

complexity of the disease. Therefore, we screened clinical indicators

for inclusion in the diagnostic model to optimize their performance

in disease prediction. To screen for candidate clinical variables,

univariate regression and ROC curves (with AUC) were first

utilized to screen for clinical indicators with p < 0.05 and AUC ≥

0.7, and four predictive clinical factors were identified (Table 2).

Multivariate logistic regression was then performed on these four

factors, and the results showed that a history of hypertension (p =

0.004), elevatedWBC count (p = 0.047), and elevated AST (p = 0.027)

were independent risk factors for ACS (Figure 8C). Finally, these

three independent risk factors were included in the logistic regression

analysis to construct a clinical model with an AUC value of 0.906

(95% Cl: 0.829–0.982) (Figure 8E). This indicated that the diagnostic

efficacy of the microbiome model was superior to that of the

clinical model.
Combined model and nomogram for
predicting ACS

To optimize diagnostic efficiency, we constructed a combined

diagnostic model by combining the gut microbiome POD index with
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screened clinical indicators and developed a nomogram to visualize the

risk of ACS (Figure 9A). Simultaneously, a web-based dynamic

nomogram was developed to predict the risk of ACS and to its

facilitate clinical application (https://wjcww.shinyapps.io/dynnomapp/

). For example, patients were randomly selected from a population. The

patient was diagnosed with hypertension, with aWBC of 8 x109/L, and

an AST level of 49 U/L. Microbiological tests were performed on the

stool samples, and the POD index was calculated as 0.6. Entering the

above information into this diagnostic model, the probability of ACS in

this patient is 97.8%, and the results are shown in Figure 9B. The results

showed a higher predictive power of the combined model than that of

the clinical model (AUC: 0.963 vs. AUC: 0.906) or microbiome model

(AUC: 0.963 vs. AUC: 0.947) alone(Figure 10A). In addition, the

consistency index (C-index) of 0.951 was used to assess the diagnostic

performance of the combined mode. For internal validation, we used

the bootstrap method to internally validate the model with 1,000

bootstrap resamples, resulting in an AUC value of 0.948, sensitivity of

0.89, and specificity of 0.83 (Figure 10B). The model showed good

diagnostic efficacy during resampling, indicating that it was stable.

Regarding the assessment of the model calibration, a Hosmer-

Lemeshow goodness-of-fit test was performed, which resulted in p =

0.729 (>0.05), and the calibration curves also showed no significant

deviation between the observed and predicted probabilities

(Figure 10C). To assess the utility of the model in decision-making, a

decision curve analysis was performed. As shown in Figure 10D, the

model curve deviated from the two extreme curves (none and all),

indicating that the diagnostic model yielded a high net clinical benefit

in patients with ACS. These results suggest that a diagnostic model

based on the gut microbiome and clinical variables has favorable

diagnostic efficacy and utility.
FIGURE 5

UPGMA (unweighted pair-group method with arithmetic mean) sample clustering tree showing the distribution of samples in the ACS and
control groups.
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Discussion

Recent studies have found that the gut microbiota can be used

as noninvasive biomarkers for the early diagnosis and prognostic

assessment of disease; however, differences in the gut microbiota

and the efficiency of the models are affected by regional variations

(He et al., 2018). Therefore, investigating the characteristics of the

gut microbiota in patients from different regions is crucial for

elucidating possible pathogenic mechanisms and establishing

diagnostic models. In this study, we first characterized the

differences in gut microbiota between patients with ACS and

healthy people in Southwest China and constructed a diagnostic

model based on the microbiome, which significantly improved the

diagnostic accuracy in patients with ACS and had a high clinical

utility value.
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A balanced intestinal microecology is important for

maintaining normal physiological functions in the human body

(Xu et al., 2020). Our study showed that the diversity and

composition of the gut microbiota were significantly disturbed in

patients with ACS compared to those in healthy controls. LEfSe

analysis revealed that certain potentially pathogenic bacteria were

significantly enriched in the ACS group, such as Streptococcus spp.

and Acinetobacter spp. This is not the first time that the relationship

between Streptococcus spp. and coronary artery disease has been

reported. More than a decade ago, Koren et al.(Koren et al., 2011)

detected Streptococcus spp. in the gut and oral cavity of patients

with atherosclerosis and the same DNA was detected in

atherosclerotic plaque samples. Recent studies have shown that

the abundance of Streptococcus spp. is significantly increased in

patients with subclinical atherosclerosis(Sayols-Baixeras et al.,
A

B C

FIGURE 6

Analysis of specific differential microbiota in the ACS and control groups. (A) Cladogram generated by the LEfSe method showed the phylogenetic
distribution of the gut microbiota associated with patients with ACS and healthy controls. (B) Histogram of LDA scores of the gut microbiota
showing significant differences at the genus level between the ACS (red) and the control group (green). The default criteria LDA > 3 and p < 0.05
indicate that species are different, with one group being more abundant than the other. (C) Heat map of Spearman’s correlation between the
differential genera and clinical characteristics. Colours represent positive (red) or negative (blue) correlations and p values are denoted as follows:
*p < 0.05, **p < 0.01, ***p < 0.001. LVEF, left ventricular ejection fraction; WBC, white blood cell; NLR, neutrophils/lymphocytes.
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2023), stable coronary artery disease(Jie et al., 2017), and acute

myocardial infarction(Dong et al., 2023), and has a high predictive

value for disease. Our study found that the abundance of

Streptococcus spp. was significantly elevated in both the AMI and

UA groups compared to the control group, however, this elevation

was more pronounced in the AMI group (Figure 4A, p<0.001). This

indicates that changes in Streptococcus spp. abundance may be

associated with the formation of atherosclerotic plaques or thrombi

and may be a valuable marker for detecting the progression of ACS.

Furthermore, we found that the number of OTUs and the diversity

of the gut microbiota were also significantly higher in the AMI

group than in the UA group, which is different from the results of

other studies(Gao et al., 2020a; Qian et al., 2022). This may be due

to the unique pathophysiological processes of acute myocardial

infarction, such as acute thrombosis, myocardial necrosis,

inflammation, and activation of the neuroendocrine system,

which may cause changes in the characteristics of the gut
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microbiota in patients with AMI. Ventricular dysfunction after

acute myocardial infarction may lead to hemodynamic

disturbances, such as inadequate intestinal perfusion and

congestion, which can lead to increased intestinal permeability

and intestinal dysfunction, allowing the intestinal microbiota to

divert into circulation and cause endotoxemia, which may

exacerbate the onset and progression of AMI(Zhou et al., 2018).

Therefore, further study of the mechanisms of gut microbiota

translocation may contribute to improving the diagnosis and

treatment of myocardial infarction.

Notably, we found that abnormal enrichment of Acinetobacter

spp. seemed to have a significant impact on the diagnosis of ACS. A

small cohort study found that Acinetobacter was the most

commonly detected genus in the coronary balloons of patients

with obstructive coronary atherosclerosis(Serra e Silva Filho et al.,

2014). In addition, a recent prospective cohort study found that

Acinetobacter was also detected in cerebral thrombus samples from
A

B

FIGURE 7

Microbial function prediction analysis. (A) PICRUSt2 analysis was used to predict alterations in metabolic pathways and showed that a total of 94
MetaCyc pathways were significantly different between the two groups, with a mean proportion of pathways greater than 0.005 being displayed.
(B) The correlation heatmap demonstrated the association between major metabolic pathways and important differential genera. *p < 0.05,
**p < 0.01, ***p < 0.001.
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patients with large-vessel occlusive stroke, and that the abundance

of Acinetobacter was positively associated with the risk of

perioperative adverse events and death within three months(Liao

et al., 2022). Therefore, we hypothesized that Acinetobacter in the
Frontiers in Cellular and Infection Microbiology 12
intestine may be transferred to coronary atherosclerotic plaques or

thrombi via blood circulation, thereby exacerbating the formation

of inflammation and the progression of atherosclerotic plaques.

However, this requires further study. However, we did not perform
frontiersin.or
A B

D E

C

FIGURE 8

Identification of important microbial markers and clinical variables. (A) The top 10 genera most important for distinguishing ACS from healthy
controls were screened by Random Forest (RF). Each genus was ranked according to mean decrease accuracy. (B) Comparison of gut microbiome
POD index between ACS and control groups (p < 0.001). (C) Candidate variables for clinical model development were presented as forest plots.
(D) ROC curves with AUC for diagnostic performance of the microbiome model. (E) ROC curves with AUC for diagnostic performance of the clinical
model. POD, probability of disease; AUC, area under the curve.
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16S rRNA gene sequencing of coronary plaque or thrombus

samples, which is a limitation of our study. Although the

relationship between Acinetobacter and ACS remains unclear, we

observed that the abundance of Acinetobacter in the gut was

significantly and positively correlated with the level of

inflammation and the severity of coronary atherosclerosis. In

addition, microbial function prediction analyses have shown a

significant positive correlation between Acinetobacter and the

glycolytic pathway, which is the most critical pathway for glucose

metabolism in humans(Chen et al., 2023). Studies have found that

during myocardial ischemia-reperfusion, myocardial metabolism

shifts from oxidative phosphorylation to aerobic glycolysis, leading

to an abnormal accumulation of glycolytic intermediates. This

drives mitochondrial dysfunction and increases the formation of

reactive oxygen species (ROS), further leading to the apoptosis of

cardiomyocytes(Ait-Aissa et al., 2019; Dambrova et al., 2021).

Therefore, further investigation of the link and mechanism

between Acinetobacter, glycolytic metabolic pathways, and ACS is

of great interest, and will provide potential opportunities for

microbial metabolic pathways as targets for therapeutic

intervention in cardiovascular disease.

Contrarily, the genera Blautia, Agathobacter, Ruminococcus,

Dorea, and Anaerostipes were depleted in patients with ACS and

significantly enriched in healthy controls. These genera have been

reported to ferment carbohydrates to produce short-chain fatty

acids, which are essential for maintaining the integrity of intestinal
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epithelial cells and preventing bacterial translocation into the

bloodstream and subsequent endotoxaemia(Makki et al., 2018;

Wan et al., 2019). In our study, the genus Blautia had the highest

LDA values among the healthy controls and was negatively

correlated with the severity of coronary atherosclerosis. Gao et al.

(Gao et al., 2020b) showed that Blautia may play an important role

in a-linolenic acid-mediated improvement in intestinal barrier

integrity and anti-inflammatory effects, and that exacerbation of

inflammation is critical in the pathophysiology of ACS (Dziedzic

et al., 2022). In addition, a Mendelian randomization relating gut

microbiota to ischaemic heart disease and its risk factors showed

nominal associations of Acidaminococcus, Aggregatibacter,

Anaerostipes, Blautia, Desulfovibrio, Dorea, and Faecalibacterium

with a modestly lower risk of T2DM, lower adiposity, more

beneficial lipid profiles, and higher HOMA-IR(Yang et al., 2018).

Several studies have shown that the gut microbiota and

metabolic profiles can be altered through dietary interventions,

which may have a significant impact on cardiovascular risk factors

(So et al., 2018; Wan et al., 2019). For example, dietary intervention

with high-fiber rye foods resulted in changes in the composition of

the gut microbiota and increased the abundance of butyric acid-

producing Agrobacterium, which may be associated with

intervention-induced weight loss and improvement in metabolic

risk indicators(Iversen et al., 2022). In addition, statins have been

reported to modulate the gut microbiota of patients with ACS,

increasing beneficial flora (such as Bifidobacterium longum subsp.

longum, Anaerostipes hadrus and Ruminococcus obeum) to a

healthier state, thus reducing the metabolic risk of patients(Hu

et al., 2021). These results suggest that targeted modulation of gut

microbiota through probiotic supplementation may be a novel

approach for the prevention and treatment of cardiovascular

diseases. However, there are few reports on the mechanisms by

which probiotics improve cardiovascular disease, which should be a

direction for future research.

In our study, we found that hypertension, WBC count, and AST

levels were independent risk factors for ACS, consistent with the

results of previous studies(Kaminska et al., 2018; Li et al., 2021).

However, studies have found that up to 20% of patients with ACS

do not have traditional clinical risk factors (Figtree and Vernon,

2021), limiting the clinical application of predictive models that

include only clinical indicators. Therefore, we combined clinical

variables with the gut microbiome to construct a combined

diagnostic model with an AUC value of 0.963. The predictive

power of the combined model was significantly better than that of

the other two models. More importantly, even after bootstrap

internal validation, the model showed good performance (AUC =

0.948), indicating that our model was stable.

The gut microbiota has been used to predict coronary artery

disease in several recent studies and has shown high a predictive

value(Zhang et al., 2022; Dong et al., 2023), suggesting the potential

of the gut microbiota to predict ACS. However, these studies only

constructed predictive models and did not validate the calibration
TABLE 2 Candidate variables for clinical model development.

Variables AUC P-values 95%CI

Male 0.651 0.011 0.043-0.662

BMI 0.562 0.214 0.947-1.276

Smoking 0.660 0.007 0.066-0.647

Hypertension 0.710 0.001 0.057-0.486

WBC 0.771 0.001 1.233-2.147

AST 0.778 0.003 1.030-1.151

ALT 0.687 0.331 0.990-1.029

BUN 0.417 0.374 0.642-1.181

Cr 0.686 0.010 1.011-1.085

UA 0.646 0.042 1.000-1.011

FBG 0.676 0.076 0.975-1.661

TC 0.506 0.948 0.591-1.636

TG 0.582 0.191 0.848-2.280

HDL-C 0.635 0.078 0.032-1.203

LDL-C 0.497 0.926 0.523-1.803

LVEF 0.709 0.005 0.798-0.961
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and utility of the models, making it difficult to generalize the models

for clinical use because of the lack of clinical application tools.

Considering the importance of the early diagnosis of ACS, we

developed a nomogram and a corresponding online webpage based

on the gut microbiome and clinical indicators to visualize the model

and assist in the clinical diagnosis and risk assessment of ACS. A

previous study constructed a disease classifier based on a

combination of 24 bacterial co-abundance groups (CAGs) and 72

serum metabolites, which accurately differentiated between stable

coronary artery disease and acute coronary syndromes, with an

AUC value of 0.897(Liu et al., 2019). However, this model requires
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the incorporation of many microbial indicators as well as invasive

blood sampling to detect metabolites and is relatively complex and

expensive to implement, which may limit its use in clinical settings.

Conversely, our model was characterized by its simplicity, non-

invasiveness, and accuracy, which was achieved by incorporating

only a few microbiota and common clinical indicators. In our study,

all participants were from the same region, and their lifestyles and

diets were similar, which reduced the potential confounding effects

of geographic and dietary differences on the microbiota. In addition,

our study population included newly diagnosed and untreated

patients with ACS who were at a relatively early stage of the
A

B

FIGURE 9

Nomogram and its webpage development. (A) The nomogram was constructed based on hypertension, WBC, AST and microbiome to predict the
probability of developing ACS. To use the nomogram, a vertical line is drawn from the risk factor to the “Points” axis to determine the score for each
risk factor in the nomogram. The scores for all risk factors are summed and a vertical line is drawn from the “Total Score” axis to the “Probability of
ACS” axis, the corresponding value of which is the probability of developing ACS. (B) Web-based risk calculator (Dynamic Nomogram (https://
wjcww.shinyapps.io/dynnomapp/) to predict incidence rate of ACS. *p < 0.05, **p < 0.01.
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disease, which reduced the impact of confounding factors, such as

medication and disease progression, on the microbiome analysis.

Therefore, the developed model is more informative for the early

diagnosis of ACS.

Our study has several limitations. First, we only sequenced the

16S rRNA gene in fecal samples; we did not assess the metabolites of

the microbiota, and the mechanisms are understudied. Second,

although we established an accurate diagnostic model based on the

gut microbiota, the specific functions of these microbiota remains

unclear. Finally, this was a single-center study with a limited sample

size, which did not allow for external validation in different regions.

Bootstrap resampling was performed to ensure internal validity.

In conclusion, the current study showed that the diversity

and composition of the intestinal mycobiota of patients with

ACS was significantly disturbed and was characterized by

significant enrichment of certain potentially pathogenic genera

and a significant reduction in certain SCFA-producing genera.

Our study provides novel insights into the association between

the gut microbiota and ACS and more targeted studies of these

critical microbiota will be valuable in the future. In addition, we

constructed a noninvasive diagnostic model based on the gut

microbiome and common clinical indicators, providing a novel
Frontiers in Cellular and Infection Microbiology 15
approach to assist in the early diagnosis and risk warning

of ACS.
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FIGURE 10

Validation and assessment of the model. (A) ROC curve with AUC for the diagnostic performance of the Nomogram. (B) The AUC for Nomogram
bootstrap internal validation. (C) Calibration curve of the nomogram, with the x-axis representing the probability predicted by the nomogram and
the y-axis representing the actual observed probability. (D) Decision curve analysis (DCA) of the nomogram showed the net benefit of using the
model to diagnose ACS compared to the “treat all” or “treat none” strategy at different decision thresholds.
frontiersin.org

https://www.ncbi.nlm.nih.gov/sra/PRJNA1020457
https://www.ncbi.nlm.nih.gov/sra/PRJNA1020457
https://doi.org/10.3389/fcimb.2023.1305375
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2023.1305375
Author contributions

JW: Visualization, Writing – original draft, Conceptualization,

Data curation, Formal Analysis, Investigation, Methodology,

Software. ZH: Conceptualization, Funding acquisition, Resources,

Writing – review & editing, Supervision, Validation. QX:

Conceptualization, Investigation, Methodology, Supervision,

Writing – original draft. YS: Formal Analysis, Funding

acquisition, Methodology, Resources, Software, Writing – original

draft. XC: Resources, Data curation, Methodology, Writing –

original draft. YM: Data curation, Investigation, Methodology,

Writing – original draft. MW: Data curation, Investigation,

Writing – original draft. CZ: Conceptualization, Investigation,

Methodology, Writing – original draft. XL: Data curation,

Methodology, Software, Writing – original draft. FL: Data

curation, Investigation, Methodology, Writing – original draft.

XBL: Data curation, Investigation, Methodology, Writing –

original draft. YD: Conceptualization, Funding acquisition,

Investigation, Project administration, Resources, Supervision,

Validation, Writing – review & editing. HC: Conceptualization,

Funding acquisition, Investigation, Project administration,

Resources, Supervision, Writing – review & editing, Formal

Analysis, Methodology, Validation, Visualization.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by the National Natural Science Foundation of

China (82260087), the Yunnan Province High-level Health

Technical Talents (leading talents) (No. L-2019025), the Yunnan

Province High-level Health Technical Talents (reserve talents) (No.

H-2019052) and the Special Foundation Projects of Joint

Applied Basic Research of Yunnan Provincial Department of
Frontiers in Cellular and Infection Microbiology 16
Science and Technology with Kunming Medical University (No.

202301AY070001-119).
Acknowledgments

We are grateful to the staff of the Department of Cardiology and

the Department of Laboratory Medicine at the First Affiliated

Hospital of Kunming Medical University for their support during

the sample collection process, and especially thank all participants

for providing valuable samples for this study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fcimb.2023.1305375/

full#supplementary-material
References
Ait-Aissa, K., Blaszak, S. C., Beutner, G., Tsaih, S. W., Morgan, G., Santos, J. H., et al.
(2019). Mitochondrial oxidative phosphorylation defect in the heart of subjects with
coronary artery disease. Sci. Rep. 9 (1), 7623. doi: 10.1038/s41598-019-43761-y

Bergmark, B. A., Mathenge, N., Merlini, P. A., Lawrence-Wright, M. B., and
Giugliano, R. P. (2022). Acute coronary syndromes. Lancet 399 (10332), 1347–1358.
doi: 10.1016/S0140-6736(21)02391-6

Bhatt, D. L., Lopes, R. D., and Harrington, R. A. (2022). Diagnosis and treatment of
acute coronary syndromes: A review. JAMA 327 (7), 662–675. doi: 10.1001/
jama.2022.0358

Braunwald, E. (2012). Unstable angina and non-ST elevation myocardial infarction.
Am. J. Respir. Crit. Care Med. 185 (9), 924–932. doi: 10.1164/rccm.201109-1745CI

Brieger, D., Eagle, K. A., Goodman, S. G., Steg, P. G., Budaj, A., White, K., et al.
(2004). Acute coronary syndromes without chest pain, an underdiagnosed and
undertreated high-risk group: insights from the Global Registry of Acute Coronary
Events. Chest 126 (2), 461–469. doi: 10.1378/chest.126.2.461

Byrne, R. A., Rossello, X., Coughlan, J. J., Barbato, E., Berry, C., Chieffo, A., et al.
(2023). 2023 ESC Guidelines for the management of acute coronary syndromes. Eur.
Heart J 44 (38), 3720-3826. doi: 10.1093/eurheartj/ehad191

Chen, S., Zou, Y., Song, C., Cao, K., Cai, K., Wu, Y., et al. (2023). The role of
glycolytic metabolic pathways in cardiovascular disease and potential therapeutic
approaches. Basic Res. Cardiol. 118 (1), 48. doi: 10.1007/s00395-023-01018-w
Chistiakov, D. A., Bobryshev, Y. V., Kozarov, E., SoBenin, I. A., and Orekhov, A. N.
(2015). Role of gut microbiota in the modulation of atherosclerosis-associated immune
response. Front. Microbiol. 6. doi: 10.3389/fmicb.2015.00671

Dambrova, M., Zuurbier, C. J., Borutaite, V., Liepinsh, E., and Makrecka-Kuka, M.
(2021). Energy substrate metabolism and mitochondrial oxidative stress in cardiac
ischemia/reperfusion injury. Free Radic. Biol. Med. 165, 24–37. doi: 10.1016/
j.freeradbiomed.2021.01.036

Dong, C., Yang, Y., Wang, Y., Hu, X., Wang, Q., Gao, F., et al. (2023). Gut microbiota
combined with metabolites reveals unique features of acute myocardial infarction
patients different from stable coronary artery disease. J. Adv. Res. 46, 101–112.
doi: 10.1016/j.jare.2022.06.008

Douglas, G. M., Maffei, V. J., Zaneveld, J. R., Yurgel, S. N., Brown, J. R., Taylor, C. M.,
et al. (2020). PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38
(6), 685–688. doi: 10.1038/s41587-020-0548-6

Du, Z., Wang, J., Lu, Y., Ma, X., Wen, R., Lin, J., et al. (2020). The cardiac protection
of Baoyuan decoction via gut-heart axis metabolic pathway. Phytomedicine 79, 153322.
doi: 10.1016/j.phymed.2020.153322

Dziedzic, E. A., Gasior, J. S., Tuzimek, A., Paleczny, J., Junka, A., Dabrowski, M., et al.
(2022). Investigation of the associations of novel inflammatory biomarkers-systemic
inflammatory index (SII) and systemic inflammatory response index (SIRI)-with the
severity of coronary artery disease and acute coronary syndrome occurrence. Int. J.
Mol. Sci. 23 (17), 9553. doi: 10.3390/ijms23179553
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fcimb.2023.1305375/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcimb.2023.1305375/full#supplementary-material
https://doi.org/10.1038/s41598-019-43761-y
https://doi.org/10.1016/S0140-6736(21)02391-6
https://doi.org/10.1001/jama.2022.0358
https://doi.org/10.1001/jama.2022.0358
https://doi.org/10.1164/rccm.201109-1745CI
https://doi.org/10.1378/chest.126.2.461
https://doi.org/10.1093/eurheartj/ehad191
https://doi.org/10.1007/s00395-023-01018-w
https://doi.org/10.3389/fmicb.2015.00671
https://doi.org/10.1016/j.freeradbiomed.2021.01.036
https://doi.org/10.1016/j.freeradbiomed.2021.01.036
https://doi.org/10.1016/j.jare.2022.06.008
https://doi.org/10.1038/s41587-020-0548-6
https://doi.org/10.1016/j.phymed.2020.153322
https://doi.org/10.3390/ijms23179553
https://doi.org/10.3389/fcimb.2023.1305375
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org


Wang et al. 10.3389/fcimb.2023.1305375
Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial
amplicon reads. Nat. Methods 10 (10), 996–998. doi: 10.1038/nmeth.2604

Fatkhullina, A. R., Peshkova, I. O., Dzutsev, A., Aghayev, T., McCulloch, J. A.,
Thovarai, V., et al. (2018). An interleukin-23-interleukin-22 axis regulates intestinal
microbial homeostasis to protect from diet-induced atherosclerosis. Immunity 49 (5),
943–957.e949. doi: 10.1016/j.immuni.2018.09.011

Figtree, G. A., and Vernon, S. T. (2021). Coronary artery disease patients without
standard modifiable risk factors (SMuRFs)- a forgotten group calling out for new
discoveries. Cardiovasc. Res. 117 (6), e76–e78. doi: 10.1093/cvr/cvab145

Gao, J., Yan, K. T., Wang, J. X., Dou, J., Wang, J., Ren, M., et al. (2020a). Gut
microbial taxa as potential predictive biomarkers for acute coronary syndrome and
post-STEMI cardiovascular events. Sci. Rep. 10 (1), 2639. doi: 10.1038/s41598-020-
59235-5

Gao, X., Chang, S., Liu, S., Peng, L., Xie, J., Dong, W., et al. (2020b). Correlations
between alpha-linolenic acid-improved multitissue homeostasis and gut microbiota in
mice fed a high-fat diet. mSystems 5 (6), e00391-20. doi: 10.1128/mSystems.00391-20

Gensini, G. G. (1983). A more meaningful scoring system for determining the
severity of coronary heart disease. Am. J. Cardiol. 51 (3), 606. doi: 10.1016/s0002-9149
(83)80105-2

Haghikia, A., Zimmermann, F., Schumann, P., Jasina, A., Roessler, J., Schmidt, D.,
et al. (2022). Propionate attenuates atherosclerosis by immune-dependent regulation of
intestinal cholesterol metabolism. Eur. Heart J. 43 (6), 518–533. doi: 10.1093/eurheartj/
ehab644

He, Y., Wu, W., Zheng, H. M., Li, P., McDonald, D., Sheng, H. F., et al. (2018).
Author Correction: Regional variation limits applications of healthy gut microbiome
reference ranges and disease models. Nat. Med. 24 (12), 1940. doi: 10.1038/s41591-018-
0219-z

Hu, X., Li, H., Zhao, X., Zhou, R., Liu, H., Sun, Y., et al. (2021). Multi-omics study
reveals that statin therapy is associated with restoration of gut microbiota homeostasis
and improvement in outcomes in patients with acute coronary syndrome. Theranostics
11 (12), 5778–5793. doi: 10.7150/thno.55946

Iversen, K. N., Dicksved, J., Zoki, C., Fristedt, R., Pelve, E. A., Langton, M., et al.
(2022). The effects of high fiber rye, compared to refined wheat, on gut microbiota
composition, plasma short chain fatty acids, and implications for weight loss and
metabolic risk factors (the ryeWeight study). Nutrients 14 (8), 1669. doi: 10.3390/
nu14081669

Jie, Z., Xia, H., Zhong, S. L., Feng, Q., Li, S., Liang, S., et al. (2017). The gut
microbiome in atherosclerotic cardiovascular disease. Nat. Commun. 8 (1), 845.
doi: 10.1038/s41467-017-00900-1

Kaminska, J., Koper, O. M., Siedlecka-Czykier, E., Matowicka-Karna, J., Bychowski,
J., and Kemona, H. (2018). The utility of inflammation and platelet biomarkers in
patients with acute coronary syndromes. Saudi J. Biol. Sci. 25 (7), 1263–1271.
doi: 10.1016/j.sjbs.2016.10.015

Katus, H., Ziegler, A., Ekinci, O., Giannitsis, E., Stough, W. G., Achenbach, S., et al.
(2017). Early diagnosis of acute coronary syndrome. Eur. Heart J. 38 (41), 3049–3055.
doi: 10.1093/eurheartj/ehx492

Khan, I., Khan, I., Usman, M., Jianye, Z., Wei, Z. X., Ping, X., et al. (2022). Analysis of
the blood bacterial composition of patients with acute coronary syndrome and chronic
coronary syndrome. Front. Cell Infect. Microbiol. 12. doi: 10.3389/fcimb.2022.943808

Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., et al. (2013).
Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes
atherosclerosis. Nat. Med. 19 (5), 576–585. doi: 10.1038/nm.3145

Koren, O., Spor, A., Felin, J., Fak, F., Stombaugh, J., Tremaroli, V., et al. (2011).
Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl.
Acad. Sci. U S A. 108 Suppl 1 (Suppl 1), 4592–4598. doi: 10.1073/pnas.1011383107

Li, J., Zhao, Z., Jiang, H., Jiang, M., Yu, G., and Li, X. (2021). Predictive value of
elevated alanine aminotransferase for in-hospital mortality in patients with acute
myocardial infarction. BMC Cardiovasc. Disord. 21 (1), 82. doi: 10.1186/s12872-021-
01903-z

Liao, Y., Zeng, X., Xie, X., Liang, D., Qiao, H., Wang, W., et al. (2022). Bacterial
signatures of cerebral thrombi in large vessel occlusion stroke. mBio 13 (4), e0108522.
doi: 10.1128/mbio.01085-22

Liu, H., Chen, X., Hu, X., Niu, H., Tian, R., Wang, H., et al. (2019). Alterations in the
gut microbiome and metabolism with coronary artery disease severity. Microbiome 7
(1), 68. doi: 10.1186/s40168-019-0683-9

Magne, F., Gotteland, M., Gauthier, L., Zazueta, A., Pesoa, S., Navarrete, P., et al.
(2020). The firmicutes/bacteroidetes ratio: A relevant marker of gut dysbiosis in obese
patients? Nutrients 12 (5), 1474. doi: 10.3390/nu12051474
Frontiers in Cellular and Infection Microbiology 17
Mair, J. (1997). Progress in myocardial damage detection: new biochemical markers
for clinicians. Crit. Rev. Clin. Lab. Sci. 34 (1), 1–66. doi: 10.3109/10408369709038215

Makki, K., Deehan, E. C., Walter, J., and Backhed, F. (2018). The impact of dietary
fiber on gut microbiota in host health and disease. Cell Host Microbe 23 (6), 705–715.
doi: 10.1016/j.chom.2018.05.012

Pasini, E., Aquilani, R., Testa, C., Baiardi, P., Angioletti, S., Boschi, F., et al. (2016).
Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 4 (3), 220–
227. doi: 10.1016/j.jchf.2015.10.009

Qian, X., Liu, A., Liang, C., He, L., Xu, Z., and Tang, S. (2022). Analysis of gut
microbiota in patients with acute myocardial infarction by 16S rRNA sequencing. Ann.
Transl. Med. 10 (24), 1340. doi: 10.21037/atm-22-5671

Sayols-Baixeras, S., Dekkers, K. F., Baldanzi, G., Jonsson, D., Hammar, U., Lin, Y. T.,
et al. (2023). Streptococcus species abundance in the gut is linked to subclinical
coronary atherosclerosis in 8973 participants from the SCAPIS cohort. Circulation 148
(6), 459–472. doi: 10.1161/CIRCULATIONAHA.123.063914

Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W. S., et al.
(2011). Metagenomic biomarker discovery and explanation. Genome Biol. 12 (6), R60.
doi: 10.1186/gb-2011-12-6-r60

Serra e Silva Filho, W., Casarin, R. C., Nicolela, E. L.Jr., Passos, H. M., Sallum, A. W.,
and Goncalves, R. B. (2014). Microbial diversity similarities in periodontal pockets and
atheromatous plaques of cardiovascular disease patients. PloS One 9 (10), e109761.
doi: 10.1371/journal.pone.0109761

So, D., Whelan, K., Rossi, M., Morrison, M., Holtmann, G., Kelly, J. T., et al. (2018).
Dietary fiber intervention on gut microbiota composition in healthy adults: a
systematic review and meta-analysis. Am. J. Clin. Nutr. 107 (6), 965–983.
doi: 10.1093/ajcn/nqy041

Tousoulis, D., Guzik, T., Padro, T., Duncker, D. J., De Luca, G., Eringa, E., et al.
(2022). Mechanisms, therapeutic implications, and methodological challenges of gut
microbiota and cardiovascular diseases: a position paper by the ESC Working Group
on Coronary Pathophysiology and Microcirculation. Cardiovasc. Res. 118 (16), 3171–
3182. doi: 10.1093/cvr/cvac057

Troseid, M., Andersen, G. O., Broch, K., and Hov, J. R. (2020). The gut microbiome
in coronary artery disease and heart failure: Current knowledge and future directions.
EBioMedicine 52, 102649. doi: 10.1016/j.ebiom.2020.102649

van den Munckhof, I. C. L., Kurilshikov, A., Ter Horst, R., Riksen, N. P., Joosten, L.
A. B., Zhernakova, A., et al. (2018). Role of gut microbiota in chronic low-grade
inflammation as potential driver for atherosclerotic cardiovascular disease: a systematic
review of human studies. Obes. Rev. 19 (12), 1719–1734. doi: 10.1111/obr.12750

Wan, Y., Wang, F., Yuan, J., Li, J., Jiang, D., Zhang, J., et al. (2019). Effects of dietary
fat on gut microbiota and faecal metabolites, and their relationship with
cardiometabolic risk factors: a 6-month randomised controlled-feeding trial. Gut 68
(8), 1417–1429. doi: 10.1136/gutjnl-2018-317609

Xu, H., Wang, X., Feng, W., Liu, Q., Zhou, S., Liu, Q., et al. (2020). The gut
microbiota and its interactions with cardiovascular disease. Microb. Biotechnol. 13 (3),
637–656. doi: 10.1111/1751-7915.13524

Yang, Q., Lin, S. L., Kwok, M. K., Leung, G. M., and Schooling, C. M. (2018). The
roles of 27 genera of human gut microbiota in ischemic heart disease, type 2 diabetes
mellitus, and their risk factors: A mendelian randomization study. Am. J. Epidemiol.
187 (9), 1916–1922. doi: 10.1093/aje/kwy096

Yang, T., Santisteban, M. M., Rodriguez, V., Li, E., Ahmari, N., Carvajal, J. M., et al.
(2015). Gut dysbiosis is linked to hypertension. Hypertension 65 (6), 1331–1340.
doi: 10.1161/HYPERTENSIONAHA.115.05315

Zhang, T., Ren, H., Du, Z., Zou, T., Guang, X., Zhang, Y., et al. (2022). Diversified
shifts in the cross talk between members of the gut microbiota and development of
coronary artery diseases. Microbiol. Spectr. 10 (6), e0280422. doi: 10.1128/
spectrum.02804-22

Zheng, Y. Y., Wu, T. T., Liu, Z. Q., Li, A., Guo, Q. Q., Ma, Y. Y., et al. (2020). Gut
microbiome-based diagnostic model to predict coronary artery disease. J. Agric. Food
Chem. 68 (11), 3548–3557. doi: 10.1021/acs.jafc.0c00225

Zhou, X., Li, J., Guo, J., Geng, B., Ji, W., Zhao, Q., et al. (2018). Gut-dependent
microbial translocation induces inflammation and cardiovascular events after ST-
elevation myocardial infarction.Microbiome 6 (1), 66. doi: 10.1186/s40168-018-0441-4

Zhu, Q., Gao, R., Zhang, Y., Pan, D., Zhu, Y., Zhang, X., et al. (2018). Dysbiosis
signatures of gut microbiota in coronary artery disease. Physiol. Genomics 50 (10), 893–
903. doi: 10.1152/physiolgenomics.00070.2018

Zhu, W., Gregory, J. C., Org, E., Buffa, J. A., Gupta, N., Wang, Z., et al. (2016). Gut
microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk.
Cell 165 (1), 111–124. doi: 10.1016/j.cell.2016.02.011
frontiersin.org

https://doi.org/10.1038/nmeth.2604
https://doi.org/10.1016/j.immuni.2018.09.011
https://doi.org/10.1093/cvr/cvab145
https://doi.org/10.1038/s41598-020-59235-5
https://doi.org/10.1038/s41598-020-59235-5
https://doi.org/10.1128/mSystems.00391-20
https://doi.org/10.1016/s0002-9149(83)80105-2
https://doi.org/10.1016/s0002-9149(83)80105-2
https://doi.org/10.1093/eurheartj/ehab644
https://doi.org/10.1093/eurheartj/ehab644
https://doi.org/10.1038/s41591-018-0219-z
https://doi.org/10.1038/s41591-018-0219-z
https://doi.org/10.7150/thno.55946
https://doi.org/10.3390/nu14081669
https://doi.org/10.3390/nu14081669
https://doi.org/10.1038/s41467-017-00900-1
https://doi.org/10.1016/j.sjbs.2016.10.015
https://doi.org/10.1093/eurheartj/ehx492
https://doi.org/10.3389/fcimb.2022.943808
https://doi.org/10.1038/nm.3145
https://doi.org/10.1073/pnas.1011383107
https://doi.org/10.1186/s12872-021-01903-z
https://doi.org/10.1186/s12872-021-01903-z
https://doi.org/10.1128/mbio.01085-22
https://doi.org/10.1186/s40168-019-0683-9
https://doi.org/10.3390/nu12051474
https://doi.org/10.3109/10408369709038215
https://doi.org/10.1016/j.chom.2018.05.012
https://doi.org/10.1016/j.jchf.2015.10.009
https://doi.org/10.21037/atm-22-5671
https://doi.org/10.1161/CIRCULATIONAHA.123.063914
https://doi.org/10.1186/gb-2011-12-6-r60
https://doi.org/10.1371/journal.pone.0109761
https://doi.org/10.1093/ajcn/nqy041
https://doi.org/10.1093/cvr/cvac057
https://doi.org/10.1016/j.ebiom.2020.102649
https://doi.org/10.1111/obr.12750
https://doi.org/10.1136/gutjnl-2018-317609
https://doi.org/10.1111/1751-7915.13524
https://doi.org/10.1093/aje/kwy096
https://doi.org/10.1161/HYPERTENSIONAHA.115.05315
https://doi.org/10.1128/spectrum.02804-22
https://doi.org/10.1128/spectrum.02804-22
https://doi.org/10.1021/acs.jafc.0c00225
https://doi.org/10.1186/s40168-018-0441-4
https://doi.org/10.1152/physiolgenomics.00070.2018
https://doi.org/10.1016/j.cell.2016.02.011
https://doi.org/10.3389/fcimb.2023.1305375
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org

	Gut microbiome-based noninvasive diagnostic model to predict acute coronary syndromes
	Introduction
	Materials and method
	Study population
	Clinical data and sample collection
	DNA extraction and 16S rRNA gene V4 region sequencing
	Gut microbiome analyses
	Construction and validation of diagnostic models
	Statistical analysis

	Results
	Baseline characteristics of the participants
	Data quality assessment and gut microbiota diversity
	Composition and comparison of the gut microbiota in patients with ACS and healthy controls
	Correlations between the gut microbiome and clinical characteristics
	Microbial function prediction analysis
	ACS diagnostic models based on gut microbiome and clinical features
	Combined model and nomogram for predicting ACS

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


