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and Ronghua Jin1,2,3,4*

1Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan
Hospital, Capital Medical University, Beijing, China, 2Beijing Institute of Infectious Diseases,
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University, Beijing, China, 4National Key Laboratory of Intelligent Tracking and Forecasting for
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Background: Currently, limited attention has been directed toward utilizing

clinical cohorts as a starting point to elucidate alterations in the lower

respiratory tract (LRT) microbiota following influenza A virus (IAV) infection.

Objectives: Our objective was to undertake a comparative analysis of the

diversity and composition of sputum microbiota in individuals afflicted by

severe and critically ill influenza patients.

Methods: Sputum specimens were procured from patients diagnosed with IAV

infection for the purpose of profiling the microbiota using 16S-rDNA sequencing.

To ascertain taxonomic differences between the severe and critically ill influenza

cohorts, we leveraged Linear Discriminant Analysis Effect Size (LEfSe). Additionally,

Spearman correlation analysis was employed to illuminate associations between

sputum microbiota and influenza Ct values alongside laboratory indicators.

Results:Our study encompassed a total cohort of 64 patients, comprising 48within

the severe group and 16 within the critically ill group. Intriguingly, Bacteroidetes

exhibited significant depletion in the critically ill cohort (p=0.031). The sputum

microbiomes of the severe influenza group were hallmarked by an

overrepresentation of Neisseria, Porphyromonas, Actinobacillus, Alloprevotella,

TM7x, and Clostridia_UCG-014, yielding ROC-plot AUC values of 0.71, 0.68, 0.60,

0.70, 0.70, and 0.68, respectively. Notably, Alloprevotella exhibited an inverse

correlation with influenza Ct values. Moreover, C-reactive protein (CRP)

manifested a positive correlation with Haemophilus and Porphyromonas.

Conclusion: The outcomes of this investigation lay the groundwork for future

studies delving into the connection between the LRT microbiome and

respiratory disorders. Further exploration is warranted to elucidate the intricate

mechanisms underlying the interaction between IAV and Alloprevotella,

particularly in disease progression.
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1 Introduction

Influenza virus infection remains the primary cause of elevated

incidence and mortality in respiratory infectious diseases globally

(Nair et al., 2010; Iuliano et al., 2018; Li et al., 2019). Effective

mitigation strategies, encompassing vaccines and antiviral drugs,

play a pivotal role in alleviating the associated health and economic

burdens (Cowling and Zhong, 2023; Kumari et al., 2023). However,

challenges including vaccine-virus mismatches, suboptimal vaccine

coverage, and the intricate interplay of influenza viruses with these

countermeasures necessitate urgent exploration of innovative

problem-solving approaches (Belongia et al., 2016; Nachbagauer

and Palese, 2020; Morens et al., 2023).

In the past decade, modern technology has facilitated

comprehensive investigation of host-associated microbiota

(Cullen et al., 2020), revealing the pivotal role of microbiota

composition in maintaining the equilibrium of healthy individuals

(Dominguez-Bello et al., 2019). Conversely, dysregulation of

microbial composition can exacerbate pathological conditions,

attracting increased attention from research teams worldwide. In

comparison with intestinal microbiota, our understanding of the

post-influenza virus infection alterations in the respiratory tract

microbial community is relatively limited. Nonetheless, the

respiratory tract microbiota undeniably plays a pivotal role in

shaping the host’s immune response and is crucial for effective

eradication of invasive viruses.

Several studies have reported discernible differences in

respiratory tract microbiota between healthy individuals and

patients afflicted by respiratory virus infections (Korten et al.,

2016; Kaul et al., 2020). The respiratory tract microbiota not only

correlates with influenza symptoms and viral shedding, but also

serves as a reliable predictor of influenza susceptibility (Lee et al.,

2019a; Lee et al., 2019b; Tsang et al., 2020). Furthermore,

investigations have linked the microbial composition in the

respiratory tract to outcomes in influenza patients (Jia et al., 2017;

Tsang et al., 2020) as well as other respiratory diseases (Haran et al.,

2021; Rattanaburi et al., 2022). Simultaneously, research has

demonstrated significant shifts in the microbial composition and

diversity of the respiratory tract following influenza virus infection

(Hanada et al., 2018; Wen et al., 2018; Zhou et al., 2020; Rattanaburi

et al., 2022; Hernández-Terán et al., 2023). However, a majority of

these investigations have primarily centered on the microbiota of

the upper respiratory tract (URT), limiting insights from the lower

respiratory tract (LRT) that could potentially enrich our

comprehension of the role of microbiota in influenza-associated

disease (Hernández-Terán et al., 2023).

In light of these considerations, this study endeavors to employ

16S rRNA gene sequencing to meticulously compare the diversity

and configuration of LRT microbiota in severe and critically ill

influenza patients. Additionally, we seek to scrutinize the

correlation between respiratory tract microbiota and the Ct value,

alongside laboratory examinations, thereby attaining a deeper

insight into the intricate interplay of respiratory tract microbiota

in influenza patients.
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2 Materials and methods

2.1 Study subjects

A total of 64 individuals with confirmed influenza were enrolled

from December 2018 to January 2020 at Beijing Ditan Hospital,

Capital Medical University. Among them, 48 individuals exhibited

severe influenza symptoms, while 16 were classified as critically ill

influenza patients. Severe in’

M-luenza cases met one or more of the following criteria: (1)

persistent fever exceeding 3 days, coupled with intense cough,

purulent or hemoptysis sputum, or chest pain; (2) rapid and

labored respiration, dyspnea, and cyanosis of the lips; (3) altered

cognitive function, including delayed responsiveness, drowsiness,

restlessness, or seizures; (4) severe emesis, diarrhea, and signs of

dehydration; (5) concurrent pneumonia; (6) considerable

aggravation of pre-existing chronic ailments; (7) other clinical

conditions necessitating hospitalization. Critically ill influenza

patients met one or more of the following conditions: (1)

progressive respiratory insufficiency requiring mechanical

ventilation; (2) shock; (3) acute necrotizing encephalopathy; (4)

multi-organ dysfunction; (5) other grave clinical situations

mandating close monitoring and treatment. Exclusion criteria

encompassed individuals below 18 years of age and

pregnant women.
2.2 Sputum samples collection and
DNA extraction

Prior to sample collection, participants were instructed to rinse

their mouths, and dentures or braces were to be removed. Sputum

was collected following a deep cough. Samples were deemed

unacceptable if saliva and food residues accounted for over two-

thirds of the sputum volume or if saliva and oral contaminants

constituted more than half of the sputum volume. Each sputum

sample, obtained from participants upon admission or in the early

hours of the second day of admission, amounted to 2 ml. Samples

were preserved in sterile containers at -80°C until DNA extraction,

which was performed using the MagaBio Pathogens DNA/RNA

Purification Kit (BSC75S1E) following the manufacturer’s

guidelines. The concentration, purity, integrity, and size of DNA

were determined through NanoDrop (Thermo Fisher Scientific)

and 1.0% agarose gel electrophoresis. Subsequently, the DNA

samples were frozen at -20°C for subsequent analyses.
2.3 Identification of influenza A/B and 16S
ribosomal RNA Gene sequencing

Influenza A virus (IAV) identification was executed for all sputum

samples using the Influenza A/B virus nucleic acid detection kit (PCR

fluorescent probe method, Applied Biological Technologies, Beijing,

China). The bacterial 16S rRNA gene sequences encompassing the
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variable regions V3–V4 were amplified employing the primers 341F

(5’-CCTACGGGNGGCWGCAG-3’) and 805R (5’-GACTACHV

GGGTATCTAATCC-3’), alongside the Q5 High-Fidelity 2X Master

Mix (New England BioLabs Inc., Ipswich, MA). The resulting products

underwent purification using 0.9× volumes of AMPure XP beads

(Beckman Coulter, Inc., Brea, CA). Each sample was quantified

using the Qubit 2.0 Fluorometer (ThermoFisher Scientific, Inc.,

Waltham, MA), pooled with equal input mass, and subjected to

further purification using 0.9× volumes of AMPure XP beads

(Beckman Coulter, Inc., Brea, CA). The final sequencing pool’s

concentration was determined by qPCR using the KAPA Library

Quantification Kit (KAPA Biosystems, Wilmington, MA) on a

Roche 480 LightCycler (Roche, Basel, Switzerland). Subsequent

sequencing was conducted by Beijing Novogene Technology Co.

employing an Illumina PE 250 on an Illumina Noveseq Sequencer

(Illumina, Inc., San Diego, CA).
2.4 Bioinformatics and statistical analyses

High-throughput 16S rRNA sequencing raw fastq files were

demultiplexed and subjected to quality filtering using QIIME

(version 2022.8.0). Dada2 was employed to truncate the linker

sequence, merge the paired ends, eliminate chimeras, and

generate amplicon variant sequences (ASVs) for noise reduction.

Taxonomic analysis of each 16S rRNA gene sequence was

performed using QIIME (version 2022.8.0) and compared against

the SILVA rRNA database with a confidence threshold of 70%.

Descriptive statistics were utilized to represent continuous

variables as mean (standard deviation [SD]) and categorical

variables as frequency (percentage). A comparison of patient

characteristics between the severe and critically ill influenza

groups was achieved using the t-test or the Wilcoxon rank-sum

test (continuous variables), and the Chi-square test or Fisher’s exact

test (categorical variables). Relative abundance was calculated as the

proportion of a specific bacterium relative to the total bacterial

count in a given sample. Statistical analyses were carried out using R

4.3.1. A p-value less than 0.05 denoted statistical significance. The

Wilcoxon rank-sum test was employed to assess differences in alpha

diversity indices between the two groups. Beta diversity was

evaluated via principal coordinate analysis (PCoA) to ascertain

sample group similarities. Nonparametric multivariate analysis of

variance (Adonis) was utilized to test inter-group differences. Linear

discriminant analysis effect size (LEfSe) was conducted to identify

bacteria accounting for distinctions between the two sample groups,

using a logarithmic LDA score threshold of 2.0.
3 Results

3.1 General clinical features of the patients

The study encompassed 48 individuals diagnosed with severe

influenza and 16 individuals categorized as critically ill influenza

patients in a cross-sectional analysis. None had received influenza

vaccination. Essential demographic attributes such as gender, age,
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smoking habits, and alcohol consumption were effectively matched

between the two groups. No discernible differences emerged in

underlying conditions (hypertension, diabetes, hyperlipidemia,

cerebral vascular disease, heart disease, and chronic pulmonary

disease) between the two groups (p=1.000, 0.106, 1.000, 0.427,

0.282, 0.521, respectively). Only one of the 64 patients was first

diagnosed in our hospital, and most of the patients had antiviral

treatment history before the treatment in our hospital, but there was

no significant difference in the history of antiviral treatment and the

days from onset to admission between the two groups (p=1.000,

0.764, respectively) (Table 1).

Each sputum and blood sample obtained from participants

upon admission or in the early hours of the second day of

admission. There were no statistical differences about the

duration between the onset of illness and sample collection

(p=0.588). Within the critically ill group, elevated levels of white

blood cells (WBC), neutrophil percentage (NE%), and neutrophil

count (NE#) were observed in comparison to the severe group

(p=0.022, 0.005, 0.017, respectively). Conversely, lymphocyte

percentage (LY%), lymphocyte count (LY#), monocyte percentage

(MO%), basophil percentage (BA%), and basophil count (BA#)

exhibited lower values in the critically ill group as opposed to the

severe group (p=0.007, 0.045, 0.009, 0.004, 0.016, respectively)

(Supplementary Figure 2). Although no statistically significant

disparities emerged in C-reactive protein (CRP) and Ct values

between the two groups (p=0.251, 0.104, respectively), the

critically ill group exhibited heightened CRP levels compared to

the severe group, while the Ct value in the critically ill group was

lower than that in the severe group. In addition, in this diagnosis

and treatment, there was no statistically significant difference in the

length of hospital stay between the two groups (p=0.100), with two

patients in the critically ill group dying on days 6 and 19 after

admission (Table 1).

We conducted a careful review of each patient’s medical record

system, collating all respiratory pathogens tested during hospitalization

except influenza virus. This included: (1) Sputum bacterial, fungal and

Haemophilus cultures: Pseudomonas aeruginosa and Haemophilus

influenzae were detected in samples from two critically ill patients

respectively, and Klebsiella pneumoniae subsp. Pneumoniae was

detected in the sample from a severe patient. (2) Sputum acid-fast

staining: All the samples were negative or did not undergo this

examination. (3) Mycoplasma pneumoniae antibody (gelatin particle

agglutination assay) and Mycoplasma pneumoniae nucleic acid test: A

total of 37 patient samples were tested for the former (12 showed

positive antibodies), but the nucleic acid tests were negative, which may

mean that the patients had been infected with Mycoplasma

pneumoniae but are not currently infected. (4) Blood culture: All

samples were negative or not performed.
3.2 Analysis of sputum microbial diversity
in the severe and critically ill
influenza groups

A total of 10,083,115 filtered high-quality partial reads were

generated, averaging 157,548 reads per sample. Rarefaction curves
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depicting sequence numbers per sample demonstrated that the

mean number of sequences attained a plateau around ~5000

sequence reads (Supplementary Figure 1). This observation

indicated comprehensive taxonomy detection within each group,

and that 5000 reads sufficed to identify the majority of bacterial

community members within the sputum microbiota. Evaluation of

alpha diversity (Simpson and Shannon indices) and richness

(Chao1, ACE) indicated comparable levels of diversity in the

sputum microbiota of both groups (Figure 1A). PCoA of Bray-

Curtis matrices revealed no significant differentiation between the

two groups, underscoring the similarity in beta diversity

(PERMANOVA, pseudo-F: 0.917, p=0.549, Figure 1B).
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3.3 Bacterial taxonomic differences
between severe and critically ill
influenza groups

Upon reaching sequence saturation, relative abundance

conversion was executed, retaining phylum and genus-level

taxonomies with relative abundance surpassing 1% in any given

sample. This process yielded 11 qualified phylum-level and 72

genus-level taxonomies. The top five predominant phyla in the

severe group were Firmicutes (41.5% of total reads),

Actinobacteriota (20.8%), Proteobacteria (14.0%), Bacteroidota

(15.2%), and Fusobacteriota (4.1%) (Figure 2A, left). The critically
TABLE 1 General clinical characteristics of influenza patients.

Characteristics Severe (n=48) Critically ill (n=16) statistic p-value

Age (years) 65.38 ± 2.43 70.38 ± 2.69 t=-1.379 0.175

Gender (male/female) 24/24 9/7 c2 = 0.188 0.665&

Smoking, N (%) 8 (16.67) 2 (12.50) c2 = 0.000 1.000#

Drinking alcohol,
N (%)

8 (16.67) 1 (6.25) c2 = 0.388 0.533#

Hypertension 21 (43.75) 7 (43.75) c2 = 0.000 1.000&

Diabetes 7 (14.58) 6 (37.50) c2 = 2.606 0.106#

Hyperlipidemia 7 (14.58) 2 (12.50) c2 = 0.000 1.000#

CVD 6 (12.50) 4 (25.00) c2 = 0.632 0.427#

Heart disease 14 (29.20) 7 (43.80) c2 = 1.158 0.282&

Chronic pulmonary disease 12 (25.00) 6 (37.50) c2 = 0.412 0.521#

External hospital visits before this visit 47 (97.9) 16 (100) c2 = 0.000 1.000&

Antiviral treatment in external hospitals 41 (85.4) 14 (87.5) c2 = 0.000 1.000&

WBC (4-10*109/L) 6.35 (4.10, 8.86) 8.88 (6.74, 10.81) Z=-2.295 0.022

NE% (50-70%) 73.94 (64.27, 81.21) 86.36 (76.31, 89.74) Z=-2.837 0.005

NE# (2-8*109/L) 4.74 (2.38, 7.08) 7.32 (5.42, 8.45) Z=-2.388 0.017

LY% (20-40%) 18.22 (11.59, 24.17) 9.67 (6.64, 13.33) Z=-2.706 0.007

LY# (1-5*109/L) 1.14 (0.73, 1.52) 0.78 (0.56, 1.05) Z=-2.000 0.045

MO% (3-8%) 7.50 (5.20, 11.18) 4.12 (2.07, 8.37) Z=-2.628 0.009

BA% (0-1%) 0.20 (0.05, 0.32) 0.00 (0.00, 0.10) Z=-2.854 0.004

BA# (0-0.1*109/L) 0.01 (0.00, 0.02) 0.00 (0.00, 0.01) Z=-2.407 0.016

CRP (0-6*109/L) 54.35 (31.22, 149.85) 117.65 (41.97, 216.60) Z=-1.147 0.251

Ct value$ 23.80 (20.40, 29.63) 21.64 (17.98, 25.92) Z=-1.628 0.104

Hospitalization days of this visit 7.00 (5.00, 9.75) 8.00 (6.00, 10.75) Z=-1.647 0.100

Days from onset to admission 3.00 (2.00, 5.00) 3.00 (2.00, 5.75) Z=-0.300 0.764

Days from onset to sample collection 4.00 (2.00, 5.75) 3.00 (2.25, 5.75) Z=-0.542 0.588
fro
#: Continuity correction c2 test.
&: Pearson’s chi-squared test.
$: Ct value less than or equal to 36 is considered positive.
CVD, Cerebral Vascular Disease; WBC, White Blood Cell; NE%, Neutrophil percentage; NE#, Neutrophil count; LY%, Lymphocyte percentage; LY#, Lymphocyte count; MO%, Monocytes
percentage; BA%, Basophil percentage; BA#, Basophil count; CRP, C-reactive protein.
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i l l group exhibited Firmicutes (41.8% of total reads),

Actinobacteriota (20.7%), Bacteroidota (10.2%), Proteobacteria

(20.1%), and Fusobacteriota (3.6%) (Figure 2A, left). The

remaining phyla constituted relatively lower abundances (less

than 1.5%). A phylum-level analysis revealed a statistically

significant decrease in Bacteroidota (meancritically ill=0.102,

meansevere=0.152, p=0.031) within the critically ill group, whereas

Proteobacteria (meancritical ly il l=0.201, meansevere=0.140)

demonstrated an increase, though without statistical significance

(Figure 2A, right). At the genus level, we presented the distribution

of the top 10 relative abundance bacteria in the severe and critically

ill groups, and found that Streptococcus (meancritically ill=0.281,

meansevere=0.253) and Haemophilus (meancritically ill=0.090,

meansevere=0.034) displayed augmentation within the critically ill

group, while Neisseria (meancritically ill=0.037, meansevere=0.071),

Veillonella (meancritically ill=0.062, meansevere=0.124), and

Porphyromonas (meancritical illness=0.024, meansevere=0.053)

exhibited reduction (Figure 2B left, Supplementary Figure 3B).

Further to screen for differential bacteria, a comprehensive

Wilcoxon test was performed on all genera, elucidating significant

differences in Neisseria and Porphyromonas (p=0.012 and 0.037)

(Figure 2B, right). Furthermore, within the critically ill group, a

decrease was observed in Alloprevotella, Capnocytophaga,

Clostridia_UCG-014, and TM7x (p=0.048, 0.049, 0.043, 0.020,

respectively) (Figure 2B, right).

To ascertain pivotal phylotypes contributing to the

differentiation of sputum microbiota between the two groups,

LEfSe analysis was executed, setting a threshold of 2. The sputum

microbiomes of the severe group were characterized by an

abundance of Neisseria, Porphyromonas , Actinobacillus ,

Alloprevotella, TM7x, and Clostridia_UCG-014, exhibiting ROC-

plot AUC values of 0.71, 0.68, 0.60, 0.70, 0.70, and 0.68 respectively

(Figures 3A, B).
Frontiers in Cellular and Infection Microbiology 05
3.4 Correlation between sputum
microbiota and influenza Ct values

16S rRNA gene analysis of sputum samples indicated a

prevalence of Streptococcus and Haemophilus in the critically ill

group, and Neisseria, Porphyromonas, Actinobacillus, Alloprevotella,

TM7x, Clostridia_UCG-014, Capnocytophaga, and Veillonella in the

severe group. Spearman correlation analysis was performed to

investigate the relationship between these genera, Ct value, and

laboratory examinations (WBC, NE%, NE#, LY%, LY#, MO%, BA

%, BA#, CRP). The outcomes revealed a negative correlation between

Alloprevotella and Ct value. Additionally, Haemophilus and

Porphyromonas exhibited positive correlations with CRP (Figure 4;

Supplementary Figure 3A; Supplementary Table 1). Meanwhile,

Alloprevotella, Capnocytophaga and Porphyromonas were negatively

correlated with hospitalization days. (Supplementary Figure 4;

Supplementary Table 2).
4 Discussion

The respiratory tract, with its distinct microbial communities in

various segments, may respond to IAV infection in both similar or

distinct ways. While studies often employ mouse models to depict

short- or long-term microecological imbalances post IAV infection

(Yildiz et al., 2018), clinical cohorts remain underexplored as starting

points to decipher post-influenza respiratory tract microbiota

changes. Investigations into bacterial microbiota within the URT of

influenza patients, spanning oropharynx, nasopharynx, and other

segments, have been conducted (Chen et al., 2023). However, limited

inquiry has been dedicated to microbial shifts in the LRT following

influenza infection. Hence, by employing 16S rRNA gene sequencing,

we undertook a comparative analysis of LRT microbiota (sputum)
A B

FIGURE 1

Alpha and beta diversity of sputum microbiota in the severe and critically ill influenza patients. (A) Alpha diversity (Simpson’s index of diversity,
Shannon index, Chao1 and ACE) of sputum microbiota in the severe and critically ill groups. (B) Beta diversity (Principal coordinates analysis, PCoA)
of sputum microbiota in the severe and critically ill groups. No significant difference of bacterial communities between two groups.
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between severe and critically ill patients. Additionally, we assessed the

relationship between microbiota and influenza virus Ct values and

laboratory examinations.

No marked disparity in alpha and beta diversity was observed in

sputum microbiota between severe and critically ill patients in this

study. In animal models, IAV-infected mice showed minimal

alterations in microbial diversity and richness within the upper and

lower respiratory tracts and even different respiratory segments (Planet

et al., 2016; Yildiz et al., 2018; Chen et al., 2023). Clinical research,

however, has yielded diverse results. For instance, Shannon diversity

was significantly lower in influenza A and B groups in comparison to

non-influenza groups (nasopharyngeal swab samples) (Rattanaburi

et al., 2022), but higher in H7N9 patients relative to healthy controls

(oropharyngeal swab samples) (Lu et al., 2017). Among severe

pneumonia patients who were influenza virus positive and negative,

no statistical difference was observed in any of the Chao1 or Shannon

and Simpson indexes (bronchoalveolar lavage fluid specimens) (Zhou
Frontiers in Cellular and Infection Microbiology 06
et al., 2023). In our study, sputum samples were used as most severe

influenza patients can cough and expectorate, thus making it feasible to

collect sputum samples in a non-invasive manner. Although influenza

A was identified in the samples, influenza subtypes were not

distinguished. Hence, these disparities could be attributed to variant

viral strains and different respiratory tract sampling sites and methods.

At the phylum level, researcher has previously observed that the

URTmicrobiota of H1N1 influenza patients were mainly composed of

Actinobacteria, Firmicutes, and Proteobacteria (Chaban et al., 2013).

Our study found that the same applies to LRT microbiota. Notably,

Bacteroidetes was dominant in the severe group. During IAV

infection’s acute and recovery stages, Gammaproteobacteria,

Firmicutes, and Bacteroides class relative abundance escalates within

the LRT (Gu et al., 2019). In line with these findings, our results

indicated a prevalence of Streptococcus and Haemophilus in the

critically ill group (although there was no significant difference

compared with the severe group), corresponding to Firmicutes and
A

B

FIGURE 2

The composition and difference of sputum microbial taxa between the severe and critically ill influenza patients at the phylum and genus levels.
(A) The top ten phylum of bacteria in relative abundance (left), and the Wilcoxon Rank Sum test was performed to detect taxa with significant
differences in relative abundances at the phylum levels between the two groups (right). (B) The top ten genus of bacteria in relative abundance (left),
and the Wilcoxon Rank Sum test was performed to detect taxa with significant differences in relative abundances at the genus levels between the
two groups (right). Significant differences are indicated by *p<0.05.
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A B

FIGURE 3

Linear discriminative analysis effect size (LEfSe) analysis in the severe and critically ill influenza patients. (A) LDA scores indicate significant differences
in the microbiota between the severe and critically ill influenza patients. (B) Prediction of the key genera in the severe and critically ill influenza
patients. Receiver-operating characteristic (ROC) plot for Neisseria, Porphyromonas, Actinobacillus, Alloprevotella, TM7x, Clostridia_UCG-014, area
under the parametric curve (AUC) value=0.71, 0.68, 0.60, 0.70, 0.70 and 0.68 respectively.
FIGURE 4

Correlation between sputum microbiota and clinical data. Spearman correlation analysis, *p < 0.05; **p < 0.01; ***p< 0.001. WBC, White Blood Cell;
NE%, Neutrophil percentage; NE#, Neutrophil count; LY%, Lymphocyte percentage; LY#, Lymphocyte count; MO%, Monocytes percentage; BA%,
Basophil percentage; BA#, Basophil count; CRP, C-reactive protein.
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Gammaproteobacteria, respectively. The species of these bacteria are

found in the URT of healthy individuals and can potentially cause

respiratory infections or influenza virus infections (Ohara-Nemoto

et al., 2008; Zhang et al., 2020). Interestingly, significant dissimilarities

were evident in specific bacterial taxa, particularly within the severe

influenza group. Our research pinpointed variations in Neisseria,

Porphyromonas , Actinobaci l lus , Alloprevotel la , TM7x ,

Clostridia_UCG-014, Capnocytophaga, and Veillonella. Recently,

Veillonella has emerged as a noteworthy biomarker for various

respiratory viral infections (Li et al., 2023). Dysbiotic microbiota

characterized by reduced microbial diversity and elevated abundance

of specific bacteria, such as Streptococcus, Pseudomonas, and Neisseria,

have been documented in patients with respiratory virus infections

(Porto and Moraes, 2021). The link between IAV and Neisseria

meningitidis disease has been established, and Neisseria meningitidis

has been found to enhance IAV infection by adhering to human HEC-

1-B epithelial cells (Rameix-Welti et al., 2009).

The results of our data showed that there were no statistically

significant differences between the two groups in the history of antiviral

therapy before the current admission, as well as in the days from the

onset of illness to admission, the days from the onset of illness to

specimen collection, and the length of hospital stay. However, our

Spearman correlation analysis showed that Alloprevotella and

Porphyromonas were negatively correlated with hospitalization days,

respectively. In patients with COVID-19, poor clinical outcome was

associated with the enrichment of an oral commensal (Mycoplasma

salivarium) in the lower airways (Sulaiman et al., 2021). These suggest

that the characteristics of the microbiota may, to some extent, be

indicative of disease progression in patients with respiratory viruses.

Our investigation identified elevated WBC, NE%, and NE# in the

critically ill group relative to the severe group, coupled with reduced LY

% and LY#. Previous research has similarly indicated a higher

proportion of neutrophils in critically ill influenza cases compared to

non-critically ill cases, with a correspondingly lower lymphocyte

proportion (Li et al., 2022). Our findings are in accordance with

these observations. Although CRP and Ct values exhibited no

statistically significant differences between the groups, the critically ill

influenza patients manifested elevated CRP levels and lower Ct values,

implying heightened viral loads and more pronounced inflammatory

reactions or tissue damage. Remarkably, our Spearman correlation

analysis between influenza Ct values and the aforementioned genera

exposed a negative correlation with Alloprevotella. A prior study

revealed associations between nose/throat microbiota and

susceptibility to influenza virus infection, particularly in terms of the

relative abundances of Alloprevotella oligotypes(Lee et al., 2019b). As

such, we should pay attention to the changes of Alloprevotella in the

course of influenza infection and its correlation with the severity of the

disease. Our study additionally suggests a potential link between

Alloprevotella and influenza disease severity. For example, CRP

exhibited positive correlations with Haemophilus and

Porphyromonas. In cases of chronic obstructive pulmonary disease

exacerbations, higher CRP levels are observed in bacterial infections

involving Haemophilus influenzae and Streptococcus pneumoniae

(Gallego et al., 2016). Other investigations have also suggested
Frontiers in Cellular and Infection Microbiology 08
Porphyromonas genus as a potential focus in various pulmonary

conditions (Guilloux et al., 2021).

While acknowledging our study’s strengths, certain limitations

warrant consideration. First, we did not perform testing for other

types of respiratory viruses on the sputum samples used in our

study. To compensate for this shortcoming to the best of our ability,

we meticulously reviewed all tests for respiratory pathogens other

than the influenza virus that were conducted during the

hospitalization of the patients, and found that the patients were

infected with other Gram-negative bacilli, suggesting that influenza

virus infection may weaken the immune system and make

individuals more susceptible to other bacterial infections. Second,

healthy sputum samples are challenging to collect, precluding

inclusion of healthy controls. Our study primarily focused on

comparing respiratory tract microbiota differences in influenza

patients of varying severities. Additionally, our cross-sectional

design and limited clinical sample size emphasize the necessity

for expanded samples and longitudinal cohort studies. Certain

classical limitations of the cross-sectional study design should be

acknowledged, such as it not allowing for conclusions of causality.

We also employed amplicon-based 16S rRNA gene sequencing,

which provides modest taxonomic resolution at the species level.

Enhanced classification precision and reproducible metagenomic

sequencing are pivotal to validate our approach across multiple

longitudinal cohorts and clinical contexts. From the perspective of

microbiota, investigating how the results could guide clinical

management strategies, such as targeted interventions and

personalized treatment approaches should be considered.

Manipulating the composition of respiratory tract microbiota in

an attempt to impact disease outcomes or treatment responses is

also an area of future research. Ultimately, further validation

experiments are needed to determine whether these results could

be leveraged to delineate future biomarkers that identify patients at

risk of progression to critically ill states.
5 Conclusions

The outcomes of this study bestow foundational insights for

prospective investigations delving into the intricate interplay

between the LRT microbiota and respiratory diseases.

Furthermore, additional scrutiny is warranted to unravel the

underlying mechanisms governing the interplay between IAV and

Alloprevotella in disease progression. The innovation encapsulated

within this study augments our understanding of the intricate host-

microbiota-virus dynamics, accentuating the goal of clinical cohort-

driven inquiries into microbiota shifts during viral infections.
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