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Background: The gut microbiota (GM) is believed to be closely associated with

symptomatic carotid atherosclerosis (SCAS), yet more evidence is needed to

substantiate the significant role of GM in SCAS. This study, based on the detection

of bacterial DNA in carotid plaques, explores the characteristics of GM in SCAS

patients with plaque bacterial genetic material positivity, aiming to provide a

reference for subsequent research.

Methods: We enrolled 27 healthy individuals (NHF group) and 23 SCAS patients

(PFBS group). We utilized 16S rDNA V3-V4 region gene sequencing to analyze the

microbiota in fecal samples from both groups, as well as in plaque samples from the

carotid bifurcation extending to the origin of the internal carotid artery in all patients.

Results: Our results indicate significant differences in the gut microbiota (GM)

between SCAS patients and healthy individuals. The detection rate of bacterial

DNA in plaque samples was approximately 26%. Compared to patients with

negative plaques (PRSOPWNP group), those with positive plaques (PRSOPWPP

group) exhibited significant alterations in their GM, particularly an upregulation of

11 bacterial genera (such as Klebsiella and Streptococcus) in the gut, which were

also present in the plaques. In terms of microbial gene function prediction,

pathways such as Fluorobenzoate degradation were significantly upregulated in

the GM of patients with positive plaques.

Conclusion: In summary, our study is the first to identify significant alterations in

the gut microbiota of patients with positive plaques, providing crucial microbial

evidence for further exploration of the pathogenesis of SCAS.
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1 Introduction

Stroke is currently the second most common cause of death

worldwide and the primary cause of disability in adults (Feigin et al.,

2022). Carotid atherosclerosis (CAS) plaque formation, leading to

carotid stenosis, rupture and detachment of unstable plaques,

and local thrombosis, are key contributors to ischemic stroke

(IS), significantly impacting clinical prognosis. Patients with

symptomatic carotid atherosclerosis (SCAS) typically present with

mild cerebral ischemic symptoms, such as minor ischemic stroke,

transient ischemic attacks, or temporary blindness, and have a

higher risk of recurrent cardiovascular and cerebrovascular events

compared to those with asymptomatic carotid atherosclerosis, often

requiring close monitoring and active treatment (Thapar et al.,

2013; Wabnitz and Turan, 2017). Factors like male gender,

smoking, alcohol consumption, dysregulated glucose and lipid

metabolism, and inflammatory states are significant risk factors

influencing CAS development and plaque stability (Willerson, 2002;

Song et al., 2020). Therefore, the prevention and treatment of SCAS

have become urgent health issues needing resolution.

The human gut microbiota (GM) constitutes a vast “ecosystem,”

with bacteria comprising over 99% of its makeup, closely associated

with human health and disease. Recent studies have identified a close

relationship between GM and carotid atherosclerosis (CAS). On one

hand, significant changes in GM have been observed in SCAS patients,

potentially promoting the development of SCAS by influencing the

body’s inflammatory regulatory pathways (Karlsson et al., 2012). On

the other hand, DNA from various bacteria originating from the oral

cavity and gut, as well as some live bacteria, have been detected in CAS

plaques, potentially exacerbating local inflammation within the plaques

(Kozarov et al., 2005; Koren et al., 2011).

The stability of atherosclerotic plaques is often associated with

multiple factors such as local inflammation, endothelial dysfunction,

and angiogenesis (Willerson, 2002; Ylä-Herttuala et al., 2013).

Increasing evidence suggests that bacteria within plaques might

have the potential to affect plaque stability. Previous studies have

shown a positive correlation between bacterial DNA in plaques and

the number of inflammatory cells present (Koren et al., 2011), and

can activate Toll-like receptors in macrophages and endothelial cells

within the plaques (El-Zayat et al., 2019), inducing processes like

foam cell formation and endothelial cell damage (Jin et al., 2023).

Additionally, live bacteria in plaques, such as Porphyromonas

gingivalis, have the ability to translocate through oral epithelium

into the bloodstream, adhere to, and invade vascular endothelial cells

(Farrugia et al., 2021), inducing endothelial dysfunction, promoting

foam cell formation, proliferation and calcification of vascular

smooth muscle cells, as well as angiogenesis within the plaque

(Zhang et al., 2021). Biofilms enhance bacterial resistance, and

bacteria have been reported to exist as biofilm deposits in plaques.

Hormonal levels in the body can promote the dispersion of biofilms,

increasing the risk of plaque rupture (Lanter et al., 2014).

In this study, we investigated the microbiota in fecal and plaque

samples from SCAS patients, focusing particularly on the GM of

patients with positive bacterial genetic material in plaques. This

provides foundational theoretical evidence for subsequent
Frontiers in Cellular and Infection Microbiology 02
exploration of prevention and treatment methods for SCAS

patients in Northern China.
2 Methods

2.1 Study population

We consecutively enrolled 23 SCAS patients (2 females, 21

males) who underwent carotid endarterectomy (CEA) at the

Neurosurgery Department of Liaocheng People’s Hospital from

April 2020 to May 2021, along with 27 healthy individuals (12

females, 15 males) confirmed through health examinations at the

same hospital’s medical examination center during the same period.

The diagnosis of all patients was primarily confirmed by digital

subtraction angiography (DSA) of the whole brain MRS and

assisted by carotid ultrasound. Basic information and clinical data

of all participants were collected through interviews and laboratory

tests. Written informed consent was obtained from all participants,

and the study was approved by the Ethics Committee of Liaocheng

People’s Hospital (Approval Number: 2021120).

Inclusion criteria for patients were as follows: (1) age greater

than 18 years; (2) presence of atherosclerotic plaque formation in

the left, right, or bilateral carotid arteries (defined as intima-media

thickness >1.4 mm or focal wall thickening at least 50% greater than

the surrounding vessel wall); (3) presence of mild ischemic stroke

symptoms, such as episodic headaches, transient ischemic attacks,

or temporary visual disturbances; (4) patients diagnosed with

carotid atherosclerotic stenosis by DSA examination and

requiring surgical treatment.

Exclusion criteria included: (1) concomitant inflammatory

bowel disease and a history of gastrointestinal surgery in the past

3 months; (2) severe coagulation disorders; (3) poorly controlled

diabetes, with blood glucose levels exceeding 300 mg/dl; (4) use of

antibiotics, probiotics, prebiotics, or gastrointestinal medications

within the past 3 months; (5) the presence of severe cardiovascular,

pulmonary, hepatic, renal, hematologic, endocrine, or neoplastic

diseases; (6) pregnancy or the perinatal period.
2.2 Data collection and
specimen collection

All participant information was collected through face-to-face

interviews by attending physicians at our hospital, including age,

gender, and medical history. Digital Subtraction Angiography (DSA)

via the femoral artery route was used to examine and confirm the

cerebral vascular status of all patients. Blood samples from all

participants were collected and analyzed after fasting for 10 hours,

with tests including blood cell count, blood glucose, and lipid

metabolism indicators. After standard collection of fecal samples

from all participants, they were immediately frozen and stored at

-80°C. Plaques excised from the carotid bifurcation to the origin of the

internal carotid artery during CEA in all patients were immediately

frozen and stored in liquid nitrogen tanks for future use.
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2.3 Sample DNA extraction, DNA library
construction, sequencing, and operational
taxonomic unit analysis

Microbial DNA extraction from fecal and plaque samples was

performed using the TIANamp Micro DNA Kit (TIANGEN,

Beijing, China). The V3-V4 region of 16S rDNA has been chosen

as the target interval for PCR amplification, utilizing 341F

(CCTAYGGGRBGCASCAG) and 806R (GGACTACNNGG

GTATCTAAT) as primers (Rintala et al., 2017). Subsequently,

sequencing libraries were prepared using the TRUSEQ® DNA

PCR Sample Preparation Kit (Illumina, USA). The quality of the

prepared libraries was assessed using a Qubit® 2.0 Fluorometer

(Thermo Scientific) and an Agilent Bioanalyzer 2100 system. High-

quality libraries were subjected to sequencing using the Illumina

HiSeq 2500 platform (CapitalBio Technology Co., Ltd., Beijing,

China). Sequence data were then clustered into operational

taxonomic units (OTUs) based on a 97% similarity threshold

using Usearch (Version 11.0.667). Taxonomic analysis of

representative OTU sequences at the 97% similarity level was

performed against the Silva database (Release 132). The QIIME

software was employed to generate microbial abundance

information at various taxonomic levels.
2.4 Statistical analysis

Statistical analyses were performed using R version 3.6.0 and

SPSS version 27. Various statistical methods, including Student’s

t-test, Wilcoxon rank-sum test, Tukey’s test, Kruskal-Wallis test,

chi-square test, and Linear Discriminant Analysis, were utilized to

analyze clinical data, microbial abundance data, and microbial

functional data. Continuous variables were presented as means ±

standard deviations. Prior to analysis, normality was assessed, with

a P-value of ≥0.05 indicating normal distribution. Subsequent

parametric or non-parametric tests were conducted, with a P-

value of <0.05 indicating statistical significance. Categorical

variables were represented numerically, and chi-square tests were

employed for difference testing, with a P-value of <0.05 indicating

statistical significance. R version was employed for microbial

community diversity analysis, differential significance analysis,

and Spearman correlation analysis.
3 Results

3.1 Demographic and clinical
characteristics of the subjects

We conducted a statistical analysis of the clinical data

(Supplementary Table 1) of the participants and found significant

differences in smoking and drinking between the 23 patients (PFBS

group) and the 27 healthy adults (NHF group). In terms of risk

factors, the PFBS group had significantly higher levels of Lp(a),

WBC, FBG, TyG, N, NLR, and SUA compared to the healthy

control group. Conversely, levels of HDL-C, ApoA-I, and L were
Frontiers in Cellular and Infection Microbiology 03
lower in the PFBS group, with no significant differences in the

remaining indicators (Table 1).

Subsequently, based on the detection of bacterial DNA in

plaque samples, the 23 patient samples were divided into a

positive plaque group (PP group, 6 cases) and a negative plaque

group (17 cases). Further, based on the plaque results, the patients’

fecal samples were categorized into a positive plaque patient group

(6 cases, PRSOPWPP group) and a negative plaque patient group

(17 cases, PRSOPWNP group). There were no significant

differences in lifestyle habits (smoking, drinking) between the two

groups. However, in terms of laboratory data, the positive plaque

patients exhibited significantly higher levels of ApoE, WBC, FBG,

N, and NLR compared to the negative plaque patients, with no

significant differences in the other indicators (Table 2).
3.2 Community diversity and
statistical analysis

3.2.1 Species composition analysis
Bacterial DNA was detected in 6 of the 23 SCAS patient plaque

samples, yielding a positivity rate of approximately 26%. We

identified 15 bacterial phyla, 24 classes, 43 orders, 78 families,
TABLE 1 Clinical characteristics of patients and healthy subjects.

Features PFBS (n=23) NHF (n=27) P value

Gender Male:21, Female:2 Male:15, Female:12 0.013*

Age 65.17 ± 5.39 62.22 ± 7.41 0.119

Smoking Yes:18, No:5 Yes:11, No:16 0.007*

Drinking Yes:20, No:3 Yes:10, No:17 0.001*

TC 4.11 ± 1.01 4.41 ± 0.71 0.224

TG 0.92 ± 0.34 0.81 ± 0.48 0.336

HDL-C 1.15(0.94,1.30) 1.27(1.14,1.43) 0.018*

LDL-C 2.40 ± 0.81 2.74 ± 0.79 0.143

VLDL-C 0.22(0.16,0.29) 0.21(0.16,0.27) 0.579

Lp (a) 325.70 ± 224.59 145.74 ± 90.10 0.001*

ApoA-I 1.07 ± 0.15 1.51 ± 0.30 <0.001*

ApoE 39.82 ± 13.83 39.99 ± 5.92 0.956

ApoB 0.83 ± 0.27 0.92 ± 0.20 0.189

FFA 0.50(0.44,0.60) 0.54(0.36,0.72) 0.392

WBC 7.83 ± 2.43 6.47 ± 1.66 0.03*

FBG 6.31(5.44,7.99) 4.96(4.38,5.49) <0.001*

TyG 5.93(4.03,7.81) 4.03(1.71,6.14) 0.01*

N 4.78(3.41,7.70) 3.99(2.66,5.07) 0.019*

L 1.58 ± 0.54 2.04 ± 0.59 0.006*

NLR 3.12(2.44,5.57) 2.04(1.24,2.38) 0.001*

SUA 273.00(250.00,356.00) 213.00(143.00,297.00) 0.05*
fro
* denotes statistically significant differences as determined by Student’s T-test or Wilcoxon
rank-sum test.
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and 224 genera common to both the PP and PRSOPWPP groups.

We created bar charts of the species composition analysis for all

participant sample groups at five taxonomic levels: phylum, class,

order, family, and genus (Supplementary Tables 2, 3). These charts

visually represent and compare the microbial community

composition between the NHF and PFBS groups (Figures 1A–E),

between the PP and PRSOPWPP groups (Figures 1F–J), and

between the PRSOPWPP and PRSOPWNP groups (Figures 1K–O).

3.2.2 Alpha diversity and beta diversity analysis
of microbiota

Statistical tests such as the T-test for the Shannon index (P<0.05

indicating significant difference) and the Wilcoxon rank-sum test

for the Simpson index (P<0.05 indicating significant difference) can

be used to reflect the statistical differences in species a-diversity
between groups. Our results show no statistical difference in species

a-diversity between the NHF and PFBS groups (Shannon index,
Frontiers in Cellular and Infection Microbiology 04
P= 0.47, Figure 2A; Simpson index, P= 0.92, Figure 2B), between the

PP and PRSOPWPP groups (Shannon index, P= 0.09, Figure 2C;

Simpson index, P= 0.06, Figure 2D), and between the PRSOPWPP

and PRSOPWNP groups (Shannon index, P= 0.57, Figure 2E;

Simpson index, P= 0.47, Figure 2F).

Principal Coordinates Analysis (PCoA; Adonis multivariate

analysis of variance, where R² indicates the explanatory power of

the grouping for sample differences, P<0.05 indicating significant

difference) results can reflect similarities and differences in species

b-diversity. Our results indicate significant statistical differences in
microbial community b-diversity between the NHF and PFBS

groups (Adonis, R²=0.08, P<0.05; Figure 2G), between the PP and

PRSOPWPP groups (Adonis, R²=0.40, P<0.05; Figure 2H), and

between the PRSOPWPP and PRSOPWNP groups (Adonis,

R²=0.11, P<0.05; Figure 2I).

3.2.3 Significance analysis of microbial
community differences

Our primary focus was on the differences in microbial

communities between the NHF and PFBS groups, and between

the PRSOPWPP and PRSOPWNP groups.

Firstly, we employed Analysis of Molecular Variance (AMOVA,

P<0.05 indicating significant difference) to test for significant

differences between the microbial communities of the groups.

Results showed significant differences between the NHF and PFBS

groups (P<0.05), and between the PRSOPWPP and PRSOPWNP

groups (P<0.05). Secondly, Anosim analysis (R> 0 indicating

greater inter-group than intra-group differences, P<0.05

indicating significant difference) and Multi Response Permutation

Procedure (MRPP) analysis (A> 0 indicating greater inter-group

than intra-group differences, P<0.05 indicating significant

difference) were used to determine whether the differences

between the groups were greater than within the groups, thus

validating the significance of the grouping. Our results indicated

that both the NHF and PFBS groups (Anosim, R=0.24, P<0.05;

MRPP, A=0.04, P<0.05; Figure 3A), and the PRSOPWPP and

PRSOPWNP groups (Anosim, R=0.28, P<0.05; MRPP, A=0.07,

P<0.05; Figure 3B) exhibited greater inter-group differences,

confirming meaningful group distinctions. Finally, we employed

Linear Discriminant Analysis Effect Size (LEfSe, LDA score >3,

P<0.05 indicating significant difference) to identify taxa with

significant differences in abundance between groups (Lin and

Peddada, 2020). At the genus level, 22 differentially abundant

bacteria (LDA score >3) were identified between the NHF and

PFBS groups, with each group enriched in 11 different genera

(Figure 3C). In the PRSOPWPP and PRSOPWNP groups, 2

phyla, 4 classes, 7 orders, 12 families, and 20 genera (LDA score

>3) were identified as differentially abundant. Specifically, the

PRSOPWPP group was enriched in 1 phylum, 1 class, 2 orders, 8

families (1 unknown), and 16 genera (1 unknown), while the

PRSOPWNP group was enriched in 1 phylum, 3 classes, 5 orders,

4 families (1 unknown), and 4 genera (1 unknown) (Figure 3D)

(Supplementary Table 4).

Specifically, we found that the GM of both the NHF and PFBS

groups was primarily composed of four abundant phyla

(Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria), with
TABLE 2 Clinical characteristics of patients with positive and
negative plaques.

Features
PRSOPWPP

(n=6)
PRSOPWNP

(n=17)
P

value

Gender Male:6,Female:0 Male:15,Female:2 1

Age 65.83 ± 5.67 64.94 ± 5.45 0.736

Smoking Yes:5,No:1 Yes:13,No:4 1

Drinking Yes:6,No:0 Yes:14,No:3 0.539

TC 4.12 ± 1.57 4.10 ± 0.79 0.988

TG 1.06 ± 0.30 0.87 ± 0.35 0.259

HDL-C 1.15(0.93,1.27) 1.15(0.92,1.31) 0.806

LDL-C 2.50 ± 1.35 2.37 ± 0.58 0.135

VLDL-C 0.22(0.17,0.25) 0.24(0.15,0.32) 0.599

Lp (a) 394.17 ± 227.95 301.53 ± 225.26 0.398

ApoA-I 1.03 ± 0.17 1.09 ± 0.14 0.398

ApoE 56.77 ± 11.17 33.84 ± 8.85 <0.001*

ApoB 0.87 ± 0.43 0.82 ± 0.19 0.829

FFA 0.57 ± 0.09 0.46 ± 0.15 0.112

WBC 9.76(8.57,11.22) 5.97(5.57,8.68) 0.013*

FBG 8.38(6.36,9.66) 5.56(5.04,6.89) 0.027*

TyG 6.93(6.21,11.9) 4.88(3.38,7.45) 0.052

N 7.49(6.13,9.02) 3.88(3.35,5.69) 0.008*

L 1.39 ± 0.56 1.65 ± 0.54 0.325

NLR 4.89(3.91,10.35) 2.64(2.08,3.67) 0.014*

SUA 255(225.25,330.00) 281(252.50,362.50) 0.362
TC, Total Cholesterol; TG, Triglycerides; HDL-C, High-Density Lipoprotein Cholesterol;
LDL-C, Low-Density Lipoprotein Cholesterol; VLDL-C, Very Low-Density Lipoprotein
Cholesterol; Lp (a), Lipoprotein (a); ApoA-I, Apolipoprotein AI; ApoE, Apolipoprotein E;
ApoB, Apolipoprotein B; FFA, Free Fatty Acids; WBC, White Blood Cells; FBG, Fasting Blood
Glucose; TyG, Triglycer-ide-Glucose Index; N, Neutrophils; L, Lymphocytes; NLR,
Neutrophil-Lymphocyte Ratio; SUA, Serum Uric Acid. Values are presented as mean ± SD
or median (interquartile range). * denotes statistically significant differences as determined by
Student’s T-test or Wilcoxon rank-sum test.
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Verrucomicrobia and Actinobacteria significantly enriched in the

PFBS group. The GM of patients in the PRSOPWPP and

PRSOPWNP groups was similarly dominated by these four phyla.

Notably, Bacteroidetes, enriched in the PRSOPWNP group, and

Euryarchaeota, enriched in the PRSOPWPP group, exhibited

significant differences between the two groups.

At the genus level, there were 22 genera with significant

differences in abundance between the NHF and PFBS groups.

Eleven genera (Collinsella, Akkermansia, Ruminococcaceae_

UCG_014, Parabacteroides, Phascolarctobacterium, Alistipes,

Ruminococcus_torques_group, Odoribacter, Lactobacillus,

Enterococcus, Barnesiella) were significantly enriched in the PFBS

group, while the remaining genera (Lachnospira, Ochrobactrum,

Lachnoclostridium, Tyzzerella_3, Megasphaera, Lachnospiraceae_

NK4A136_group, Dorea, Prevotellaceae_NK3B31_group, Sarcina,

Paraprevotella, Lachnospiraceae_UCG_004) were significantly

enriched in the NHF group.

At the genus level, Escherichia-Shigella had the highest abundance

in the PRSOPWPP group, differing from the PRSOPWNP group

(Bacteroides). Additionally, Acinetobacter_sp._CAG196,

Anaerococcus, Anaerofustis, Blautia, CHKCI002, Christensenella,

Christensenellaceae_R_7_group, Clostridium_sensu_stricto_1,

Intestinibacter, Klebsiella, Methanobrevibacter, Romboutsia,

Ruminococcaceae_UCG_013, Ruminococcus_2, Streptococcus, and

an unknown genus belonging to Mollicutes_RF39 were significantly

enriched in the PRSOPWPP group; while Bacteroides, Flavonifractor,
Frontiers in Cellular and Infection Microbiology 05
Parasutterella, and an unknown genus belonging to Rhodospirillales,

enriched in the PRSOPWNP group, showed significant differences

between the groups.

Furthermore, we discovered that 11 genera significantly

enriched in the gut of patients with positive plaques were present

in the plaques, namely Streptococcus, Blautia, Klebsiella,

Clostridium_sensu_stricto_1, Romboutsia, Ruminococcaceae_

UCG-013, Ruminococcus_2, Intestinibacter, Christensenellaceae_

R-7_group, Anaerococcus, and Methanobrevibacter.
3.3 Association between gut microbiota
and clinical characteristics

We employed Spearman correlation analysis to explore the

intrinsic connections between significantly different GM and

clinical features. The results revealed that among the 11 bacterial

genera significantly enriched in the PFBS group’s gut, 6 were

positively correlated with FBG levels, 6 negatively correlated with

ApoA-I levels, 3 positively correlated with TyG levels, 3 positively

correlated with Lp(a) levels, 2 positively correlated with NLR levels,

2 negatively correlated with L levels, 1 positively correlated with N

levels, 1 positively correlated with TG levels, and 1 positively

correlated with VLDL-C levels. (Figure 4A).

Furthermore, we found that the 15 known genera significantly

enriched in the PRSOPWPP group had close relationships with
A B D E
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K L M N

C

O

FIGURE 1

Bar charts of species composition at the phylum, class, order, family, and genus levels. (A-E) Composition and abundance of the core microbiota in
the NHF and PFBS groups. (F-J) Composition and abundance of the core microbiota in the PP and PRSOPWPP groups. (K-O) Composition and
abundance of the core microbiota in the PRSOPWPP and PRSOPWNP groups.
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A B

D E F

G IH

C

FIGURE 2

Comparison of a-diversity and b-diversity of microbiota. (A-F) Comparison of a-diversity as determined by Shannon and Simpson indices between
the NHF and PFBS groups, PP and PRSOPWPP groups, and PRSOPWPP and PRSOPWNP groups. (G-I) Comparison of b-diversity as determined by
Principal Coordinate Analysis (PCoA) between the NHF and PFBS groups, PP and PRSOPWPP groups, and PRSOPWPP and PRSOPWNP groups.
A

B

DC

FIGURE 3

Significant analysis of differences in gut microbiota between groups. (A, B) Anosim analysis (analysis of similarity) for NHF and PFBS groups, and
PRSOPWPP and PRSOPWNP groups. This non-parametric test, with p < 0.05, indicates meaningful group differentiation. (C, D) Identification of
significantly different gut bacteria between NHF and PFBS groups, and PRSOPWPP and PRSOPWNP groups using LEfSe (Linear Discriminant Analysis
Effect Size). An LDA score > 3 and p < 0.05 denote significant differences. LEfSe is used to assess the effect size of linear discriminant analysis.
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clinical features. Specifically, 8 bacteria were positively correlated

with ApoE levels, 7 with NLR levels, 5 with N levels, 4 with WBC

levels, and 2 with FBG levels. Additionally, 4 bacteria were

negatively correlated with VLDL-C levels, and 1 with L

levels. (Figure 4B).
3.4 Functional profile of the microbiota

We used PICRUST 2 (Phylogenetic Investigation of

Communities by Reconstruction of Unobserved States) software

based on the Greengenes database to predict functional profiles of

microbial genes. We conducted predictive analyses on Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Clusters of

Orthologous Groups (COG) functional categories to observe

differences and changes in functional gene expression related to

metabolic pathways and protein functions in the microbial

communities (Supplementary Table 5).

We found that there were no significant differences in the

expression of predicted metabolic pathways between the gut

microbiota of the NHF and PFBS groups (Figure 5A). However,

there were significant differences in the expression of 9 predicted

protein functions (Figures 5B, C). Compared to the NHF group, 6

predicted protein functions were significantly upregulated in the

PFBS group, with a notable upregulation of COG1900, an enzyme

involved in anaerobic homocysteine biosynthesis.

In the gut microbiota of the PRSOPWPP and PRSOPWNP

groups, significant differences were observed in the expression of

8 predicted metabolic pathways (Figures 5D, E), but no

significant differences were noted in the expression of

predicted protein functions (Figure 5F). Compared to the

PRSOPWNP group, the PRSOPWPP group showed significant

upregulation in 4 predicted metabolic pathways: Fluorobenzoate

degradation, Dioxin degradation, Atrazine degradation, and

beta-Lactam resistance.
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3.5 Correlation between functional
expression of gut microbiota, clinical
features, and differentially abundant
bacterial genera

We employed Spearman correlation analysis to explore the

potential connections between microbial functional expression,

clinical indices, and differentially abundant bacterial genera.

The results indicated that in the PFBS group, the significantly

enriched genera Enterococcus, Lactobacillus, Collinsella, and

Ruminococcus_torques_group were positively correlated with the

expression of COG4841, COG3548, COG5584, and COG5416,

respectively. Phascolarctobacterium, Ruminococcaceae_UCG-014,

Barnesiella, Alistipes, and Odoribacter were positively correlated

with the expression of COG2122 and COG1900 (Figure 6A).

Furthermore, all upregulated predicted protein functions in the

PFBS group were negatively correlated with ApoA-I levels, and four

predicted protein functions (COG4841, COG3548, COG5584, and

COG5416) were positively correlated with levels of TG, TyG, and

FBG (Figure 6B).

We also discovered that within the PRSOPWPP group, the

Dioxin degradation pathway showed the most numerous positive

correlations with significantly enriched bacterial species (n=11,

p<0.05), followed by Atrazine degradation (n=10, p<0.05), and

beta-Lactam resistance (n=7, p<0.05) (Figure 6C). Additionally,

significantly upregulated predicted metabolic pathways were

positively correlated with lipid indices, inflammatory markers,

FBG, and TyG levels (Figure 6D).
4 Discussion

The primary objective of this study was to investigate the

characteristics of the gut microbiota in patients with positive

arterial plaques and their potential link to carotid artery plaques.
A B

FIGURE 4

Correlation between gut microbiota and clinical characteristics. (A) Correlation between significantly different bacterial genera and clinical
characteristics between NHF and PFBS groups, and (B) between PRSOPWPP and PRSOPWNP groups.
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We observed that compared to the NHF group, individuals in the

PFBS group had more prevalent smoking and drinking habits.

Clinical data indicated metabolic dysregulation in these patients,

such as impaired glucose and lipid metabolism and inflammatory

states, which might contribute to the development of carotid

atherosclerosis and affect plaque stability (Tang et al., 2018;

Sterpetti, 2020; Lubrano and Balzan, 2021). Furthermore, based

on the detection of bacterial DNA in plaques, we compared clinical

data between patients with positive and negative plaques, marking

the first comparative study of these two groups in clinical aspects.

The findings showed that patients with positive plaques had

significantly higher levels of ApoE, FBG, WBC, N, and NLR.

These indicators suggest more severe metabolic dysregulation and

inflammatory states in patients with positive plaques, potentially

exacerbating CAS progression and plaque instability.

Given the potential link between GM and CAS, we analyzed the

GM of all participants. We found dysbiosis in the GM of SCAS

patients, with certain bacteria like Collinsella significantly enriched

in the gut, consistent with previous studies (Karlsson et al., 2012).

We also analyzed the microbiota in SCAS patient plaques and found

that some bacteria in the plaques were shared with the GM of

patients with positive plaques, further confirming that at least some

plaque bacteria may originate from the gut, in line with previous

findings (Koren et al., 2011). As previously discussed, the bacteria in

plaques may have a potential connection with plaque stability. The

likelihood of bacterial translocation to the plaque and the amount

translocated (i.e., the bacterial DNA content) often relate to the

host’s physiological state, the characteristics of the plaque region,
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and the bacteria’s inherent properties (Pizarro-Cerdá and Cossart,

2006). We hypothesize that the GM of patients with positive

plaques may differ from those with negative plaques, possibly

related to more severe physiological abnormalities in the former

and potentially linked to translocation of gut bacteria to the plaques.

We found significant differences in b-diversity of GM between

patients with positive and negative plaques. Further analysis

revealed 16 genera (1 unknown) significantly enriched in the gut

of patients with positive plaques, indicating a marked difference in

GM compared to those with negative plaques. Correlation analysis

showed that most bacteria enriched in the gut of patients with

positive plaques were significantly positively correlated with

elevated clinical indicators, suggesting that changes in GM could

be one of the factors exacerbating abnormal physiological states.

We conducted a predictive analysis of the gut microbiota’s

functional expression in all participants to explore potential

changes in the functionality of the gut microbiota (GM) and its

potential associations with physiological states of the body. We

discovered that the predicted expression of an enzyme involved in

the biosynthesis of anaerobic homocysteine (COG1900) was

significantly upregulated in the gut microbiota of SCAS patients.

Previous research has shown that elevated homocysteine levels are

independently associated with the morphology and increased area

of carotid artery plaques (Alsulaimani et al., 2013), closely linked to

plaque progression and vulnerability (Yang et al., 2014; Ben et al.,

2020), and a subclinical marker for stroke risk (Zhang et al., 2020;

Rabelo et al., 2022). This suggests that GM might indirectly

promote the development of SCAS by upregulating the expression
A B

D E F

C

FIGURE 5

Predictive analysis of functional expression of gut microbiota. (A) Volcano plot of the differential analysis of KEGG metabolic pathways between NHF
and PFBS groups. (B, C) Volcano plots of differential COG protein functions analysis between NHF and PFBS groups, and clustering heatmaps of
significantly different protein functions. (D, E) Volcano plots of the differential analysis of KEGG metabolic pathways between PRSOPWPP and
PRSOPWNP groups, and clustering heatmaps of significantly different metabolic pathways. (F) Volcano plot of the differential analysis of COG protein
functions between PRSOPWPP and PRSOPWNP groups.
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of COG1900. Furthermore, we found significant upregulation in

specific predicted metabolic pathways in the gut microbiota of

patients with positive plaques. Specifically, the Fluorobenzoate

degradation pathway was most upregulated in patients with

positive plaques. This metabolic pathway is also upregulated in

inflammatory diseases such as osteoarthritis and Crohn’s disease

(Gevers et al., 2014; Wang et al., 2021), indicating its potential

involvement in the body’s inflammatory regulation. The aryl

hydrocarbon receptor (Ahr) is associated with human

inflammatory responses (Rothhammer and Quintana, 2019), and

Dioxin, involved in activating Ahr (Furue et al., 2021), can attenuate

inflammation through mechanisms like thymic atrophy, apoptosis,

Treg induction, and induction of myeloid-derived suppressor cells

upon activation by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD,

one of the Dioxin compounds) (Cannon et al., 2021). Therefore,

upregulation of the Dioxin degradation pathway might reduce Ahr

activation, weakening its anti-inflammatory role in the body. The

significant upregulation of Beta-Lactam resistance suggests that

drug-resistant bacteria might predominate in the gut of patients

with positive plaques, potentially triggering aberrant inflammatory

responses of the immune system and affecting the body’s ability to

resist infection (von Klitzing et al., 2017). In summary, these three

upregulated predicted metabolic pathways may be associated with

the more severe inflammatory state in patients with positive

plaques. Clostridium, a potential Atrazine-degrading bacterium

(Fang et a l . , 2015) , be longs to the same fami ly as

Clostridium_sensu_stricto_1. In our results, Clostridium_

sensu_stricto_1 was enriched in patients with positive plaques

and showed the greatest positive correlation with the expression

of the Atrazine degradation pathway. Therefore, we speculate it

might be a potential Atrazine-degrading bacterium. Correlation

analysis indicated that the 16 bacterial genera enriched in the gut of
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patients with positive plaques were significantly positively

correlated with most of the upregulated metabolic pathways,

suggesting these genera might participate in the expression of

these metabolic pathways.

Our study found that 11 bacterial genera significantly enriched in

the gut of patients with positive plaques were also present in the

plaques themselves, suggesting that these bacteria might have the

potential to translocate from the gut to the plaques. The integrity of

the gut barrier, composed of the mucous layer, intestinal epithelial cells,

and immune cells, is crucial for human survival, health, and defense

(Farhadi et al., 2003; Vancamelbeke and Vermeire, 2017). Patients with

positive plaques were mostly elderly, and aging is a key potential factor

in gut barrier dysfunction (Man et al., 2014; Untersmayr et al., 2022).

Coupled with these patients’ history of alcohol consumption,

significant hyperglycemia, and systemic inflammation, these factors

likely facilitate bacterial translocation from the gut to the bloodstream

(Leclercq et al., 2014; Li et al., 2016; Thaiss et al., 2018). Macrophages

and neutrophils in the blood can phagocytize bacteria that enter the

bloodstream (Sharma et al., 2022), and immune cells carrying bacteria

can migrate and accumulate in areas of carotid atherosclerosis under

the influence of chemotactic factors (Gencer et al., 2021), potentially

indirectly increasing the amount of bacterial DNA in the plaques.The

characteristics of the bacteria themselves are also a crucial determinant

of translocation. Some bacteria within the Klebsiella genus, such as

Klebsiella pneumoniae, can translocate across intestinal epithelia

via a cell invasion mechanism dependent on Rho GTPases

and phosphatidylinositol 3-kinase/Akt (Wyres et al., 2020).

Streptococcus and Klebsiella can adhere and colonize through

adhesion molecules like pili and adhesins (Nobbs et al., 2009; Chen

et al., 2023). Some species of Blautia have genes encoding phage and

transposons, facilitating their adherence and colonization (Shen et al.,

2020; Liu et al., 2021). Overgrowth of Clostridium_sensu_stricto_1 is
A B

DC

FIGURE 6

Correlation analysis between functional expression of gut microbiota, clinical characteristics, and different bacterial genera. (A) Correlation between
significantly different bacterial genera and differential protein functions between NHF and PFBS groups. (B) Correlation between differential protein
functions and clinical characteristics between NHF and PFBS groups. (C) Correlation between significantly different bacterial genera and differential
metabolic pathways be-tween PRSOPWPP and PRSOPWNP groups. (D) Correlation between differential metabolic pathways and clinical
characteristics between PRSOPWPP and PRSOPWNP groups.
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associated with necrotizing enterocolitis (Yang et al., 2019), which may

facilitate its translocation across intestinal epithelia (Ciftci et al., 2012).

Species of Clostridium_sensu_stricto_1 are linked to various infectious

diseases (Gubler et al., 1989; Tappe et al., 2009; Daganou et al., 2016),

and there have been case reports of Romboutsia causing human

marrow necrosis (Seviar et al., 2022), suggesting these genera may

have certain adhesive and colonization capabilities (Boyle and Finlay,

2003). Mucins play a significant role in the gut barrier mechanism

(Breugelmans et al., 2022), and Ruminococcus_2 is associated with

their degradation (Hatayama et al., 2023), indicating that this genus

might translocate by disrupting the integrity of the gut barrier.

Anaerococcus, commonly residing in the skin and gastrointestinal

tract, can cause infections and lead to bacteremia under certain

conditions (Murphy and Frick, 2013; Badri et al., 2019; Cobo et al.,

2021), indicating its adhesive and colonization capabilities.

Additionally, evidence shows that Streptococcus (Domenech et al.,

2012), Klebsiella (Alcántar-Curiel et al., 2013), andMethanobrevibacter

(Bang et al., 2014) have the ability to form biofilms, suggesting strong

survival capabilities. If they exist in plaques as biofilm deposits, they

might increase plaque instability. The abnormal physiological state of

patients with positive plaques might exacerbate pathological changes

like endothelial dysfunction in CAS areas, facilitating the adherence

and colonization of free bacteria (Lemichez et al., 2010).

Interestingly, there were no significant differences between

Streptococcus, Klebsiella, Blautia, and Clostridium_sensu_stricto_1 in

the NHF and PFBS groups, while significant differences were observed

between patients with positive and negative plaques, and these genera

were present in the plaques. Therefore, we speculate that these genera

may not have the potential to cause CAS but may affect plaque stability.

This study has several limitations. First, our patient recruitment

strategy, which involved continuous enrollment, did not adequately

balance gender distribution. However, previous research indicates

that GM variations are mainly due to strokes or TIAs caused by

major artery atherosclerosis (Yin et al., 2015), similar to our study

population. Therefore, the impact of gender on our GM results

might be minor. Second, this is a single-center study with a small

sample size. Future multi-center studies with larger sample sizes are

needed to validate our findings. Lastly, we did not fully consider the

potential impact of antidiabetic medications on GM, which will be

addressed in future large-scale studies through subgroup analyses to

mitigate such potential influences.

In summary, patients with positive plaques exhibit more severe

metabolic disorders and inflammatory states, along with significant

enrichment of bacteria in the gut, particularly those capable of

translocating across the intestinal barrier, adhering, colonizing, and

forming biofilms. These capabilities provide favorable conditions for

their translocation to plaque regions and local infection, increasing the

bacterial DNA content in the plaques. This may promote plaque

instability and, consequently, increase the risk of ischemic stroke.
5 Conclusion

Our study demonstrates that patients with symptomatic carotid

atherosclerosis (SCAS) exhibit metabolic disorders and inflammatory

states, along with significant changes in their gut microbiota (GM),
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consistent with previous research findings. By analyzing bacterial

DNA in plaques, we compared for the first time the clinical

characteristics and GM differences between patients with negative

and positive plaques. We found that patients with positive plaques

have more severe physiological abnormalities, which may further

damage the endothelial integrity in the carotid plaque regions

(facilitating bacterial adhesion and colonization) and compromise

plaque stability. Significant differences were observed in the GM

between patients with positive and negative plaques, particularly the

significant enrichment of 11 bacterial genera in the gut of patients

with positive plaques, which were also present in the plaques. Some of

these bacteria have the ability to translocate to the plaques, potentially

exacerbating plaque instability through increased local infection,

inflammation, and bacterial DNA content. In conclusion, these

findings may enhance our understanding of plaque stability in

SCAS and help identify patients at high risk of plaque instability.

Future research should further explore the differing roles and specific

molecular mechanisms of various microbes in plaque formation and

evolution, as well as how GM modulation could intervene in the

plaque stability of SCAS.
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